首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The NCEP/NCAR R1 reanalysis data are employed to investigate the impact of forced and inertial instability in the lower troposphere over the Arabian Sea on the onset process of Indian summer monsoon(ISM),and to reveal the important role of zonal advection of zonal geostrophic momentum played in the forced unstable convection.Results show that during the ISM onset the zero absolute vorticity contour(??=0)shifts northward due to the strong cross-equatorial pressure gradient in the lower troposphere over southern Arabian Sea.Thus a region with negative absolute vorticity is generated near the equator in the northern hemisphere,manifesting the evident free inertial instability.When a southerly passes through this region,under the influence of friction a lower convergence that facilitates the convection flourishing at the lower latitudes appears to the north of zero absolute vorticity contour.However,owing to such a traditional inertial instability,the convection is confined near the equator which does not have direct influence on the ISM onset.On the contrary in the region to the north of the zero absolute vorticity contour and to the south of the low pressure center near the surface,although the atmosphere there is inertially stable,the lower westerly jet can develop and bring on the apparent zonal advection of zonal geostrophic momentum.Both theoretical study and diagnosing analysis present that such a zonal advection of geostrophic momentum is closely associated with the zonal asymmetric distribution of meridional land-sea thermal contrast,which induces a convergence center near and further north of the westerly jet in the lower troposphere over the southwestern coast of the Indian Peninsula,providing a favorable lower circulation for the ISM onset.It illustrates that the development of convection over the Arabian Sea in late spring and early summer is not only due to the frictional inertial instability but also strongly affected by the zonal asymmetric distribution of land-sea thermal contrast.Moreover,before the ISM onset due to the eastward development of the South Asian High(SAH)in the upper troposphere,high potential vorticity is transported to the region over the Arabian Sea.Then a local trumpet-shaped stream field is generated to cause the evident upper divergence-pumping effect which favors the ISM onset.When the upper divergence is vertically coupled with the lower convergence resulted from the aforementioned forced unstable convection development near the southwestern coast of Indian Peninsula,the atmospheric baroclinic unstable development is stimulated and the ISM onset is triggered.  相似文献   

2.
The paper defines the intertropical convergence zone. (ITCZ) in the Indian monsoon region during the northern summer, identifies it with the northern boundary of the advancing monsoon and suggests that its seasonal movement can serve as an indicator of onset, advance and withdrawal of the monsoon. Evidence suggesting the movement of the ITCZ which is associated with the equatorial trough of low pressure is indirectly furnished by an analysis of the isallobaric or height-tendency field which reveals a distinct gradient towards the north/south during period of advance/withdrawal of the monsoon. A comparative study of the dates of onset of monsoon during two successive years appears to suggest that some of the problems encountered in using rainfall as the sole criterion for determining the onset and advance of the monsoon may be over-come by using the ITCZ concept as proposed in the present paper. Attention is drawn to the effects of synoptic-scale disturbances on the normal dates of onset, advance and withdrawal of the monsoon.  相似文献   

3.
As early as in the 1980s, Chinese scientists hadfirst proposed that there exits two summer monsoonsystems in Asia, namely the East Asian summer mon-soon (EASM) and the Indian summer monsoon(ISM)[1-4]. The two monsoon systems are quite dif-ferent in characteristics. Since then, such issue andconclusion had been documented and approved by alot of studies in the past two decades, and was appliedin the guideline of the South China Sea summer mon-soon experiment (SCSMEX), which was undertak…  相似文献   

4.
赤道MJO活动对南海夏季风爆发的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
利用1979-2013年NCEP/DOE再分析资料的大气多要素日平均资料、美国NOAA日平均向外长波辐射资料和ERSST月平均海温资料,分析赤道大气季节内振荡(简称MJO)活动对南海夏季风爆发的影响及其与热带海温信号等的协同作用.结果表明,赤道MJO活动与南海夏季风爆发密切联系,MJO的湿位相(即对流活跃位相)处于西太平洋位相时,有利于南海夏季风爆发,而MJO湿位相处于印度洋位相时,则不利于南海夏季风爆发.赤道MJO活动影响南海夏季风爆发的物理过程主要是大气对热源响应的结果,当MJO湿位相处于西太平洋位相时,一方面热带西太平洋对流加强使潜热释放增加,导致处于热源西北侧的南海-西北太平洋地区对流层低层由于Rossby响应产生气旋性环流异常,气旋性环流异常则有利于西太平洋副热带高压的东退,另一方面菲律宾附近热源促进对流层高层南亚高压在中南半岛和南海北部的建立,使南海地区高层为偏东风,从而有利于南海夏季风建立;当湿位相MJO处于印度洋位相时,热带西太平洋对流减弱转为大气冷源,情况基本相反,不利于南海夏季风建立.MJO活动、孟加拉湾气旋性环流与年际尺度海温变化协同作用,共同对南海夏季风爆发迟早产生影响,近35年南海夏季风爆发时间与海温信号不一致的年份,基本上是由于季节转换期间的MJO活动特征及孟加拉湾气旋性环流是否形成而造成,因此三者综合考虑对于提高季风爆发时间预测水平具有重要意义.  相似文献   

5.
在扰动位能(PPE)理论的基础上,针对不同高度上局地环流能量转换问题,本文提出了分层扰动位能(LPPE)的概念.研究表明850hPa的分层扰动位能一阶矩(LPPE1)在热带地区为正,高纬度地区为负,200 hPa高度LPPE1在北美高纬度地区出现正值分布,100 hPa及以上LPPE1热带地区为负,高纬度为正.LPPE1冬季半球的分布与年平均相似,北半球夏季大陆上出现正的极大值.在局地,LPPE1在数值上远远大于分层扰动位能二阶矩(LPPE2)及更高阶矩,因此,LPPE的分布与LPPE1的分布相似.南海季风区低层动能的季节变化与LPPE呈现反向变化关系.相关分析表明,南海夏季风(SCSSM)与春季的LPPE1偶极型分布之间存在着显著的年际(正)相关关系,可以作为SCSSM强度的一个预报因子.春季赤道印度洋、西太平洋海表温度(SST)的负(正)异常对应春季、夏季LPPE1的南负北正(南正北负)偶极型分布,夏季(JJAS) LPPE1的偶极型分布与南海季风区动能的一致增大(减小)是两者耦合模态的主导模态,夏季南海季风区的西风增强(减弱), SCSSM增强(减弱),这是能量异常影响SCSSM的一个可能的机制.  相似文献   

6.
Using correlation and EOF analyses on sea level pressure from 57-year NCEP-NCAR reanalysis data, the Arabian Peninsula-North Pacific Oscillation (APNPO) is identified. The APNPO reflects the co-variability between the North Pacific high and South Asian summer monsoon low. This teleconnec- tion pattern is closely related to the Asian summer monsoon. On interannual timescale, it co-varies with both the East Asian summer monsoon (EASM) and South Asian summer monsoon (SASM); on decadal timescale, it co-varies with the EASM: both exhibit two abrupt climate changes in the middle 1960s and the late 1970s respectively. The possible physical process for the connections between the APNPO and Asian summer monsoon is then explored by analyzing the APNPO-related atmospheric circulations. The results show that with a strong APNPO, the Somali Jet, SASM flow, EASM flow, and South Asian high are all enhanced, and an anomalous anticyclone is produced at the upper level over northeast China via a zonal wave train. Meanwhile, the moisture transportation to the Asian monsoon regions is also strengthened in a strong APNPO year, leading to a strong moisture convergence over India and northern China. All these changes of circulations and moisture conditions finally result in an anoma- lous Asian summer monsoon and monsoon rainfall over India and northern China. In addition, the APNPO has a good persistence from spring to summer. The spring APNPO is also significantly corre- lated with Asian summer monsoon variability. The spring APNPO might therefore provide valuable in- formation for the prediction of Asian summer monsoon.  相似文献   

7.
南海夏季风爆发与南大洋海温变化之间的联系   总被引:1,自引:1,他引:1       下载免费PDF全文
利用1979-2009年NCEP第二套大气再分析资料和ERSST海温资料,分析南海夏季风爆发时间的年际和年代际变化特征,考察南海夏季风爆发早晚与南大洋海温之间的联系.主要结果为:(1)南海夏季风爆发时间年际和年代际变化明显,1979-1993年与1994-2009年前后两个阶段爆发时间存在阶段性突变;(2)南海夏季风爆发时间与前期冬季(12-1月)印度洋-南大洋(0-80°E,75°S-50°S)海温、春季(2-3月)太平洋-南大洋(170°E -80°W,75°S-50°S)海温都存在正相关关系,当前期冬、春季南大洋海温偏低(高)时,南海夏季风爆发偏早(晚).南大洋海温信号,无论是年际还是年代际变化,都对南海夏季风爆发具有一定的预测指示作用;(3)南大洋海温异常通过海气相互作用和大气遥相关影响南海夏季风爆发的迟早.当南大洋海温异常偏低(偏高)时,冬季南极涛动偏强(偏弱),同时通过遥相关作用使热带印度洋-西太平洋地区位势高度偏低(偏高)、纬向风加强(减弱),热带大气这种环流异常一直维持到春季4、5月份,位势高度和纬向风异常范围逐步向北扩展并伴随索马里越赤道气流的加强(减弱),从而为南海夏季风爆发偏早(偏晚)提供有利的环流条件.初步分析认为,热带大气环流对南大洋海气相互作用的遥响应与半球际大气质量重新分布引起的南北涛动有关.  相似文献   

8.
青藏高原春季积雪在南海夏季风爆发过程中的作用   总被引:5,自引:2,他引:5       下载免费PDF全文
本文应用欧洲中期预报中心(ECMWF,European Centre for Medium\|Range Weather Forecasts—ERA\|40)资料和美国国家环境预测中心和国家大气研究中心(NCEP/NCAR, National Centers for Environmental Prediction/National Center for Atmospheric Research)资料,研究了青藏高原雪深变化对南海夏季风爆发的影响和ENSO对青藏高原降雪的影响.结果表明:(1)ECMWF的雪深资料是可信的,可以用来研究青藏高原雪深变化对南海夏季风爆发的影响;(2)青藏高原的积雪异常影响到500 hPa以上的温度异常和印度洋与大陆间的气温对比,一方面使上层的南亚高压移动速度发生变化,另一方面也影响到低层大气的运动和东西向风异常,在青藏高原少雪年,东印度洋产生西风异常和一个气旋对,而在青藏高原多雪年,东印度洋产生东风异常和一个反气旋对;(3)ENSO与青藏高原春季积雪关系密切.东太平洋SST正异常时,东印度洋和南海气压偏高,从而导致该区海陆经向压强梯度增强和西风异常.另外,此时青藏高原北部气压偏高,北风偏强,副热带锋面增强,同时,印度洋的SST偏高,为青藏高原降雪提供了水汽保障,这些都有利于青藏高原的降雪.  相似文献   

9.
上新世以来构造隆升对亚洲夏季风气候变化的影响   总被引:4,自引:1,他引:3       下载免费PDF全文
张冉  刘晓东 《地球物理学报》2010,53(12):2817-2828
大量地质证据表明,上新世以来(最近5 MaB.P.)青藏高原北部及非洲东部和南部地区出现过显著的构造隆升,而与此同时亚洲季风也经历了显著变化,这两者之间是否存在着因果联系一直是地学界所关心和争论的一个重要科学问题.本文利用美国国家大气研究中心(NCAR)的公用大气模式(CAM 3.1)就上新世以来青藏高原北部及东-南非高原的构造隆升对亚洲夏季风气候变化的影响进行了数值试验研究.结果表明,上新世以来亚洲夏季风的增强与两地构造隆升密切相关,但两者隆升对于亚洲季风子系统的作用是有区别的.青藏高原北部隆升主要造成东亚北部夏季风的增强及季风降水的增多,但对南亚夏季风的作用较小;东-南非高原的隆升明显增强南亚夏季风,但对东亚北部夏季风的影响有限.  相似文献   

10.
The future potential changes in precipitation and monsoon circulation in the summer in East Asia are projected using the latest generation of coupled climate models under Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A1B scenario (a medium emission scenario).The multi-model ensemble means show that during the period of 2010-2099,the summer precipitation in East Asia will increase and experience a prominent change around the 2040s,with a small increase (~1%) before the end of the 2040s and a large increase (~9%) afterward.This kind of two-stage evolution characteristic of precipitation change can be seen most clearly in North China,and then in South China and in the mid and lower Yangtze River Valley.In 2010-2099,the projected precipitation pattern will be dominated by a pattern of "wet East China" that explains 33.6% of EOF total variance.The corresponded time coefficient will markedly increase after the 2040s,indicating a great contribution from this mode to the enhanced precipitation across all East China.Other precipitation patterns that prevail in the current climate only contribute a small proportion to the total variance,with no prominent liner trend in the future.By the late 21st century,the monsoon circulation will be stronger in East Asia.At low level,this is due to the intensification of southwesterly airflow north of the anticyclone over the western Pacific and the SCS,and at high level,it is caused by the increased northeasterly airflow east of the anticyclone over South Asia.The enhanced monsoon circulation will also experience a two-stage evolution in 2010-2099,with a prominent increase (by ~0.6 m s-1) after the 2040s.The atmospheric water vapor content over East Asia will greatly increase (by ~9%) at the end of 21st century.The water vapor transported northward into East China will be intensified and display a prominent increase around the 2040s similar to other examined variables.These indicate that the enhanced precipitation over East Asia is caused by the increases in both monsoon circulation and water vapor,which is greatly different from South Asia.Both the dynamical and thermal dynamic variables will evolve consistently in response to the global warming in East Asia,i.e.,the intensified southwesterly monsoon airflow corresponding to the increased water vapor and southwesterly moisture transport.  相似文献   

11.
通过一系列的理想数值试验,研究了亚、非地区热带次尺度的海陆分布和青藏高原大地形在亚洲夏季风形成中的作用.试验结果显示:海陆分布的存在以及海陆分布的几何形状对亚洲夏季风的形成有非常重要的影响.下垫面全是海洋,没有陆地时,无季风现象的存在.当仅有副热带大尺度陆地,而缺乏南亚次尺度陆地和非洲大陆热带陆地时,夏季无明显的越赤道气流,仅在欧亚副热带陆地的东南部有弱的季风,无印度、孟加拉湾和南海夏季风.中南半岛、印度半岛和非洲大陆热带陆地的存在,在夏季引导南半球的东南信风越赤道转向为西南气流,使得南海的北部、中南半岛、孟加拉湾和印度半岛、阿拉伯海上空的低层为强西南气流控制,印度、孟加拉湾和南海夏季风产生.副热带陆地向热带的深入对副热带陆上产生夏季强对流性降水起着至关重要的作用.青藏高原的存在加强了高原东侧的季风,使得季风区向北发展,青藏高原对东亚季风起放大器的作用;减弱了高原西侧的季风,使得季风区向南收缩.  相似文献   

12.
青藏高原大地形的热力强迫作用对亚洲夏季风的形成和发展具有重要的影响.本文利用较高分辨率的WRF区域模式,探讨了高原不同区域(斜坡和平台)的地形加热分别对南亚夏季风和东亚夏季风的影响.结果表明:高原南部喜马拉雅山脉的斜坡地形加热对其周围局地的环流形势和降水影响十分明显,是南亚夏季风北支分量形成和维持的主导因子,也是斜坡上气流爬坡和降水发生的必要条件.斜坡加热对东亚夏季风也有明显的增强作用,它不仅加强了中国东部低空西南季风环流,还会造成北部南下的异常干冷空气的响应.斜坡上的地形加热作用也是对流层高层暖中心位置维持在斜坡上空的一个重要原因.而高原平台加热对季风环流和降水的影响虽然没有喜马拉雅山脉斜坡加热那么显著,但是对南亚夏季风的影响范围更广,对经向哈得来环流影响更明显,能够调控高原以外更远处热带洋面上的西南季风环流.通过比较高原不同区域地形加热条件下的多种季风指数,进一步表明了高原地形加热对南亚和东亚夏季风均有增强作用,但是高原不同区域的地形加热对两类夏季风子系统又会产生不一样的影响.  相似文献   

13.
The Asian-Australian "land bridge" is an area with the most vigorous convection in Asian monsoon region in boreal spring, where the onset and march of convection are well associated with the onset of East Asian summer monsoon. The convection occurs over Indo-China Peninsula as early as mid-April, which exerts critical impact on the evolution of monsoon circulation. Before mid-April there are primarily sensible heatings to the atmosphere over Indo-China Peninsula and Indian Peninsula, so the apparent heating ratios over them decrease with height. However, after mid-April it changes into latent heating over Indo-China Peninsula due to the onset of convection, and the apparent heating ratio increases with height in mid- and lower troposphere. The vertical distribution of heating ratio and its differences between Indo-China Peninsula and Indian Peninsula are the key factors leading to the splitting of boreal subtropical high belt over the Bay of Bengal. Such mechanism is strongly supported by the fact that the evolution of the vertical heating ratio gradient above Indo-China Peninsula leads that of 850 hPa vorticity over the Bay of Bengal. Convections over Indo-China Peninsula and its surrounding areas further increase after the splitting. Since then, there is a positive feedback lying among the convective heating, the eastward retreat of the subtropical high and the march of monsoon, which is a possible mechanism of the advance of summer monsoon and convection from Indo-China Peninsula to South China Sea.  相似文献   

14.
Based on the Indian and Chinese precipitation data and the NCEP-NCAR reanalysis circulation data, the relationship between the Indian summer monsoon (ISM) onset and the Meiyu over the Yangtze River Valley has been discussed by the methods of correlation analysis and composite analysis. The results show that the date of ISM onset over Kerala in the southwestern coast of the Indian Peninsula is about two weeks earlier than the beginning of the Meiyu over the Yangtze River Valley. After the outbreak of ISM, the teleconnection mode sets up from the western coast of India via the Bay of Bengal (BOB) to the Yangtze River Valley and southern Japan. It is different both in time and space from the telecon- nection mode which is from the northwest of India via the Tibetan Plateau to northern China. The for- mer mode is defined as the "south" teleconnection of the Asian summer monsoon, forming in the pe- riod of ISM onset; while the latter mode is called the "north" teleconnection, mainly occurring in the Asian monsoon culminant period. During the process of the "south" teleconnection’s formation, the Asian monsoon circulation has experienced a series of important changes: ISM onset, the northward movement of the south Asia high (SAH), the onset vortex occurrence, the eastward extension of the stronger tropical westerly belt, and the northeastward jump of the western Pacific subtropical high (WPSH), etc. Consequently, since ISM sets up over Kerala, the whole Asian continent is covered by the upper SAH after about two weeks, while in the mid- and lower troposphere, a strong wind belt forms from the Arabian Sea via the southern India, BOB and the South China Sea (SCS), then along the western flank of WPSH, to the Yangtze River Valley and southern Japan. With the northward moving of the subtropical jet streams, the upper westerly jet stream and the low level jet have been coupled ver- tically over east Asia, while the Yangtze River Valley happens to locate in the ascending motion area between the upper jet stream and the low level jet, i.e. right of the entrance of the upper jet stream and left of the low level jet. Such a structure of the vertical circulation can trigger the Meiyu onset over the Yangtze River Valley.  相似文献   

15.
The Asian-Australian “land bridge” is an area with the most vigorous convection in Asian monsoon region in boreal spring, where the onset and march of convection are well associated with the onset of East Asian summer monsoon. The convection occurs over Indo-China Peninsula as early as mid-April, which exerts critical impact on the evolution of monsoon circulation. Before mid-April there are primarily sensible heatings to the atmosphere over Indo-China Peninsula and Indian Peninsula, so the apparent heating ratios over them decrease with height. However, after mid-April it changes into latent heating over Indo-China Peninsula due to the onset of convection, and the apparent heating ratio increases with height in mid-and lower troposphere. The vertical distribution of heating ratio and its differences between Indo-China Peninsula and Indian Peninsula are the key factors leading to the splitting of boreal subtropical high belt over the Bay of Bengal. Such mechanism is strongly supported by the fact that the evolution of the vertical heating ratio gradient above Indo-China Peninsula leads that of 850 hPa vorticity over the Bay of Bengal. Convections over Indo-China Peninsula and its surrounding areas further increase after the splitting. Since then, there is a positive feedback lying among the convective heating, the eastward retreat of the subtropical high and the march of monsoon, which is a possible mechanism of the advance of summer monsoon and convection from Indo-China Peninsula to South China Sea.  相似文献   

16.
ABSTRACT

Broad disagreement between modelled and observed trends of Indian summer monsoon (ISM) over the north-central part of the Indian subcontinent (NCI) implies a gap in understanding of the relationship between the forcing factors and monsoonal precipitation. Although the strength of the land–sea thermal gradient (LSG) is believed to dictate monsoon intensity, its state and fate under continuous warming over the Bay of Bengal (BoB) and part of the NCI (23–28°N, 80–95°E) are less explored. Precipitation (1901–2017) and temperature data (1948–2017) at different vertical heights are used to understand the impact of warming in the ISM. In NCI, surface air temperature increased by 0.1–0.2°C decade?1, comparable to the global warming rate. The ISM precipitation prominently weakened and seasonality reduced after 1950, which is caused by a decrease in the LSG at the depth of the troposphere. Warming-induced increase in local convection over the BoB further reduced ISM precipitation over NCI.  相似文献   

17.
The planetary boundary layer(PBL)scheme in the regional climate model(RCM)has a significant impact on the interactions and exchanges of moisture,momentum,and energy between land,ocean,and atmosphere;however,its uncertainty will cause large systematic biases of RCM.Based on the four different PBL schemes(YSU,ACM2,Boulac,and MYJ)in Weather Research and Forecasting(WRF)model,the impacts of these schemes on the simulation of circulation and precipitation during the East Asian summer monsoon(EASM)are investigated.The simulated results of the two local turbulent kinetic energy(TKE)schemes,Boulac and MYJ,are more consistent with the observations than those in the two nonlocal closure schemes,YSU and ACM2.The former simulate more reasonable low-level southwesterly flow over East China and west pacific subtropical high(WPSH)than the latter.As to the modeling of summer monsoon precipitation,both the spatial distributions and temporal evolutions from Boulac and MYJ are also better than those in YSU and ACM2 schemes.In addition,through the comparison between YSU and Boulac experiments,the differences from the results of EASM simulation are more obvious over the oceanic area.In the experiments with the nonlocal schemes YSU and ACM2,the boundary layer mixing processes are much stronger,which lead to produce more sea surface latent heat flux and enhanced convection,and finally induce the overestimated precipitation and corresponding deviation of monsoon circulation.With the further study,it is found that the absence of air-sea interaction in WRF may amplify the biases caused by PBL scheme over the ocean.Consequently,there is a reduced latent heat flux over the sea surface and even more reasonable EASM simulation,if an ocean model coupled into WRF.  相似文献   

18.
Carbonates in loess-red clay sequences consist mainly of calcite and dolomite. The EDTA analysis of carbonates in different size fractions and magnetic susceptibility reveal that calcite is a sensitive index of summer monsoon. The chemical analysis of carbonates and calcite from an 8.1 Ma loess-red clay sequence at Chaona on the Chinese central Loess Plateau shows that the evolution of the Asian summer monsoon experienced four stages, namely 8.1―5.5 Ma, 5.5―2.8 Ma, 2.8―1.5 Ma and 1.5―0 Ma, with increasing intensification and fluctuation, suggesting a possible combining impacts of uplift of the Tibetan Plateau and global changes on the Asian summer monsoon.  相似文献   

19.
本文的相关分析表明,在1948~2009年期间东亚夏季风(EASM)与前期春季(4~5月)北大西洋涛动(NAO)之间存在显著的年际相关关系,但这种关系具有明显的年代际变化特征,即在1970s发生了由正相关到负相关的转变.进一步的合成分析指出,春季NAO与EASM之间年际相关关系的转变,与春季和前期冬季(12~3月)北大西洋海盆尺度的海-气耦合模,即NAO-海温异常(SSTA)三极子耦合模的影响作用密切相关.春季NAO异常对EASM年际变化的影响主要依赖于前者所激发的SSTA三极子模态由春季到夏季的记忆性.然而,该模态不但受到春季NAO的控制,而且还会受到前冬NAO-SSTA三极子耦合模的增强或削弱作用,其中后者的影响作用具有明显的年代际变化特征.在1970s之前,前冬NAO-SSTA三极子耦合模对春季SSTA三极子模态存在明显的非对称作用,即前者主要对后者的正位相异常存在显著的削弱作用;在1970s之后,前者对后者正/负位相异常的影响作用均不明显.因此,在春季NAO对称作用与前冬NAO-SSTA三极子耦合模非对称作用的共同影响下,春季NAO与SSTA三极子模态的年际相关关系存在显著年代际变化,进而引起了春季NAO与EASM的年际相关关系在1970s的转变.  相似文献   

20.
Particulate fluxes investigated in the central South China Sea (SCS) during 1993―1996 indicate that opal flux can be used to show primary productivity change, which provides a foundation for tracing the evolutionary relationship between the surface productivity and East Asian monsoon in the SCS during the late Quaternary glacial and interglacial periods. Based on the studies of opal % and their mass accumulation rates (MAR) at the six sites recovered from the SCS during the “Resolution” ODP Leg 184 and “Sonne” 95 cruise of the Sino-Germany cooperation, opal % and their MARs increased evidently in the northern sites since 470―900 ka, and they enhanced and reduced, respectively, during the glacial and interglacial periods. Whereas they increased obviously in the southern sites since 420―450 ka, and they augmented and declined, respectively, during the interglacial and glacial periods. The vari- ability in opal % and their MARs in the late Quaternary glacial cyclicity indicate the “seesaw” pattern of surface productivity in the SCS. The winter monsoon intensified during the glacial periods, surface productivity increased and decreased, respectively, in the northern and southern SCS. The summer monsoon strengthened during the interglacial periods, surface productivity increased and decreased, respectively, in the southern and northern SCS. The cross spectral analyses between the opal % in the northern and southern SCS during the Quaternary and global ice volume (δ 18O) and orbital forcing (ETP) indicate that the East Asian winter and summer monsoons could be ascribed to the different drive mechanisms. On the orbital time scale, the global ice volume change could be a dominant factor for the winter monsoon intension and temporal variations. As compared with the winter monsoon, the correlative summer solar radiation with the obliquity and precession in the Northern Hemisphere could be a mostly controlling factor for the summer monsoon intension and temporal variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号