首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of alumina-free micas was synthesized hydrothermally in the potassium-poor portion of the system K2O-MgO-SiO2-H2O. One end member of this series has the composition KMg2.5[Si4O10](OH)2, which, because of its octahedral occupancy, is intermediate between the dioctahedral and trioctahedral micas.From this end member a series of mica solid solutions extends towards more Mg-rich compositions. Single phase micas were obtained along the substitution line 2Mg for Si which appears to involve incorporation of part of the Mg in tetrahedral sites. It leads to a theoretical end member with a structural formula KMg3[Si3.5Mg0.5O10](OH)2. Solid solutions containing up to 75 mole % of this theoretical end member could be synthesized. The observed densities, water contents, and a one-dimensional Fourier synthesis are consistent with the assumed substitution.At 1 kb fluid pressure and 620° C the Si-rich end member KMg2.5[Si4O10](OH)2 decomposes to a more Mg-rich mica, the roedderite phase K2Mg5Si12O30, liquid, and H2O-rich vapor. With increasing Mg-content the thermal stability of the mica solid solutions increases up to 860°C at a composition of about K2O·6.2MgO·7.4SiO2·2H2O, i.e. KMg2.8[Si3.7Mg0.3O10](OH)2. This mica disintegrates directly into forsterite + liquid + H2O-rich vapor. The mica phase richest in Mg with a composition of about K2O·6.5MgO·7.25SiO2·2H2O, i.e. KMg2.875 [Si3.625Mg0.375O10](OH)2, breaks down at 765° C into forsterite, a more Si-rich mica, liquid, and H2O-rich vapor.This binary series of alumina-free micas forms a complete series of ternary solid solutions with normal phlogopite, KMg3[Si3AlO10](OH)2. Analyses of some natural phlogopites showing Si in excess of 3.0 (up to 3.18) per formula unit can be explained through this ternary miscibility range.  相似文献   

2.
A mica whose structural formula: (K1.76Na0.31)(Fe2.22Mn1.29Mg0.99Ti0.28Al0.240.98) ·(Si7.33Al0.67)O20.26(F2.16OH1.58) closely approximates that of tetrasilicic potassium mica K2(M 5 2+ )Si8O20(OH,F)4 where M2+ represents Mg2+, Fe2+, Mn2+, ..., has been discovered in the matrix of a peralkaline rhyolite (comendite) of the Mont-Dore massif (France). These micas had been obtained previously by synthesis only. In the groundmass of the rock, the micaceous phase is accompanied by a manganoan arfvedsonite, pyrophanite, magnetite, apatite, sphene, zircon and fluorite. The crystallographic properties of the mica are typically that of a tetrasilicic mica, with d 060 = 1.533Å and space group C2/m. There is a regular decrease of d 060 (parameter b) with the ionic radius of the octahedral cation in synthetic micas containing Fe2+, Co2+, Mg2+, Ni2+. The purely Mn2+ end-member could not be synthesised; its instability is discussed on the basis of structural considerations. The conditions of crystallization of the micaceous phase are estimated to be 760 ° C, 800 bars with a f o 2=10–14.7 bar. This mica has crystallized from a residual liquid, with high activity of silica and low activity of alumina, whose origin is discussed. The name MONT-DORITE is proposed for this natural tetrasilicic mica having Fe/Fe+Mg >1/2 and Fe/Fe+Mn >1/2. This name is from the stratovolcano Mont-Dore.  相似文献   

3.
 中国东部花岗岩类141个Mg-Fe云母的化学成分将近90%的变化属于八面体层内的类质同象置换,置换矢量Mg 1Fe+2和Fe-3+2(R+3)-2组成了天然黑云母平面,大约80%的变化应当解释为基本置换8Mg 1Fe+2+Fe-3+2(R+3)2.这些是Mg-Fe云母在广泛的自然条件下表现出来的最主要的晶体化学关系。文中还提出了置换矢量的长度、分量和以及电价和三个参数,用以识别矿物化学成分变化的类质同象置换特征。  相似文献   

4.
Multiphase solid inclusions in minerals formed at ultra-high-pressure (UHP) provide evidence for the presence of fluids during deep subduction. This study focuses on barian mica, which is a common phase in multiphase solid inclusions enclosed in garnet from mantle-derived UHP garnet peridotites in the Saxothuringian basement of the northern Bohemian Massif. The documented compositional variability and substitution trends provide constraints on crystallization medium of the barian mica and allow making inferences on its source. Barian mica in the multiphase solid inclusions belongs to trioctahedral micas and represents a solid solution of phlogopite KMg3(Si3Al)O10(OH)2, kinoshitalite BaMg3(Al2Si2)O10(OH)2 and ferrokinoshitalite BaFe3(Al2Si2)O10(OH)2. In addition to Ba (0.24–0.67 apfu), mica is significantly enriched in Mg (XMg ~ 0.85 to 0.95), Cr (0.03–0.43 apfu) and Cl (0.04–0.34 apfu). The substitution vector involving Ba in the I-site which describes the observed chemical variability can be expressed as BaFeIVAlClK?1Mg?1Si?1(OH)?1. A minor amount of Cr and VIAl enters octahedral sites following a substitution vector VI(Cr,Al)2VI(Mg,Fe)?3 towards chromphyllite and muscovite. As demonstrated by variable Ba and Cl contents positively correlating with Fe, barian mica composition is partly controlled by its crystal structure. Textural evidence shows that barian mica, together with other minerals in multiphase solid inclusions, crystallized from fluids trapped during garnet growth. The unusual chemical composition of mica reflects the mixing of two distinct sources: (1) an internal source, i.e. the host peridotite and its garnet, providing Mg, Fe, Al, Cr, and (2) an external source, represented by crustal-derived subduction-zone fluids supplying Ba, K and Cl. At UHP–UHT conditions recorded by the associated diamond-bearing metasediments (c. 1100 °C and 4.5 GPa) located above the second critical point in the pelitic system, the produced subduction-zone fluids transporting the elements into the overlying mantle wedge had a solute-rich composition with properties of a hydrous melt. The occurrence of barian mica with a specific chemistry in barium-poor mantle rocks demonstrates the importance of its thorough chemical characterization.  相似文献   

5.
Si+4 Content of natural phengites   总被引:2,自引:0,他引:2  
The chemical compositions of white micas separated from adjacent rocks of glaucophane and greenschist facies are compared with respect to their Si+4 content. The micas are predominantly phengitic, i.e. between muscovite, K[Al2Si3AlO10(OH)2] and celadonite, K[(R+2R+3)Si4O10(OH)2] in composition. Constancy of Si content in micas coming from rocks of different bulk chemical composition but closely similar physical conditions indicates that the silica content of a potassic dioctahedral mica can be used to indicate the pressure and temperature conditions of its formation. This conclusion is in part based upon previous experimental data obtained for synthetic phengites.  相似文献   

6.
A detailed study of the chemical composition and substitutions in calcium tourmalines from a scapolite-bearing rare-metal pegmatite vein from the Sol’bel’der River basin has shown that their species attribution is determined by occupancy of octahedral site Y. The composition of the yellow tourmaline most abundant in the central part of the pegmatite bodyis rather constant and characterized by the ideal formula Ca(Mg2Li)Al6(Si6O18)(BO3)3(OH)3F. Variations in the chemical composition of zonal tourmaline crystals from the contact part of the pegmatite are controlled by abrupt change in the chemical medium during their formation. The yellow cores of these crystals are close in composition to tourmaline from the central part of the pegmatite vein. The Mg content abruptly decreases toward the crystal margin: Mg2+ → Fe2+, 2Mg2+ → Li+ + Al3+, and Mg2+ + OH → Al3+ + O2−. The composition of dark green marginal zones in tourmaline is characterized by the ideal formula Ca(Al1.5Li1.5)Al6(Si6O18)(BO3)3 (OH2O)(F). The results indicate specific formation conditions of pegmatite. The crystallochemical formulas of the studied tourmalines allow us to regard them as new mineral species in the tourmaline group.  相似文献   

7.
The electrostatic lattice energies of expanded and unexpanded micas are calculated starting from a “generic” structure the ionic charges of which are varied. The mode of expansion is to move the layers apart perpendicular to (001), the K+ ions remaining midway between the layers. The energy required for expansion is a quadratic function of the layer charge. It is larger when the layer charge is in the octahedral sites (K x Al2?x Mg x Si4O10(OH)2) than when it is in the tetrahedral sites (K x Mg3Si4?x Al x O10(OH)2). Fluormicas have a slightly larger expansion energy than OH-micas. With the tetrahedral layer charge, dioctahedral micas have a slightly larger expansion energy than trioctahedral micas. This mode of expansion is less favourable than the mode usually adopted, viz. an expansion whereby the K ions divide themselves between the layers. The energy difference increases with the separation distance and is about 60 kJ mol?1 at 2.5 Å expansion. An intercalated water layer would be necessary to stabilize the K ions in positions midway between the layers.  相似文献   

8.
Following and extending the early work of Velde (1965) the pressure-temperature dependence of the compositions of potassic white micas coexisting with K-feldspar, quartz, and phlogopite in the model system K2O-MgO-Al2O3-SiO2-H2O was investigated up to fluid pressures of 24 kbar by synthesis experiments. There is a strong, almost linear increase of the Si content per formula unit (p.f.u.) of phengite, ideally KAl2–xMgx[Al1–xSi3+xO10] (OH)2 with pressure, as well as a moderate decrease of Si (or x) with temperature. The most siliceous phengite with Si near 3.8 p.f.u. becomes stable near 20 kbar depending on temperature. However, contrary to Velde's assumption, these phengites coexisting with the limiting assemblage are invariably not of an ideal dioctahedral composition (as given by the above formula) but have total octahedral occupancies as high as about 2.1 p.f.u.The stability field of the critical assemblage phengite — K-feldspar — phlogopite — quartz ranges, in the presence of excess H2O, from at least 350° C to about 700° C but has an upper pressure limit in the range 16–22 kbar, when K-feldspar and phlogopite react to form phengite and a K, Mg-rich siliceous fluid.For the purpose of using these phase relationships as a new geobarometer for natural rocks, the influence of other components in the phengite (F, Fe, Na) is evaluated on the basis of literature data. Water activities below unity shift the Si isopleths of phengite towards higher pressures and lower temperatures, but the effects are relatively small. Tests of the new geobarometer with published analytical and PT data on natural phengite-bearing rocks are handicapped by the paucity of reliable values, but also by the obvious lack of equilibration of phengite compositions in many rocks that show zonation of their phengites or even more than one generation of potassic white micas with different compositions. From natural phengites that do not coexist with the limiting assemblage studied here but still with a Mg, Fe-silicate, at least minimum pressures can be derived with the use of the data presented.  相似文献   

9.
Relative compressibilities of five silicate garnets were determined by single-crystal x-ray diffraction on crystals grouped in the same high-pressure mount. The specimens include a natural pyrope [(Mg2.84Fe0.10Ca0,06) Al2Si3O12], and four synthetic specimens with octahedrally-coordinated silicon: majorite [Mg3(MgSi)Si3O12], calcium-bearing majorite [(Ca0.49Mg2.51)(MgSi)Si3012], sodium majorite [(Na1.88Mgp0.12)(Mg0.06Si1.94)Si3O12], and an intermediate composition [(Na0.37Mg2.48)(Mg0.13Al1.07 Si080) Si3O12]. Small differences in the compressibilities of these crystals are revealed because they are subjected simultaneously to the same pressure. Bulk-moduli of the garnets range from 164.8 ± 2.3 GPa for calcium majorite to 191.5 ± 2.5 GPa for sodium majorite, assuming K′=4. Two factors, molar volume and octahedral cation valence, appear to control garnet compression.  相似文献   

10.
Overprinting of white micas from high pressure, low to medium temperature (M 1) metamorphic assemblages in pelitic schists on Naxos during subsequent thermal dome (M 2) metamorphism ranges from minor in the southeast of the island to complete recrystallization in the amphibolite facies rocks near the migmatites in the centre of the dome. The original (M 1) minerals are phengites (Si4+=6.7–7.0) and the overprinting minerals are muscovites (Si4+=6.0–6.45). 40Ar/39Ar step heating analyses of white mica separates from rocks in the area where phengite and muscovite occur together yield complex age spectra, characterized by low apparent ages in the first and the last stages of gas release and high apparent ages in between. These upward-convex age spectra are shown to be caused by mixing of two generations of micas, each of which has a different age spectrum and argon release pattern. Seemingly good plateaus in some age spectra from white micas of the area must be interpreted as providing meaningless intermediate ages. Further, the upward-convex age spectra have been used to trace the isotopic signature of phengites toward increasing M 2 metamorphic grade, and suggest that as long as phengites can be observed in the rocks upward-convex age spectra occur. On Naxos, crystallization of muscovite at the expense of phengite appears to be the main mechanism of resetting argon isotopic ages in white micas. However, there is also good evidence for argon loss by volume diffusion from phengites. Simple diffusion calculations suggest that the M 2 metamorphism was caused by a shortlived heat source.Now at Department of Geology, University of Alberta, Edmonton T6G 2E3, Canada  相似文献   

11.
The Southern Vanoise is localized in the internal part of the Western Alps, in the Briançonnais zone. In Vanoise the following units can be distinguished (Fig. 1): a pre-hercynian basement (micaschists, glaucophanites, basic rocks), a permian cover (micaschists) and a mesozoic-paleocene cover (carbonate rocks). This area has been affected by the alpine metamorphic event characterized here by high and intermediate pressure facies. The rocks paragenesis are often unbalanced.The paleozoic rocks (Table 1) contain mainly: quartz, albite, paragonite, phengite, blue amphibole, chlorite, green biotite, garnet (Table 2). These minerals were analysed by an electron microprobe (Tables 3, 4 and 5). Mineral composition is highly variable: glaucophane is zoned (Table 5), white micas are more or less substituted with phengite (3.22O3/FeO + MgO)<0.53] whereas the Al rich chlorites [(Al2O3/FeO + MgO)>0.6] are associated with the less substituted white micas (Si=3.2) (Tables 3 and 4). The phengites with a Si content 3.2 occur in rocks where the retromorphic evolution is the most pronounced and penetrative. A metamorphic evolution is characterized by the disappearance of glaucophane which corresponds to the appearance of Al rich chlorite and to the decrease of phengitic substitution.The samples analysis are plotted in the tetraedric diagram: K2O-Al2O3-Na2O, Al2O3-FeO, MgO, on which a special mathematical treatment was applied. This method calculates the location of rocks composition in the four minerals space. This location is internal when the per cent amounts of all four relevant minerals are positive, if any of them is negative, the point is external (Tables 6–9).In Southern Vanoise micaschists, 2 subfacies are successively present (Fig. 3):Subfacies I: glaucophane-chlorite-phengite (Si4+ 3.5)-paragonite. Then subfacies II: chlorite-albite-phengite (Si4+ 3.2)-paragonite.In basic rocks is found essentially: Subfacies III: glaucophane-garnet-phengite-paragonite or IV: glaucophane-garnet-phengite-albite. Then subfacies V: green biotite-chlorite-albite-paragonite.The assemblages I and II proceed through reaction: 2 glaucophane +1 paragonite+2 H2O4.2 albite + 1 chlorite.The assemblage V appears with reactions: 1.8 glaucophane +2 phengite0.4 chlorite+2 green biotite + 3.6 albite +0.4 H2O or 2 glaucophane +2 phengite +0.5 garnet+ 6 H2O2 green biotite +1 chlorite+4 albiteThese reactions are controlled by hydratation: the composition variation of phengite and associated chlorite during the metamorphic evolution determines the stability of some minerals (particularly the glaucophane in Na2O poor rocks).In same rocks the results of mathematical treatment is not consistent with the data (Tables 2, 6–9). This discrepancy corresponds to a desequilibrium between chlorite and phengite.These results imply a continuous metamorphic evolution between two stages (Fig. 6): a first stage (1) at 8 kb, 350 ° C; a second stage (2) at 2 to 3 kb, 400–450 ° C.  相似文献   

12.
Fault affecting silicoclastic sediments are commonly enriched in clay minerals. Clays are sensitive to fluid–rock interactions and deformation mechanisms; in this paper, they are used as proxy for fault activity and behavior. The present study focuses on clay mineral assemblages from the Point Vert normal fault zone located in the Annot sandstones, a Priabonian-Rupelian turbidite succession of the Alpine foredeep in SE France. In this area, the Annot sandstones were buried around 6–8 km below the front of Alpine nappes soon after their deposition and exhumed during the middle-late Miocene. The fault affects arkosic sandstone beds alternating with pelitic layers, and displays throw of about thirty meters. The fault core zone comprises intensely foliated sandstones bounding a corridor of gouge about 20 cm thick. The foliated sandstones display clay concentration along S–C structures characterized by dissolution of K-feldspar and their replacement by mica, associated with quartz pressure solution, intense microfracturation and quartz vein precipitation. The gouge is formed by a clayey matrix containing fragments of foliated sandstones and pelites. However, a detailed petrographical investigation suggests complex polyphase deformation processes. Optical and SEM observations show that the clay minerals fraction of all studied rocks (pelites and sandstones from the damage and core zones of the fault) is dominated by white micas and chlorite. These minerals have two different origins: detrital and newly-formed. Detrital micas are identified by their larger shape and their chemical composition with a lower Fe–Mg content than the newly-formed white micas. In the foliated sandstones, newly-formed white micas are concentrated along S–C structures or replace K-feldspar. Both types of newly formed micas display the same chemical composition confirmed microstructural observations suggesting that they formed in the same conditions. They have the following structural formulas: Na0.05 K0.86 (Al 1.77 Fe0.08 Mg0.15) (Si3.22 Al0.78) O10 (OH)2. They are enriched in Fe and Mg compared to the detrital micas. Newly-formed chlorites are associated with micas along the shear planes. According to microprobe analyses, they present the following structural formula: (Al1,48 Fe2,50 Mg1,84) (Si2,82 Al1,18) O10 (OH)8. All these data suggest that these clay minerals are synkinematic and registered the fault activity. In the gouge samples, illite and chlorite are the major clay minerals; smectite is locally present in some samples.In the foliated sandstones, Kubler Index (KI) ((001) XRD peak width at half height) data and thermodynamic calculations from synkinematic chlorite chemistry suggest that the main fault deformation occurred under temperatures around 220 °C (diagenesis to anchizone boundary). KI measured on pelites and sandstones from the hanging and footwall, display similar values coherent with the maximal burial temperature of the Annot sandstones in this area. The gouge samples have a higher KI index, which could be explained by a reactivation of the fault at lower temperatures during the exhumation of the Annot sandstones formation.  相似文献   

13.
Chemical and mineralogical analyses of the clay fraction of eleven soils containing a large amount of vermiculite clay and representing a wide range of parent materials revealed that two types of vermiculite clays exist: (1) An aluminous type in which Al3+ substitutes for Si4+ in tetrahedral positions in the same order of magnitude as in the coarse grained vermiculites and micas, and with Al3+ as the dominant octahedral ion. (2) A silicious type in which only Si4+ occupies the tetrahedral positions, and with Fe3+ and Mg2+ as the dominant octahedral ions. The aluminous vermiculite clay was found to occur in soils derived from acid igneous rocks and is usally associated with mica, whereas the silicious type was found to occur in soils derived from basic igneous rocks which do not contain mica. Because of this close association of these two types to their parent material, it was concluded that the aluminous vermiculite is a product of alteration of mica whereas the silicious type is a product of synthesis from primary oxides of silica, alumina, iron, and magnesium. Both types of vermiculite clays tend to be dioctahedral in contrast to the trioctahedral nature of the coarse-grained vermiculite.  相似文献   

14.
Mössbauer studies of micas on the polylithionite-side-rophyllite join show the existence of a relation between the quadrupole splitting (ΔE Q) values of Fe2+ high spin doublets and both cationic and anionic composition of micas. This linear relation is positive as Li2O content increases and negative as F content increases. In the lithium iron micas, the inner ferrous quadrupole doublet is assigned to the cis-site M(2), while the outer doublet is assigned to the trans-site M(1). A random distribution of Fe2+ is observed in fluorine-rich compositions, while slight enrichment of the M(1) site is noticed in hydroxyl compositions, perhaps due to a more sensitive oxidation in situ in M(2) than M(1) sites. The Mössbauer spectrum of siderophyllite K2(Fe 4 2+ Al2)(Si4Al4)O20(OH)4 shows the presence of only one ferrous doublet, which is assigned to M(2) sites. Hence from Mössbauer data we must consider a clintonite (“xanthophyllite”) structure for this mica. The ordered octahedral layer has two distorted ferrous cis-sites and one, more symmetrical, aluminum trans-site.  相似文献   

15.
This contribution is finalized at the discussion of the magnetic structure of two samples, belonging to phlogopite–annite [sample TK, chemical composition IV(Si2.76Al1.24) VI(Al0.64Mg0.72 $ {\text{Fe}}_{1.45}^{2 + } $ Mn0.03Ti0.15) (K0.96Na0.05) O10.67 (OH)1.31 Cl0.02] and polylithionite–siderophyllite joints [sample PPB, chemical composition IV(Si3.14Al0.86)VI(Al0.75Mg0.01 $ {\text{Fe}}_{1.03}^{2 + } $ $ {\text{Fe}}_{1.03}^{3 + } $ Mn0.01Ti0.01Li1.09) (K0.99Na0.01) O10.00 (OH)0.65F1.35]. Samples differ for Fe ordering in octahedral sites, Fe2+/(Fe2+?+?Fe3+) ratio, octahedral composition, defining a different environment around Fe cations, and layer symmetry. Spin-glass behavior was detected for both samples, as evidenced by the dependency of the temperature giving the peak in the susceptibility curve from the frequency of the applied alternating current magnetic field. The crystal chemical features are associated to the different temperature at which the maximum in magnetic susceptibility is observed: 6?K in TK, where Fe is disordered in all octahedral sites, and 8?K in PPB sample, showing a smaller and more regular coordination polyhedron for Fe, which is ordered in the trans-site and in one of the two cis-sites.  相似文献   

16.
Structural formulas were calculated for 8 analysed coexisting biotite-muscovitepairs from granitic rocks. Characteristic components of these structural formulas were plotted against the unit cell dimensions of these micas.In accordance with the results of Gower (1957) the substitution of OH by F in trioctahedral micas was found to reduce c 0 · . However, in contrast to his statements, octahedral alumina was found to reduce c 0 · sin also and to an even larger extent than fluorine. This observation is in agreement with the commonly encountered compacting of the mica structure through replacement of 3 large cations (Fe2+, Mg2+, Mn2+) by two smaller ones (Al3+, Fe3+).Concerning b 0 the combined amounts of octahedral Al and tetrahedral Si cause a reduction of this value, which means indirectly that tetrahedral Al alone would increase b 0.Reductions of b 0 and c 0 · sin by Al in synthetic micas were also found by Crowley and Roy (1964) and Seifert (1966) for the substitution Mg + Si by two Al in trioctahedral micas.In an earlier paper the author (Müller, 1966) has already shown with the same mica samples that the substitutions of M2+ by Al3+ and of OH by F also have the strongest effects of all substitutions on the refractive indices, densities, and specific refractive energies of these micas. Therefore it is evident that the latter effects as well as the changes of lattice constants described in this paper are interrelated.

Mein Dank gilt den Herren Dr.W. Harre und Dr. H. Gundlach, Bundesanstalt für Bodenforschung, Hannover, für die Ausführung der chemischen Glimmeranalysen, sowie der Deutschen Forschungsgemeinschaft, Bad Godesberg, für ihre finanzielle Beihilfe. Herrn Dr. F. Seifert, Kiel, danke ich für zahlreiche sachliche Diskussionen und Hinweise und für die Überlassung seines Algol-Rechenprogramms, mit welchem 4 der 16 Strukturformeln elektronisch berechnet wurden. Herrn Prof. Dr. F. Liebau, Kiel, verdanke ich einige freundliche Ratschläge.  相似文献   

17.
Short-wave infrared (SWIR) spectral reflectance of hydrothermally altered volcanic rocks in the footwall of the Hellyer massive sulfide deposit was measured with a portable PIMA-II infrared spectrometer. The Al–OH band was used to derive information on the octahedral Al content and the abundance of white mica (sericite) in the hydrothermal alteration and mineralization system. The range of the Al–OH band wavelength from 2192 nm to 2222 nm corresponds to the number of octahedral Al (Alvi) in white mica approximately from 3.9 to 3.0 (based on 4 octahedral cations per formula). This Alvi range represents a significant compositional variation, covering most of the compositional region between muscovite (Alvi = 4.0) and phengite (Alvi = 3.0). Furthermore, the spectral reflectance data show that the compositional variation of white mica is spatially related to hydrothermal alteration zoning, such that phengitic white mica tends to occur in 1) main upflow fluid channel, 2) intensely altered volcanic rocks, and 3) Pb–Zn mineralization, whereas muscovitic white mica was formed preferentially distal to massive sulfide mineralization on the margin of the footwall alteration system. The results suggest that the Al–OH band wavelength, and therefore the octahedral Al content, of white mica can be used as vectors to mineralization to map the hydrothermal system at Hellyer.  相似文献   

18.
Microprobe analysis, single crystal X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray absorption spectroscopy were applied on Fe-rich osumilite from the volcanic massif of Mt. Arci, Sardinia, Italy. Osumilite belongs to the space group P6/mcc with unit cell parameters a = 10.1550(6), c = 14.306(1) Å and chemical formula (K0.729)C (Na0.029)B (Si10.498 Al1.502)T1 (Al2.706 Fe 0.294 2+ )T2 (Mg0.735 Mn0.091 Fe 1.184 2+ )AO30. Structure refinement converged at R = 0.0201. Unit cell parameter a is related to octahedral edge length as well as to Fe2+ content, unlike the c parameter which does not seem to be affected by chemical composition. The determination of the amount of each element on the mineral surface, obtained through X-ray photoelectron spectroscopy high-resolution spectra in the region of the Si2p, Al2p, Mg1s and Fe2p core levels, suggests that Fe presents Fe2+ oxidation state and octahedral coordination. Two peaks at 103.1 and 100.6 eV can be related to Si4+ and Si1+ components, respectively, both in tetrahedral coordination. The binding energy of Al2p, at 74.5 eV, indicates that Al is mostly present in the distorted T2 site, whereas the Mg peak at 1,305.2 eV suggests that this cation is located at the octahedral site. X-ray absorption at the Fe L2,3-edges confirms that iron is present in the mineral structure, prevalently in the divalent state and at the A octahedral site.  相似文献   

19.
A combined petrographic/X-ray/electron microprobe and energy dispersive system investigation of sandstone cuttings from borehole Elmore # 1 near the center of the Salton Sea Geothermal Field has revealed numerous regular variations in the composition, texture, mineralogy and proportions of the authigenic layer silicate minerals in the temperature interval 185° C (411.5 m depth) to 361° C (2,169 m). At temperatures near 190° C, dolomite/ankerite+calcite-bearing sandstones contain an illite/mixed layer phase with 10% expandable layers (dolomite/ankerite zone). In shale, the percentage of expandable layers in the mixed layer phase changes from 10–15% at 185° C to 5% at 210° C (494 m). In the interval 250° C (620 m) to 325° C (1,135 m), the calcite+pyrite+epidote-bearing sandstones contain a layer silicate assemblage of chlorite and illite (chlorite-calcite zone). In the shallower portions of this metamorphic zone, the illite contains 0–5% expandable layers, while at depths greater than 725 m (275° C) it is completely free of expandable layers. On increasing temperature, the white mica shows regular decreases in SiIV, Mg and Fe, and increase in AlIV, AlVI, and interlayer occupancy, as it changes gradually from fine-grained illite (=textural sericite) to coarse-grained recrystallized phengitic white mica. In the same interval, chlorite shows decreases in AlVI and octahedral vacancies and an increase in total Mg+Fe. The sandstones range from relatively unmodified detrital-textured rocks with porosities up to 20% and high contents of illite near 250° C to relatively dense hornfelsic-textured rocks with trace amounts of chlorite and phengite and porosities near 5% at 325° C. Numerous complex reactions among detrital (allogenic) biotite, chlorite, and muscovite, and authigenic illite and chlorite, occur in the chlorite-calcite zone.Biotite appears, and calcite disappears, at a temperature near 325° C and a depth of 1,135m. The biotite zone so produced persists to 360° C in sandstone, at which temperature orthoclase disappears and andradite garnet appears at a depth near 2,155 m. Throughout the biotite zone and into the garnet zone, the biotite undergoes compositional changes that are very similar to those observed in illite/phengite in the chlorite-calcite zone, including increases in interlayer occupancy, AlIV, AlVI, and Ti, and decreases in F, SiIV, and Mg/Fet+Mg, on increasing temperature. Biotite thus changes from a siliceous, K-deficient biotite at the biotite isograd to a typical low-grade metamorphic biotite at temperatures near 360° C. Minor amounts of talc appear with biotite at the biotite isograd in sandstone, while actinolite appears in both sandstone and shale at temperatures near 340° C (1,325 m). Chlorite completely disappears from sandstone at temperatures of approximately 350° C (1,500 m), and diminishes abruptly in amount in the more chloritic shales at the same depth.  相似文献   

20.
The 29Si and 27Al nuclear magnetic resonance (NMR) analysis of synthetic trioctahedral phyllosilicates 2:1, with tetrahedral ratios Al T/(Si + Al T) ranging from 0 to 0.5, has shown that the ditrigonal distortion of tetrahedral rings (angle ) is the main factor controlling chemical shift values of tetrahedral components in both signals. The increase of ditrigonal rotation angle shifts these components towards more positive values. For each sample, the composition of tetrahedral and octahedral sheets determine the value of , and from this parameter, the mean tetrahedral Tot angle and the chemical shift values of components are deduced. For a given environment, variations on ditrigonal angle are responsibles for the observed evolution of chemical shift values with bulk composition. The comparative analysis of micas and saponite samples has demonstrated that the location of compensating charge (interlayer and octahedral sheet) does not affect chemical shift values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号