首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 873 毫秒
1.
《Applied Geochemistry》1993,8(4):403-407
The Cl isotope ratio, mass37Cl/35Cl, was measured on 22 formation waters from Mississippian, Devonian, Silurian, Ordovician and Cambrian strata in the Michigan Basin. Because of its resistance to fractionation, the ratio was used to find evidence of mixing of formation waters within the Michigan Basin and between the Canadian Shield and the basin. The δ37Cl composition of waters decreased from +0.05 to −0.55 (per mil difference from SMOC, precision of 0.16) with age of the strata among Devonian, Silurian, Ordovician and Cambrian samples from the basin margin. Mississippian samples from the middle of the basin were isotopically heaviest at +0.1. Ordovician samples, also from mid-basin, were isotopically lightest at −1.2. On plots of δ37 Cl vs Cl/Br and δ37 Cl vs87Sr/86Sr samples at the basin margin trend toward enrichment in35Cl and87Sr and increasing Cl/Br suggesting interformational mixing of the waters. On a δ37 ClCl/Br plot, three samples not on this trend and tending toward high Cl/Br may reflect evaporite dissolution. Canadian Shield Waters were plotted with Michigan Basin waters on the graphs of δ37 Cl vs Ca/Cl and δ37 Cl vs K/Cl. On both plots data fall along linear trends of35Cl depletion with Ca/Cl increase and with K/Cl decrease. Ordovician waters from the middle of the basin and shield waters are end members on the plots. The results suggest that despite water-rock interactions, δ37 Cl data may be useful in studies of mixing relations in formation waters.  相似文献   

2.
The isotopic composition of Sr has been measured in brine samples from the Upper Jurassic Smackover Formation in southern Arkansas; 87Sr86Sr ratios range from 0.7071 to 0.7101. With one exception, the 32 Smackover brines contain Sr which is significantly more radiogenic than the Sr in Late Jurassic sea water, indicating sizable Sr contributions from detrital sources. Isotopic analyses of core samples from rock units associated with the brines and regional stratigraphic relationships suggest that the radiogenic Sr was released from detrital minerals in Bossier shale to interstitial fluids expelled from the underlying Louann Salt in the North Louisiana salt basin. These fluids migrated through the Bossier Formation updip to the South Arkansas shelf, where they entered the upper Smackover carbonate grainstone. The radiogenic fluids mixed with Sr-rich interstitial marine waters that had the isotopic composition of Late Jurassic sea water; mixing in variable proportions resulted in the random distribution pattern of variable 87Sr86Sr ratios that is observed in Smackover brines within the 5000 km2 study area. Isotopic analyses of nonskeletal carbonate grains and coexisting coarse calcspar cement from the upper Smackover grainstone imply that the grains were diagenetically stabilized in the presence of interstitial marine waters, whereas the calcspar cement is a relatively late diagenetic phase precipitated after the arrival of radiogenic fluids.  相似文献   

3.
Groundwater, surface water, and soil in the Goose Lake oil field in northeastern Montana have been affected by Cl-rich oil-field brines during long-term petroleum production. Ongoing multidisciplinary geochemical and geophysical studies have identified the degree and local extent of interaction between brine and groundwater. Fourteen samples representing groundwater, surface water, and brine were collected for Sr isotope analyses to evaluate the usefulness of 87Sr/86Sr in detecting small amounts of brine. Differences in Sr concentrations and 87Sr/86Sr are optimal at this site for the experiment. Strontium concentrations range from 0.13 to 36.9 mg/L, and corresponding 87Sr/86Sr values range from 0.71097 to 0.70828. The local brine has 168 mg/L Sr and a 87Sr/86Sr value of 0.70802. Mixing relationships are evident in the data set and illustrate the sensitivity of Sr in detecting small amounts of brine in groundwater. The location of data points on a Sr isotope-concentration plot is readily explained by an evaporation-mixing model. The model is supported by the variation in concentrations of most of the other solutes.  相似文献   

4.
《Applied Geochemistry》1988,3(2):173-176
The87Sr/86Sr ratios of 10 formation waters in petroleum and natural gas reservoirs along the western coast of northeastern Honshu, Japan, ranged from 0.7052 to 0.7084, and are distinctly lower than the ratio in seawater. This forms a marked contrast to oil-field brines from the U.S.A. which have higher87Sr/86Sr ratios. Taking into consideration that petroleum and natural gas in Japan accumulate in volcanic rocks derived from intense submarine volcanism in the Middle Miocene, the87Sr/86Sr ratios of the water samples are explained in terms of the isotope exchange between waters containing seawater Sr and reservoir rocks with lower ratios.  相似文献   

5.
《Applied Geochemistry》2001,16(9-10):1269-1284
Chemistry of major and minor elements, 87Sr/86Sr, δD, and δ18O of oilfield waters, and 87Sr/86Sr of whole rock were measured from Paleozoic strata in the Central Tarim basin, NW China. The aim is to elucidate the origin and migration of formation water and its relation to petroleum migration. High salinity oilfield waters in Carboniferous, Silurian and Ordovician reservoirs have maintained the same Na/Cl ratio as seawater, indicative of subaerially evaporated seawater. Two possible sources of evaporitic water are Carboniferous (CII) and Cambrian, both of which contain evaporitic sediments. Geographic and stratigraphic trends in water chemistry suggest that most of the high salinity water is from the Cambrian. Strontium, H and O isotopes as well as ion chemistry indicate at least 3 end member waters in the basin. High-salinity Cambrian evaporitic water was expelled upward into Ordovician, Silurian and Carboniferous reservoirs along faults and fractures during compaction and burial. Meteoric water has likely invaded the section throughout its history as uplift created subaerial unconformities. Meteoric water certainly infiltrated Silurian and older strata during development of the CIII unconformity and again in recent times. Modern meteoric water enters Carboniferous strata from the west and flows eastward, mixing with the high salinity Cambrian water and to a lesser degree with paleometeoric water. The third end member is highly radiogenic, shale-derived water which has migrated eastward from the Awati Depression to the west. Enrichment of Ca and Sr and depletion of K, Mg, and SO4 relative to the seawater evaporation trajectory suggest waters were affected by albitization of feldspars, dolomitization, illitization of smectite, and SO4 reduction. The mixing of meteoric water occurred subsequently to seawater evaporation, main water-rock interactions, and brine migration. The direction of brine migration is consistent with that of petroleum migration, suggesting water and petroleum have followed the same migration pathways.  相似文献   

6.
Brines in Cambrian sandstones and Ordovician dolostones of the St-Lawrence Lowlands at Bécancour, Québec, Canada were sampled for analysis of all stable noble gases in order to trace their origin and migration path, in addition to quantifying their residence time. Major ion chemistry indicates that the brines are of Na-Ca-Cl type, possibly derived from halite dissolution. 87Sr/86Sr ratios and Ca excess indicate prolonged interactions with silicate rocks of the Proterozoic Grenville basement or the Cambrian Potsdam sandstone. The brines constrain a 2-3% contribution of mantle 3He and large amounts of nucleogenic 21Ne and 38Ar and radiogenic 4He and 40Ar. 4He/40Ar and 21Ne/40Ar ratios, corrected for mass fractionation during incomplete brine degassing, are identical to their production ratios in rocks. The source of salinity (halite dissolution), plus the occurrence of large amounts of 40Ar in brines constrain the residence time of Bécancour brines as being older than the Cretaceous. Evaporites in the St-Lawrence Lowlands likely existed only during Devonian-Silurian time. Brines might result from infiltration of Devonian water leaching halite, penetrating into or below the deeper Cambrian-Ordovician aquifers. During the Devonian, the basin reached temperatures higher than 250 °C, allowing for thermal maturation of local gas-prone source rocks (Utica shales) and possibly facilitating the release of radiogenic 40Ar into the brines. The last thermal event that could have facilitated the liberation of 40Ar into fluids and contributed to mantle 3He is the Cretaceous Monteregian Hills magmatic episode. For residence times younger than the Cretaceous, it is difficult to find an appropriate source of salinity and of nucleogenic/radiogenic gases to the Bécancour brines.  相似文献   

7.
Comprehensive data on the chemical composition of reservoir rocks and geothermal brines from the geothermal well doublet Groβ Schönebeck (North German Basin) drilled into a Rotliegend sedimentary and Permo-Carboniferous volcanic rock reservoir were sampled over the past years. They were characterized with respect to their major and minor elemental composition including various isotope ratios. The study considered the impact of drilling and reservoir operations on fluid composition and aimed at determining fluid–rock interactions to gain information on fluid origin and hydraulic pathways.The highly saline fluids (up to 265 g/L TDS) show δ 18O and δD of water (2.7–5.6 and −3.1–15, respectively) as well as δ 34S of sulfate (3.6–5), and 87Sr/86Sr ratios (0.715–0.716) that resemble Rotliegend brines from an area located around 200 km in the west (the Altmark). Halogen ratios indicated that brines developed predominantly by evaporation of meteoric water (primary brine) together with halite dissolution brine (secondary brine). Indication for mixing with Zechstein brine or with younger meteoric water was not found.No geochemical distinction was possible between fluids deriving from different rock formations (dacites or sedimentary rocks, respectively). This is due to the evolution of the sediments from the effusive rocks resulting in a similar mineralogical and chemical composition and due to a hydraulic connectivity between the two types of rock. This connection existed probably already before reservoir stimulation as indicated by a set of faults identified in the area that could connect the Rotliegend formation with both, the volcanic rocks and the lower units of the Zechstein. Additional geochemical indication for a hydraulic connectivity is given by (1) the very high heavy metal contents (mainly Cu and Pb) in fluids and scaling that derive from the volcanic rocks and were that were also found in increased amounts up at the Zechstein border (Kupferschiefer formation). (2) The 87Sr/86Sr isotope ratios of fluid samples correspond to the ratios determined for the sedimentary rocks indicating that initially the fluids developed in the sedimentary rocks and circulated later, when faults structures were created by tectonic events into the volcanic rocks.  相似文献   

8.
In order to elucidate the origin and migration of basinal brines in the Bachu Bulge, Tarim Basin, we have carried out analyses on chemical composition, and boron, hydrogen and oxygen isotopes of formation waters together with the XRD of clay minerals from the Paleozoic strata. The waters show Ca, B, Li and Sr enrichment and SO4 depletion in the Carboniferous and Ordovician and K enrichment in part of the Ordovician relative to seawater. The relationship between δD and δ^18O shows that all the data of the waters decline towards the Global Meteoric Water Line with the intersection of them close to the present-day local meteoric water, suggesting that modern meteoric water has mixed with evaporated seawater. The ^87Sr/^86Sr ratios range from 0.7090 to 0.7011, significantly higher than those of the contemporary seawater. The δ^11B values range from +19.7 to +32.3‰, showing a decrease with the depth and B concentrations. The results suggest that isotopically distinct B and Sr were derived from external sources. However, since the percentages of illite are shown to increase with depth among clay minerals in the study area, i.e., illite is due to precipitation rather than leaching during deeper burial, it is unlikely for illite to have contributed a significant amount of B to the waters. Thus, B with low δ^11B values is interpreted to have been added mainly from thermal degradation of kerogen or the basalts in the Cambrian and Lower Ordovician.  相似文献   

9.
Salt diapirs contain a few percent of anhydrite that accumulated as residue to form anhydrite cap rocks during salt dissolutions. Reported 87Sr/86Sr ratios of these salt-hosted and cap rock anhydrites in the Gulf Coast, U.S.A., indicate their derivation from Middle Jurassic seawater. However, a much wider range of 87Sr/86Sr ratios, incorporating a highly radiogenic component in addition to the Middle Jurassic component, has been found in several Gulf Coast salt domes. This wide range of 87Sr/86Sr ratios of anhydrite within the salt stocks records Sr contributions from both marine water and formation water that has equilibrated with siliciclastics. During cap rock formation this anhydrite either recrystallized in the presence of, or was cemented by, a low-Sr fluid with a Late Cretaceous seawter-type Sr isotope ratio or simply lost Sr during recrystallization. Later, the cap rock was invaded by warm saline brines with high Sr isotope ratios from which barite and metal sulfides were precipitated. Subsequently, low-salinity water hydrated part of the anhydrite bringing to six the total number of fluids that interacted througout the history of salt dome and cap rock growth. The progenitor of these salt diapirs, the Louann Formation, is generally thought to have formed from marine water evaporated to halite and, rarely, higher evaporite facies. Salt domes in the East Texas, North Louisiana, and Mississippi Salt Basins have 87Sr/86Sr and δ34S values that corroborate a Mid-Jurassic age for the mother salt. However, salt domes in the Houston and Rio Grande Embayments of the Gulf Coast Basin have 87Sr/86Sr ration ranging to values higher than both Middle Jurassic seawater and all Rb-free marine Phanerozoic rocks. These anomalous 87Sr/86Sr ratios are probably derived from radiogenic Sr-bearing fluids that equilibrated with siliciclastic rocks and invaded the salt either prior to, or during, diapirism. Potential sources of the radiogenic 87Sr component include clay and/or feldspar (located either in older units beneath the Louann Formation or younger units flanking the salt diapirs) and K-salts within the Louann evaporites. Because partial Sr exchange in anhydrite had to take place in a fluid medium, admittance of radiogenic 87Sr-bearing fluids into the salt may have led to diapirism by lowering the shear strength of the crystalline salt. The slight number of anomalous 87Sr/86Sr values in the interior basins indicates that anomalous values are related to areally discrete structural or stratigraphic controls that affected only the Gulf Coast Basin.  相似文献   

10.
Nd and Sr isotope analyses are presented for gangue mineral samples from the giant carbonate-hosted Navan Zn–Pb deposit, Ireland, and for rocks from which Navan metals may have been derived. Analysis of gangue minerals spanning the Navan paragenetic sequence reveals systematic evolution in the composition of the mineralising fluid. Early fluid represented by replacive dolomite exhibits the lowest initial 87Sr/86Sr ratio (0.7083–0.7086), closest to that of the host limestone and to Lower Carboniferous seawater, and the highest 143Nd/144Nd ratio (0.51161–0.51176). Later generations of dolomite, barite and calcite, which encompass sulphide precipitation, have higher initial 87Sr/86Sr ratios (maximum 0.7105) and lower initial 143Nd/144Nd ratios (minimum 0.51157). All samples have initial Nd isotope ratios that are too low to have been acquired only from the host limestone. Drill core samples of presumed Ordovician volcanic and sedimentary rocks from beneath the Navan orebody have 143Nd/144Nd and 87Sr/86Sr ratios at the time of mineralisation of 0.51184–0.51217 and 0.7086–0.7138, respectively. The data are interpreted to indicate mixing of sulphide-rich, limestone-buffered brine, with a metal-bearing hydrothermal fluid, which had passed through sub-Carboniferous rocks, consistent with published fluid inclusion and S isotope data. The 143Nd/144Nd ratio of this basement-derived fluid is too low to have been imparted by flow through the Devonian Old Red Sandstone, as required in models of regional fluid flow in response to Hercynian uplift. Irrespective of whether such regional fluid flow occurred, the hydrothermal Nd must have been derived from sub-Devonian rocks. These conclusions broadly support the hydrothermal convection cell model in which brines, ultimately of surface origin, penetrated to a depth of several kilometres, leaching metals from the rocks through which they passed. The data also support increasing depth of penetration of convection cells with time. Metals were subsequently precipitated in carbonate rocks at sites of mixing with cooler, sulphide-rich fluids. However, comparison of the Navan hydrothermal gangue Nd–Sr isotope data with data from Lower Palaeozoic rocks strongly suggests that the latter cannot alone account for the “basement” signature. As the Navan deposit lies immediately north of the Iapetus Suture, this suggests that the Laurentian margin includes Precambrian basement.  相似文献   

11.
《Applied Geochemistry》2005,20(4):749-766
A synthesis of Sr isotope data from shallow and deep groundwaters, and brines from the Fennoscandian and Canadian Shields is presented. A salinity gradient is evident in the water with concentrations varying from approximately 1–75 g L−1 below 1500 m depth in the Fennoscandian Shield and from 10 up to 300 g L−1 below 650 m depth in the Canadian Shield. Strontium isotope ratios were measured to assess the origin of the salinity and evaluate the degree of water–rock interaction in the systems. In both shields, the Sr concentrations are enriched relative to Cl, defining a positive trend parallel to the seawater dilution line and indicative of Sr addition through weathering processes. The depth distribution for Sr concentration increases strongly with increasing depth in both shields although the variation in Sr-isotope composition does not mirror that of Sr concentrations. Strontium-isotope compositions are presented for surface waters, and groundwaters in several sites in the Fennoscandian and Canadian Shields. Numerous mixing lines can be drawn reflecting water–rock interaction. A series of calculated lines links the surface end-members (surface water and shallow groundwater) and the deep brines; these mixing lines define a range of 87Sr/86Sr ratios for the deep brines in different selected sites. All sites show a specific 87Sr/86Sr signature and the occurrence of large 87Sr/86Sr variations is site specific in both shields. In Canadian Shield brines, the Sr isotope ratios clearly highlight large water rock interaction that increases the 87Sr/86Sr ratio from water that could have been of marine origin. In contrast to the Canadian Shield, groundwater does not occur in closed pockets in the Fennoscandian, and the well-constrained 87Sr/86Sr signatures in deep brines should correspond to a large, well-mixed and homogeneous water reservoir, whose Sr isotope signature results from water–rock interaction.  相似文献   

12.
The 87Sr/86Sr ratios and strontium concentrations for thirty-three samples of marine carbonate rocks of Middle Triassic to Early Jurassic age have been determined. The samples were collected from four measured sections in the areas of Val Camonica in northern Italy. The strontium concentrations vary from 40 to 7000 ppm. Most of the samples are calcitic limestones containing less than 10% of non-carbonate residues. Dolomitic samples and those containing appreciable non-carbonate residues have significantly diminished strontium concentrations. 87Sr/86Sr ratios of the carbonate phases of these rocks appear to be unaffected by dolomitization and by the presence of non-carbonate minerals. The average 87Sr/86Sr ratios of the formations vary systematically in a stratigraphic sense. The ratio increased from Early Anisian to Early-Middle Ladinian, declined during Late Ladinian and Carnian, rose again during the Norian and then declined throughout the Late Norian (Rhaetian), Hettangian, Sinemurian and Pliens-bachian ages. The average 87Sr/86Sr ratios, relative to 0.7080 for the Eimer and Amend standard, are: Anisian: 0.70805 ± 00019; Early Ladinian: 0.7085 ± 0.00038; Late Ladinian: 0.70791 ± 0.00013; Carnian: 0.70776 ± 0.00015; Norian and Rhaetian: 0.70791 ± 0.00014; Hettangian: 0.70762 ± 0.00021; Sinemurian: 0.7070 ± 0.00038; Pliensbachian: 0.7070 ± 0.00015. These variations reflect changes in the isotopic composition of Sr entering the oceans in early Mesozoic time due to varying rates of weathering and erosion of young volcanic rocks (low 87Sr/86Sr) and old granitic rocks (high 87Sr/86Sr). The data presented in this report contribute to a growing body of information regarding the changes that have occurred in the 87Sr/86Sr ratio of the oceans in Phanerozoic time.  相似文献   

13.
The isotopic composition of Sr has been measured in 73 formation-water samples from Paleozoic strata in the Illinois basin; 87Sr/86Sr ratios range from 0.7079 to 0.7108. With the exception of four samples, the waters are more radiogenic than corresponding Paleozoic sea-water values. The relatively narrow range of slightly elevated 87Sr/86Sr rations is uniformly distributed in waters throughout the stratigraphic column and in Silurian waters across the basin. Isotopic analyses of core samples from reservoir rocks show an absence of water-rock Sr isotopic equilibration. Basin lithology and analyses of detrital rock units indicate that clay minerals in shales and in quartz sandstone matrices represent the only significant source of radiogenic Sr for the waters. Silurian and Devonian water show a two-component mixing relation which suggests that they comprise a single hydrogeological system that evolved when radiogenic water from New Albany shales entered Silurian-Devonian carbonate rocks and mixed with marine interstitial water. Regional migration of the waters and associated petroleum within the Silurian-Devonian strata, proposed in other studies, is consistent with the Sr isotopic data. Under favorable circumstances subsurface waters are capable of retaining a Sr isotopic recor of their evolution.  相似文献   

14.
New data on the geochemistry and isotopic composition of chloride brines of the Siberian Platform are presented. The distribution of stable isotopes (2H, 18O, and 37Cl) in brines of the Tunguska, Angara-Lena, western part of the Yakutian and Olenek artesian basins and 87Sr/86Sr in brines of the western part of the Olenek artesian basin was studied in the context of the problem of genesis of highly mineralized groundwaters. Results of the study and comparative analysis of the geochemical and isotopic peculiarities of the Siberian Platform brines conform to the theory of brine formation through the interaction of connate waters with enclosing rocks.  相似文献   

15.
The Precambrian/Cambrian (PC/C) boundary is one of the most important intervals for the evolution of life. However, the scarcity of well-preserved outcrops across the boundary leaves an obstacle in decoding surface environmental changes and patterns of biological evolution.In south China, strata through the PC/C boundary are almost continuously exposed and contain many fossils, suitable for study of environmental and biological change across the PC/C boundary. We undertook deep drilling at four sites in the Three Gorges area to obtain continuous and fresh samples without surface alteration and oxidation. 87Sr/86Sr ratios of the fresh carbonate rocks, selected based on microscopic observation and geochemical signatures of Mn/Sr and Rb/Sr ratios, aluminum and silica contents, and δ13C and δ18O values, were measured with multiple collector-inductively coupled plasma–mass spectrometric techniques.The chemostratigraphy of 87Sr/86Sr ratios of the drilled samples displays a smooth curve and a large positive anomaly just below the PC/C boundary between the upper part of Baimatuo Member of the Dengying Formation and the lower part of the Yanjiahe Formation. The combination of chemostratigraphies of δ13C and 87Sr/86Sr indicates that the 87Sr/86Sr excursions preceded the δ13C negative excursion, and suggests that global regression or formation of the Gondwana supercontinent, possibly together with a high atmospheric pCO2, caused biological depression.  相似文献   

16.
We present results of a comprehensive study of ground ice, saline waters, and brines in the cryoartesian basins of the northeastern Siberian Platform. The composition of major geochemical types of ground ice is considered. The specifics of the hydrogeochemical zonation of the cryoartesian basins are the regional distribution of chloride saline waters and brines. Study of stable isotopes (18O, D, 37Cl, 81Br, and 87Sr/86Sr) led us to the conclusion that the chloride brines resulted either from the leaching of halogen rocks or from the metamorphism of bittern connate water. The drainage brine reserves (hydromineral resources) of the Udachnaya kimberlite pipe in the Olenek cryoartesian basin are assessed.  相似文献   

17.
The Mississippi Valley-type Pb-Zn deposits of the Pine Point district (Northwest Territories, Canada) are located close to the eastern edge of the present day Western Canadian Sedimentary Basin. The deposits are thought to have formed as the result of basin-wide fluid flow in the Presqu’ile Barrier, the host to the ore deposits. A laser ablation multi-collector inductively coupled plasma mass spectrometric study of 87Sr/86Sr ratios of ore-related dolomites from the N81 deposit at Pine Point indicates that at least two sources of Sr were present in the mineralizing system. One fluid has a range in Sr isotopic values from 0.07073 to 0.71200 and is interpreted to be derived from Middle Devonian seawater that interacted with clastic units in the basin. The second fluid has higher Sr isotopic values (up to 0.71520), similar to those found in some Canadian Shield brines, and is interpreted to represent an evaporated seawater-derived brine which has interacted with crystalline basement rocks. Reactivation of old structures in the basement may have provided a pathway for cross-formation fluid flow to the site of mineralization. The data suggest that the stratigraphic location of the Pine Point District, near the interface between the Western Canadian Sedimentary Basin and its basement, may have exerted a fundamental control on the formation of these deposits.  相似文献   

18.
The initial 87Sr/86Sr ratios of twelve basalt flows of Jurassic age on Storm Peak in the Queen Alexandra Range are anomalously high and range from 0.7094–0.7133. The average value is 0.7112±0.0013 (1). The concentrations of rubidium and strontium have arithmetic means of 60.6±19.4 ppm and 128.8±11.9 ppm, respectively. The corresponding average Rb/Sr ratio is 0.47 which is also anomalously high for rocks of basaltic composition. In addition, these rocks have high concentrations of SiO2 (56.50%) and K2O (1.29%) and are depleted in Al2O3 (12.92%), MgO (3.44%) and CaO (7.91%) compared to average continental tholeiites. They are nevertheless classified as basalts on the basis of the composition of microphenocrysts.The initial 87Sr/86Sr ratios and all of the chemical parameters of the flows exhibit systematic stratigraphic variations. These are interpreted as indicating the occurrence of four eruptive cycles. In a typical cycle the initial 87Sr/86Sr ratios of successive flows and their concentrations of SiO2, FeO (total iron), Na2O, K2O, P2O5, Rb and Sr decrease in ascending stratigraphic sequence while the concentrations of TiO2, Al2O3, MgO, CaO and MnO increase upward. The initial 87Sr/86Sr ratios of the flows show a strong positive correlation with the strontium concentration. Similar correlations are observed between the initial 87Sr/86Sr ratios and all of the major oxide components. These relationships are incompatible with the hypothesis that these flows are the products of crystal fractionation of a-34 magma at depth under closed-system conditions. It is suggested that the flows resulted from the hybridization of a normal tholeiite basalt magma by assimilation of varying amounts of granitic rocks in the Precambrian basement which underlies the entire Transantarctic Mountain chain.Mixtures of two components having different 87Sr/86Sr ratios and differing strontium concentrations are related to each other by hyperbolic mixing equation. Such an equation was fitted by least squares regression of data points to a straight line in coordinates of initial 87Sr/86Sr and the reciprocals of the concentrations of strontium. This equation and plots of strontium versus other oxides were then used to estimate the chemical composition of the parent basalt magma and of the granitic contaminant by substituting reasonable estimates of their 87Sr/86Sr ratios. The chemical composition of the parent basalt (87Sr/86Sr=0.706) is generally compatible with that of average continental tholeiite, but is distinctive by having a low concentration of strontium (117 ppm). The chemical composition of the contaminant (87Sr/86Sr=0.720) is enriched in strontium (173 ppm), SiO2, FeO (total iron) and the alkalies but is depleted in Al2O3, MgO and CaO. The data for strontium indicate that the lava flows on Storm Peak contain between 20 and 40% of this granitic contaminant. The contamination of basalt magma is not a local event but is characteristic of the Jurassic basalt flows and diabase sills throughout the Transantarctic Mountains and in Tasmania.Laboratory for Isotope Geology and Geochemistry, Contribution No. 33.  相似文献   

19.
通过对塔东地区古城4井上寒武统和中、上奥陶统碳酸盐岩围岩及充填物的碳、氧、锶同位素地球化学和流体包裹体成分的对比研究表明,充填于中、上奥陶统和上寒武统的流体分属于2个不同来源的流体体系。充填于中、上奥陶统灰岩裂缝中方解石脉的w(87Sr)/w(86Sr)介于0.7084~0.7088,它与早奥陶世海水的w(87Sr)/w(86Sr)相近;流体体系为CH4-H2O体系;充填物与围岩间具有明显的碳、氧同位素差异,表明上部流体体系中的流体来自于奥陶系地层本身。上寒武统白云岩裂缝中方解石脉的w(87Sr)/w(86Sr)为0.7138,明显地高于同时代海水的锶同位素值;流体体系为CO2-H2O体系;下部流体体系中的流体为外来富锶流体。上、下流体体系间互不连通暗示着上寒武统地层具有相对较好的保存条件。  相似文献   

20.
The vertical distribution of atmospheric 87Sr/86Sr isotope ratios in soil is compared to the distribution of recent atmospheric 90Sr deposition. 87Sr/86Sr isotope ratios of soil leachates are correlated with 90Sr activities. Samples from the uppermost part of a soil profile have low 87Sr/86Sr ratios and high 90Sr activities. Samples from the deeper part of the soil profile, however, have high 87Sr/86Sr but low 90Sr activities. This points to mixing between an atmospheric and a geogenic component. Mixing calculations indicate that 50–80% of the Sr in the topsoil of a small catchment in the Vosges mountains is of atmospheric origin. Similarly 87Sr/86Sr of roots point to the presence of an atmospheric and geogenic component. 87Sr/86Sr ratios of soil leachates and corresponding roots are very similar indicating, that the roots integrate at each level of the soil profile the leachable Sr of the corresponding soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号