首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on an analysis of drifter data from the World Ocean Circulation Experiment during 1979-1998, the sizes of the eddies in the North subtropical Pacific are determined from the radii of curvature of the drifter paths calculated by using a non-linear curve fitting method. To support the drifter data results, Sea Surface Height from the TOPEX/POSEIDON and ERS2 satellite data are analyzed in connection with the drifter paths. It is found that the eddies in the North Pacific (18^*- 23^*N and 125^*-150^*E) move westward at an average speed of approximately 0.098 ms^-1 and their average radius is 176 km, with radii ranging from 98 km to 298 km. During the nineteen-year period, only 4 out of approximately 200 drifters (2%) actually entered the South China Sea from the area adjacent to the Luzon Strait (18^*-22^*N and 121^*-125^*E) in the winter. It is also found that eddies from the interior of the North Pacific are unlikely to enter the South China Sea through the Luzon Strait.  相似文献   

2.
The rate of regional sea level rise(SLR) provides important information about the impact of human activities on climate change.However,accurate estimation of regional SLR can be severely affected by sea surface height(SSH) change caused by the Pacific Decadal Oscillation(PDO-SSH).Here,the PDOSSH signal is extracted from satellite altimeter data by multi-variable linear regression,and regional SLR in the altimeter era is calculated,before and after removing that signal.The results show that PDO-SSH trends are rising in the western Pacific and falling in the eastern Pacific,with the strongest signal confined to the tropical and North Pacific.Over the past 20 years,the PDO-SSH accounts for about 30%-40%of altimeter-observed SLR in the regions 8°-15°N,130°-160°E and 30°-40°N,170°-220°E.Along the coast of North America,the PDO-SSH signal dramatically offsets the coastal SLR,as the sea level trends change sign from falling to rising.  相似文献   

3.
This paper analyzes the characteristics of super typhoons(STYs)over the western North Pacific(WNP)from 1965 to2005 and describes the seasonal variability of STY activity.The relation between STY activity and the El Nio-Southern Oscillation(ENSO)as well as the possible reason for the influence of the ENSO on STY activity are also investigated.The results showed thatabout one fifth of the tropical cyclones(TCs)over the WNP could reach the rank of STY.Most STYs appeared from July to Novem-ber while there was a highest ratio between number of STYs and total number of TCs in November.Most STYs appeared east of thePhilippine Sea.In El Nio years,affected by sea surface temperature(SST),monsoon trough and weak vertical wind shear,TC for-mation locations shifted eastward and there were more STYs than in La Nia years when the affecting factors changed.  相似文献   

4.
On the basis of the conductivity temperature depth(CTD)observation data off the coast of the Philippines(7.5°–18°N,130°E–the east coast of the Philippines)in the fall of 2005,the water mass distribution,geostrophic flow field,and heat budget are examined.Four water masses are present:the North Pacific Tropical Surface Water,the North Pacific Sub-surface Water,the North Pacific Intermediate Water,and the Antarctic Intermediate Water(AAIW).The previous three corresponded with the North Equatorial Current(NEC),the Kuroshio Current(KC),and the Mindanao Current(MC),respectively.AAIW is the source of the Mindanao Undercurrent.The mass transport of NEC,KC,and MC is 58.7,15,and 27.95Sv,respectively(relative to 1500db).NEC can be balanced by the transport across the whole transect 18°N(31.81 Sv)and 7.5°N(26.11 Sv)but not simply by KC and MC.Direct calculation is used to study the heat flux.In sum,1.45PW heat is transported outwards the observed region,which is much more than that released from the ocean to the air at the surface(0.05PW).The net heat lost decreased the water temperature by 0.75℃each month on average,and the trend agreed well with the SST change.Vertically,the heat transported by the currents is mainly completed in the upper 500 m.  相似文献   

5.
Results of numerical simulation of currents in the western North Tropical Pacific Ocean by using a barotropic primitive equation model with fine horizontal resolution agreed well with observations and showed that the Mindanao Cyclonic Eddy located north of the equator and east of Mindanao Island exists during most of the year with monthly (and large seasonal) variations in scope . strength and central location . In June , an anticyclonic eddy occurs northeast of Halmahera Island, strengthens to maximum in August , exists until October and then disappears . The observed large-scale circulation systems such as the North Equatorial Current . the Mindanao Current and the North Equatorial Countercurrent are all very well reproduced in the simulations.  相似文献   

6.
浮标在运动过程中如果受到涡旋的影响,会回到之前某一时刻所在的位置,其轨迹中就会出现环状结构,故提取浮标轨迹中的环状结构,就可识别涡旋。鉴此,本文针对ALIS(A Simple Automated Loop Identifying Scheme)算法忽略了这一环状结构中出现的“复杂结构”之不足予以改进,提出了基于浮标轨迹回环结构的涡旋及其移动轨迹提取算法AILIS(An Improved Automated Loop Identifying Scheme)算法。其通过判断环状结构中的轨迹片段是否有自相交对“复杂结构”进行处理,使提取结果更加完善;在此基础上,该算法通过判断涡旋瞬时状态的相似性,可追踪涡旋的部分移动轨迹。本文通过与ALIS算法及其他相关算法结果的对比,并使用SLA数据及HD(Hybrid Detection)、HT(Hybrid Tracking)算法实验结果表明,本文提出的算法能得到更多的海洋涡旋的瞬时状态和移动轨迹,为获取涡旋的物理参数提供重要的途径。  相似文献   

7.
硫酸盐气溶胶对长江中下游夏季降水年代际转型的影响   总被引:1,自引:0,他引:1  
为了研究人为硫酸盐气溶胶增长对1970年代末长江中下游夏季降水年代际转型的影响,使用全球气候模式(GFDL—AM2),对硫酸盐直接气候效应进行了模拟。结果表明,硫酸盐气溶胶增长引起的降水年代际变化与观测到的降水转型有很好的时空一致性;观测中包括副热带高压西伸南移、中国东部近地面异常北风等夏季风年代际减弱信号以及对应的垂直温度、上升运动分布等均能很好地被模式再现。机制上,硫酸盐气溶胶通过引起负辐射强迫,造成中国中东部的大部分地区地面到对流层中层降温,海陆热力对比减小,使东亚夏季风减弱,雨带容易在长江中下游停留,从而导致该区域降水增多。于是,硫酸盐气溶胶增多对长江中下游降水年代际转型有重要贡献。  相似文献   

8.
Relevant geological, geographical, archaeological data were collected to study the characteristics of middle Holocene warm period and sea level high on North China coast. Middle Holocene climate and sea level change on North China coast were correlated to warm marine environment events in about 8-3 ka B.E The sea level in about 8 ka B.E was higher than present mean sea level, then fluctuated for 5 000 years and after that it became even in 3 ka B.E The highest sea level occurred in about 6-5 ka B.E; the maximum was about 2-3 m and minimum was about 1-2 m.  相似文献   

9.
Investigations of natural and artificial radioisotopes including 90Sr,137Cs, gross B and U carried out in the Yellow Sea and adjacent southeast area in 1963. 1964, 1975 and 1978 showed that radioactive pollution by 90Sr and 137Cs from atmospheric fallout had gradually decreased with time due to the cessation of atmospheric nuclear weapons tests in the 70s. The distributions of natural and artificial radioactive isotopes (U, Ra, Th. 40K and 137Cs) in sediments southwest of Jizhou Island were uniform. The more uniform may be related to the soluble species of U[Uo2(CO3)4] in the seawater.The high value of Th at stations 3 and 6 was related to the sandy clay sediment; the low value at station 8 was related to sandy sediment. The content of 137Cs in the eddy area being less than about half of that in the China inshore area showed that the source of Cs may be insufficient orthat the conditions for enriching " Cs in the circulation eddy area were not favorable.  相似文献   

10.
应用1979.1-2006.12北太平洋海表温度(SST)资料,采用一元线性回归、功率谱等统计方法对该区SST的变化特征进行分析,结果表明:(1)北太平洋SST年际变化较为显著,尤其在靠近亚洲大陆一带洋面、北太平洋中部中纬度海域及赤道中、东太平洋;(2)北太平洋西部和中部SST1-12月均呈上升趋势,靠近亚洲大陆的日本海一带和我国大陆以东洋面升温最快。除我国以东洋面升温中心在冬季外,其余海域升温均在夏秋季更迅速,20世纪90年代初以来尤为明显;北美海岸山脉以西及赤道中、东太平洋SST则呈弱的下降趋势;(3)赤道中、东太平洋春夏季存在显著5a和3.5a左右的年际变化;北太平洋中部30°N一带冬春季存在5-6a左右的年际变化和约14a的年代际变化;(4)除北太平洋中部(西风漂流区)外,各个海域大部分月份SST高值年和低值年分别与厄尔尼诺年和拉尼娜年对应,西风漂流区SST高值年均出现在20世纪末21世纪初,低值年与厄尔尼诺年对应。  相似文献   

11.
Based on the Had ISST1 and NCEP datasets,we investigated the influences of the central Pacific El Ni?o event(CP-EL)and eastern Pacific El Ni?o event(EP-EL)on the Sea Surface Temperature(SST)anomalies of the Tropical Indian Ocean.Considering the remote ef fect of Indian Ocean warming,we also discussed the anticyclone anomalies over the Northwest Pacific,which is very important for the South China precipitation and East Asian climate.Results show that during the El Ni?o developing year of EP-EL,cold SST anomalies appear and intensify in the east of tropical Indian Ocean.At the end of that autumn,all the cold SST anomaly events lead to the Indian Ocean Dipole(IOD)events.Basin uniform warm SST anomalies exist in the Indian Ocean in the whole summer of EL decaying year for both CP-and EP-ELs.However,considering the statistical significance,more significant warm SST anomalies only appear in the North Indian Ocean among the June and August of EP-EL decaying year.For further research,EP-EL accompany with Indian Ocean Basin Warming(EPI-EL)and CP El Ni?o accompany with Indian Ocean Basin Warming(CPI-EL)events are classified.With the remote ef fects of Indian Ocean SST anomalies,the EPI-and CPI-ELs contribute quite differently to the Northwest Pacific.For the EPI-EL developing year,large-scale warm SST anomalies arise in the North Indian Ocean in May,and persist to the autumn of the El Ni?o decaying year.However,for the CPI-EL,weak warm SST anomalies in the North Indian Ocean maintain to the El Ni?o decaying spring.Because of these different SST anomalies in the North Indian Ocean,distinct zonal SST gradient,atmospheric anticyclone and precipitation anomalies emerge over the Northwest Pacific in the El Ni?o decaying years.Specifically,the large-scale North Indian Ocean warm SST anomalies during the EPI-EL decaying years,can persist to summer and force anomalous updrafts and rainfall over the North Indian Ocean.The atmospheric heating caused by this precipitation anomaly emulates atmospheric Kelvin waves accompanied by low level easterly anomalies over the Northwest Pacific.As a result,a zonal SST gradient with a warm anomaly in the west and a cold anomaly in the east of Northwest Pacific is generated locally.Furthermore,the atmospheric anticyclone and precipitation anomalies over the Northwest Pacific are strengthened again in the decaying summer of EPI-EL.Af fected by the local WindEvaporation-SST(WES)positive feedback,the suppressed East Asian summer rainfall then persists to the late autumn during EPI-EL decaying year,which is much longer than that of CPI-EL.  相似文献   

12.
IwnODUCTIONTheECSandthePacificOceanareseparaedbytheRyUkyUIs1andshavingthreermnPasSagesforwaerexchangbebeenthesetWowateboies.TheKewshioenterstheECS~ghthestraiteastofTaiwanIslandandflowsbacktothePacificOceantboghTugalaStrait.TheOkinawIsland-MiyakoIslandstralt(KeanTrench,withdepth>1opm)allowalopqUanityofwaerexchangebetweentheECSandthePacifico-cean(YUanandPan,l994).InvestigationdatashowsthatthehydIDgraPhicfeatUresoftheoceanregionarOUntheRyukyUIslandsareverycomPlicated.Somcold…  相似文献   

13.
The relationship of the interannual variability of the transport and bifurcation latitude of the North Equatorial Current (NEC) to the El Ni o-Southern Oscillation (ENSO) is investigated. This is done through composite analysis of sea surface height (SSH) observed by satellite altimeter during October 1992-July 2009, and correspondingly derived sea surface geostrophic currents. During El Nio/La Ni a years, the SSH in the tropical North Pacific Ocean falls/rises, with maximum changes in the region 0-15°N, 130°E-160°E. The decrease/increase in SSH induces a cyclonic/anticyclonic anomaly in the western tropical gyre. The cyclonic/anticyclonic anomaly in the gyre results in an increase/decrease of NEC transport, and a northward/southward shift of the NEC bifurcation latitude near the Philippine coast. The variations are mainly in response to anomalous wind forcing in the west-central tropical North Pacific Ocean, related to ENSO events.  相似文献   

14.
The equatorial Current in the North Pacific(NEC) is an upper layer westward ocean current, which flows to the west boundary of the ocean, east of the Philippines, and bifurcates into the northerly Kuroshio and the main body of the southerly Mindanao current. Thus, NEC is both the south branch of the Subtropical Circulation and the north branch of the Tropical Circulation. The junction of the two branches extends to the west boundary to connect the bifurcation points forming the bifurcation line. The position of the North Pacific Equatorial Current bifurcation line of the surface determines the exchange between and the distribution of subtropical and tropical circulations, thus affecting the local or global climate. A new identification method to track the line and the bifurcation channel was used in this study, focusing on the climatological characteristics of the western boundary of the North Equatorial Current bifurcation line. The long-term average NEC west boundary bifurcation line shifts northwards with depth. In terms of seasonal variation, the average position of the western boundary of the bifurcation line is southernmost in June and northernmost in December, while in terms of interannual variation, from spring to winter in the years when ENSO is developing, the position of the west boundary bifurcation line of NEC is relatively to the north(south) in EI Ni?o(La Ni?a) years as compared to normal years.  相似文献   

15.
Sea surface height (SSH) variability in the Mindanao Dome (MD) region is found to be one of the strong variations in the northern Pacific. It is only weaker than that in the Kuroshio Extension area, and is comparable to that in the North Pacific Subtropical Countercurrent region. Based on a 1.5-layer reduced gravity model, we analyzed SSH variations in this region and their responses to northern tropical Pacific winds. The average SSH anomaly in the region varies mainly on a seasonal scale, with significant periods of 0.5 and 1 year, ENSO time scale2-7years, and time scale in excess of 8 years. Annual and long-term variabilities are comparably stronger. These variations are essentially a response to the northern tropical Pacific winds. On seasonal and ENSO time scales, they are mainly caused by wind anomalies east of the region, which generate westward-propagating, long Rossby waves. On time scales longer than 8 years, they are mostly induced by local Ekman pumping. Long-term SSH variations in the MD region and their responses to local winds are examined and discussed for the first time .  相似文献   

16.
利用NCEP/NCAA再分析资料,国家气候中心74项环流指数及云南省122个观测站资料,结合诊断、合成和相关分析等方法,探讨2011年初云南东部极端低温冰冻灾害天气气候特征及成因,并与2008年初低温冰冻灾害进行对比分析。旨在寻找云南低温冰冻天气的预报着眼点,为提前做好防灾减灾工作提供决策依据。研究表明:500hPa高度场欧亚中高纬呈两槽一脊,西西伯利亚高压脊异常强大,贝巴之间为东西向横槽,东亚中高纬呈"+-+"的高度场距平分布,西太平洋副热带高压异常偏东偏弱,南海副高异常偏南偏弱是2011年1月云南东部频遭冷空气影响的大尺度大气环流背景。另外,相关分析发现NINO4区海温持续异常偏冷对应云南东部气温异常偏低。较2008年初持续近2个月的低温雨雪冰冻灾害相比,虽然2011年灾害影响时间较短,范围较小,但冷空气过程频发,昆明准静止锋长时间控制云南东部,最终造成近50年来的极端低温冰冻灾害。  相似文献   

17.
?????鹹??????,???????????????????????????,??????????????????????3D????????,?????????????????????????????????,??????????????????????????仯,?????о????????????????????仯???????????????????????????ж??Ч??????????:????????????????????????,?????????????????????????Ч??????????????????ж??Ч?;???????????????????????,???????????????ж??Ч???????????????????Ч?;??????????????????????,???????в??????- ?????????????Ч?;???????????????????????,?????????????????????????Ч????????????ж??Ч???  相似文献   

18.
To evaluate the effects of the Hongyanhe Nuclear Power Plant on the zooplankton community in the surrounding seawater during summer, multiple environmental factors and zooplankton distribution along the east coast of Liaodong Bay were investigated in the summer of 2017. In particular, the influences of seawater temperature, salinity, and chlorophyll a(Chl a) on the zooplankton community were analyzed. Zooplankton abundances and Chl a concentrations along the east coast of Liaodong Bay showed an initial increase followed by a decrease from July to September. During the three months, the zooplankton abundance was the highest(8116.70 ind m~(-3)) in August. The Shannon-Wiener index showed a downtrend from July to September, with the average value falling from 1.65 in July to 1.50 in September. Calanus sinicus, Paracalanus parvus, copepodid, and bivalve larvae were the dominant species/groups in the three months. The effects of the nuclear power plant's outlet on the environment factors were mainly reflected in the increased seawater temperature. Redundancy analysis showed that the zooplankton community was jointly affected by seawater temperature, salinity and Chl a concentration, and the degree of this impact varied monthly. The impact of seawater temperature on the zooplankton community was stronger than that of salinity. The primary impact of the Hongyanhe Nuclear Power Plant on the structure and distribution of the zooplankton community in the surrounding seawater during the summer was increased seawater temperature, which caused a reduction in the abundance of dominant species/groups.  相似文献   

19.
Based on a coupled hydrodynamic-ecological model for regional and shelf seas (COHERENS), a three-dimensional baroclinic model for the Changjiang (Yangtze) River estuary and the adjacent sea area was established using the sigma-coordinate in the vertical direction and spherical coordinate in the horizontal direction. In the study, changing-grid technology and the “dry-wet” method were designed to deal with the moving boundary. The minimum water depth limit condition was introduced for numerical simulation stability and to avoid producing negative depths in the shallow water areas. Using the Eulerian transport approaches included in COHERENS for the advection and dispersion of dissolved pollutants, numerical simulation of dissolved pollutant transport and diffusion in the Changjiang River estuary were carried out. The mass centre track of dissolved pollutants released from outlets in the south branch of the Changjiang River estuary water course has the characteristic of reverse current motion in the inner water course and clockwise motion offshore. In the transition area, water transport is a combination of the two types of motion. In a sewage-discharge numerical experiment, it is found that there are mainly two kinds of pollution distribution forms: one is a single nuclear structure and the other is a double nuclear (dinuclear) structure in the turbid zone of the Changjiang River estuary. The rate of expansion of the dissolved pollutant distribution decreased gradually. The results of the numerical experiment indicate that the maximum turbid zone of the Changjiang River estuary is also the zone enriched with pollutants. Backward pollutant flow occurs in the north branch of the estuary, which is similar to the backward salt water flow, and the backward flow of pollutants released upstream is more obvious.  相似文献   

20.
Inter-annual variability of the Kuroshio water intrusion on the shelf of East China Sea (ECS) was simulated with a nested global and Northwest Pacific ocean circulation model. The model analysis reveals the influence of the variability of Kuroshio transport east of Taiwan on the intrusion to the northeast of Taiwan: high correlation (r = 0.92) with the on-shore volume flux in the lower layer (50–200 m); low correlation (r = 0.50) with the on-shore flux in the upper layer (0–50 m). Spatial distribution of correlations between volume fluxes and sea surface height suggests that inter-annual variability of the Kuroshio flux east of Taiwan and its subsurface water intruding to the shelf lag behind the sea surface height anomalies in the central Pacific at 162°E by about 14 months, and could be related to wind-forced variation in the interior North Pacific that propagates westward as Rossby waves. The intrusion of Kuroshio surface water is also influenced by local winds. The intruding Kuroshio subsurface water causes variations of temperature and salinity of bottom waters on the southern ECS shelf. The influence of the intruding Kuroshio subsurface water extends widely from the shelf slope northeast of Taiwan northward to the central ECS near the 60 m isobath, and northeastward to the region near the 90 m isobath.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号