首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large differences in chemistry between sampling points separated In short vertical intervals are often observed in contaminant plumes in both granular and fractured aquifers. However, most regional models assume that such differences will be reduced by dispersive mixing during transport. At a field site located in a discharge area on the Oak Ridge Reservation, Tennessee, ground water flows along discrete flowpaths, as evidenced by the presence of four distinct water types—Ca-HCO3, Ca-Na-HCO3, and Na-Ca-HCO3, and Na-Ca-HCO3-S04—in samples collected from shallow (< 3D in) multilevel wells. The preservation of distinct chemical signatures suggests that ground water must he contained in discrete flow zones during much of its transport time. The chemical composition of the water types can be explained primarily by strata-bound flow over varying flowpath lengths and secondarily by mixing of waters during cross-formational flow in a discharge zone. The hydrochemical facies identified by correlation of water types between the boreholes indicate the general orientation of ground water How paths. These inferred flowpaths are oblique to the orientation of the measured hydraulic gradient and are more closely aligned with bedding and the calculated flow direction. Results of this study indicate that discrete multilevel sampling for analysis of major ions, in addition to information gathered from tracer tests, borehole flow tests. and visual core observations, can provide valuable information on flow directions and preferential flowpaths for contaminant transport.  相似文献   

2.
Chlororespiration is common in shallow aquifer systems under conditions nominally identified as anoxic. Consequently, chlororespiration is a key component of remediation at many chloroethene‐contaminated sites. In some instances, limited accumulation of reductive dechlorination daughter products is interpreted as evidence that natural attenuation is not adequate for site remediation. This conclusion is justified when evidence for parent compound (tetrachloroethene, PCE, or trichloroethene, TCE) degradation is lacking. For many chloroethene‐contaminated shallow aquifer systems, however, nonconservative losses of the parent compounds are clear but the mass balance between parent compound attenuation and accumulation of reductive dechlorination daughter products is incomplete. Incomplete mass balance indicates a failure to account for important contaminant attenuation mechanisms and is consistent with contaminant degradation to nondiagnostic mineralization products like CO2. While anoxic mineralization of chloroethene compounds has been proposed previously, recent results suggest that oxygen‐based mineralization of chloroethenes also can be significant at dissolved oxygen concentrations below the currently accepted field standard for nominally anoxic conditions. Thus, reassessment of the role and potential importance of low concentrations of oxygen in chloroethene biodegradation are needed, because mischaracterization of operant biodegradation processes can lead to expensive and ineffective remedial actions. A modified interpretive framework is provided for assessing the potential for chloroethene biodegradation under different redox conditions and the probable role of oxygen in chloroethene biodegradation.  相似文献   

3.
Aerobic biodegradation can be enhanced within contaminant plumes by elevating typically low dissolved oxygen (D.O.) levels using materials or devices that passively release oxygen. We have developed passive devices that provide a uniform, steady, long-term source of oxygen by diffusion from pressurized polymeric tubing and report test results under lab and field conditions. Lab flow-through reactor tests were conducted to determine the diffusion coefficient (D) of oxygen through four readily available tubing materials. Oxygen diffusion was greatest through Tygon® 3350 platinum-cured silicone (D = 6.67 ± 10-7 cm2/sec), followed by 2075 Ultra Chemical Resistant Tygon (1.59 ± 10-7 cm2/sec), 2275 High Purity Tygon (5.11 ± 10-8 cm2/sec), and low-density polyethylene (LDPE; 1.73 ± 10-8 cm2/sec). Variable-pressure release tests with LDPE resulted in very close estimates of D, which confirmed that mass transfer is controlled by diffusion and that the concentration gradient is a valid approximation of the chemical potential driving diffusion. LDPE emitter devices were designed and installed in seven 8-inch-diameter well screens across a portion of a gasoline plume at a former service station. With the devices pressurized to 620.5 kPag (kilopascals gauge) late in the test, steady-state D.O. concentrations reached as high as 25 mg/L, comparing favorably to the value predicted using the mass-transfer coefficient estimated from the lab test (26.3 mg/L). The method can also be used to release other gases for other reasons: gaseous tracers (i.e., sulphur hexafluoride, helium, and argon), hydrogen (for reductive dechlorination), or light alkanes (for cometabolic biodegradation of methyl tertiary butyl ether [MTBE] or chlorinated solvents).  相似文献   

4.
Groundwater contamination by fuel-related compounds such as the fuel oxygenates methyl tert -butyl ether (MTBE), tert -butyl alcohol (TBA), and tert -amyl methyl ether (TAME) presents a significant issue to managers and consumers of groundwater and surface water that receives groundwater discharge. Four sites were investigated on Long Island, New York, characterized by groundwater contaminated with gasoline and fuel oxygenates that ultimately discharge to fresh, brackish, or saline surface water. For each site, contaminated groundwater discharge zones were delineated using pore water geochemistry data from 15 feet (4.5 m) beneath the bottom of the surface water body in the hyporheic zone and seepage-meter tests were conducted to measure discharge rates. These data when combined indicate that MTBE, TBA, and TAME concentrations in groundwater discharge in a 5-foot (1.5-m) thick section of the hyporheic zone were attenuated between 34% and 95%, in contrast to immeasurable attenuation in the shallow aquifer during contaminant transport between 0.1 and 1.5 miles (0.1 to 2.4 km). The attenuation observed in the hyporheic zone occurred primarily by physical processes such as mixing of groundwater and surface water. Biodegradation also occurred as confirmed in laboratory microcosms by the mineralization of U- 14C-MTBE and U-14C-TBA to 14CO2 and the novel biodegradation of U- 14C-TAME to 14CO2 under oxic and anoxic conditions. The implication of fuel oxygenate attenuation observed in diverse hyporheic zones suggests an assessment of the hyporheic zone attenuation potential (HZAP) merits inclusion as part of site assessment strategies associated with monitored or engineered attenuation.  相似文献   

5.
High‐resolution soil and groundwater monitoring was performed to assess the long‐term impacts of bioremediation using bioaugmentation with a dechlorinating microbial consortium (and sodium lactate as the electron donor) in a well‐characterized trichloroethene (TCE) dense nonaqueous phase liquid (DNAPL) source area. Monitoring was performed up to 3.7 years following active bioremediation using a high‐density monitoring network that included several discrete interval multi‐level sampling wells. Results showed that despite the absence of lactate, lactate fermentation transformation products, or hydrogen, biogeochemical conditions remained favorable for the reductive dechlorination of chlorinated ethenes. In locations where soil data showed that TCE DNAPL sources persisted, local contaminant rebound was observed in groundwater, whereas no rebound or continuous decreases in chlorinated ethenes were observed in locations where DNAPL sources were treated. While ethene levels measured 3.7 years after active treatment suggested relatively low (2 to 30%) dechlorination of the parent TCE and daughter products, carbon stable isotope analysis showed that the extent of complete dechlorination was much greater than indicated by ethene generation and that the estimated first‐order rate constant describing the complete dechlorination of TCE at 3.7 years following active bioremediation was approximately 3.6 y–1. Overall, results of this study suggest that biological processes may persist to treat TCE for years after cessation of active bioremediation, thereby serving as an important component of remedial treatment design and long‐term attenuation.  相似文献   

6.
Field characterization of a trichloroethene (TCE) source area in fractured mudstones produced a detailed understanding of the geology, contaminant distribution in fractures and the rock matrix, and hydraulic and transport properties. Groundwater flow and chemical transport modeling that synthesized the field characterization information proved critical for designing bioremediation of the source area. The planned bioremediation involved injecting emulsified vegetable oil and bacteria to enhance the naturally occurring biodegradation of TCE. The flow and transport modeling showed that injection will spread amendments widely over a zone of lower‐permeability fractures, with long residence times expected because of small velocities after injection and sorption of emulsified vegetable oil onto solids. Amendments transported out of this zone will be diluted by groundwater flux from other areas, limiting bioremediation effectiveness downgradient. At nearby pumping wells, further dilution is expected to make bioremediation effects undetectable in the pumped water. The results emphasize that in fracture‐dominated flow regimes, the extent of injected amendments cannot be conceptualized using simple homogeneous models of groundwater flow commonly adopted to design injections in unconsolidated porous media (e.g., radial diverging or dipole flow regimes). Instead, it is important to synthesize site characterization information using a groundwater flow model that includes discrete features representing high‐ and low‐permeability fractures. This type of model accounts for the highly heterogeneous hydraulic conductivity and groundwater fluxes in fractured‐rock aquifers, and facilitates designing injection strategies that target specific volumes of the aquifer and maximize the distribution of amendments over these volumes.  相似文献   

7.
The ability of bioremediation to treat a source area containing trichloroethene (TCE) present as dense nonaqueous phase liquid (DNAPL) was assessed through a laboratory study and a pilot test at Launch Complex 34, Cape Canaveral Air Force Center. The results of microcosm testing indicate that the indigenous microbial community was capable of dechlorinating TCE to ethene if amended with electron donor; however, bioaugmentation with a dechlorinating culture (KB-1; SiREM, Guelph, Ontario, Canada) significantly increased the rate of ethene formation. In microcosms, the activity of the dechlorinating organisms in KB-1 was not inhibited at initial TCE concentrations as high as 2 mM. The initially high TCE concentration in ground water (1.2 mM or 155 mg/L) did not inhibit reductive dechlorination, and at the end of the study, the average concentration of ethene (2.4 mM or 67 mg/L) was in stoichiometric excess of this initial TCE concentration. The production of ethene in stoichiometric excess in comparison to the initial TCE concentration indicates that the bioremediation treatment enhanced the removal of TCE mass (either sorbed to soil or present as DNAPL). Detailed soil sampling indicated that the bioremediation treatment removed greater than 98.5% of the initial TCE mass. Confirmatory ground water samples collected 22 months after the bioremediation treatment indicated that chloroethene concentrations had continued to decline in the absence of further electron donor addition. The results of this study confirm that dechlorination to ethene can proceed at the high TCE concentrations often encountered in source areas and that bioremediation was capable of removing significant TCE mass from the test plot, suggesting that enhanced bioremediation is a potentially viable remediation technology for TCE source areas. Dehalococcoides abundance increased by 2 orders of magnitude following biostimulation and bioaugmentation.  相似文献   

8.
An experiment was conducted to determine if biodegradation of trichloroethylene (TCE) can occur in previously uncontaminated ground water in saturated fractured saprolite (highly weathered material derived from sedimentary rocks). Two undisturbed columns (0.23 m diameter by 0.25 m long) of fractured saprolite were collected from approximately 2 m depth at an uncontaminated site on the Oak Ridge Reservation, Oak Ridge, Tennessee. Natural, uncontaminated ground water from the site, which was degassed and spiked with dissolved phase TCE, was continuously pumped through one column containing the natural microbial communities (the biotic column). In a second column, the microorganisms were inhibited and the dissolved phase TCE was added under aerobic conditions (dissolved oxygen conditions > 2 ppm). In effluent from the biotic column, reducing conditions rapidly developed and evidence of anaerobic biodegradation of TCE, by the production of cDCE, first appeared approximately 31 days after addition of TCE. Reductive dechlorination of TCE occurred after iron-reducing conditions were established and about the same time that sulfate reduction began. There was no evidence of methanogenesis. Analyses using polymerase chain reaction with specific primers sets detected the bacteria Geothrix, Geobacter, and Desulfococcus-Desulfonema-Desulfosarcina in the effluent of the biotic column, but no methanogens. The presence of these bacteria is consistent with iron- and sulfate-reducing conditions. In the inhibited column, there were no indicators of TCE degradation. Natural organic matter that occurs in the saprolite and ground water at the site is the most likely primary electron donor for supporting reductive dechlorination of TCE. The relatively rapid appearance of indicators of TCE dechlorination suggests that these processes may occur even in settings where low oxygen conditions occur seasonally due to changes in the water table.  相似文献   

9.
Adaptive site management and aggressive bioremediation in the source zone of a complex chlorinated dense nonaqueous phase liquid (DNAPL) site reduced total chlorinated hydrocarbon mass discharge by nearly 80%. Successful anaerobic bioremediation of chlorinated hydrocarbons can be impaired by inadequate concentrations of electron donors, competing electron acceptors, specific inhibitors such as chloroform, and potentially by high contaminant concentrations associated with residual DNAPL. At the study site, the fractured bedrock aquifer was impacted by a mixture of chlorinated solvents and associated daughter products. Concentrations of 1,1,2,2‐tetrachloroethane (1,1,2,2‐TeCA), 1,1,2‐trichloroethane (1,1,2‐TCA), and 1,2‐dichloroethane (1,2‐DCA) were on the order of 100 to 1000 mg/L. Chloroform was present as a co‐contaminant and background sulfate concentrations were approximately 400 mg/L. Following propylene glycol injections, concentrations of organohalide‐respiring bacteria including Dehalococcoides and Dehalogenimonas spp. increased by two to three orders of magnitude across most of the source area. Statistical analysis indicated that reaching volatile fatty acid concentrations greater than 1000 mg/L and depleting sulfate to concentrations less than 50 mg/L were required to achieve a Dehalococcoides concentration greater than the 104 cells/mL recommended for generally effective reductive dechlorination. In a limited area, chloroform concentrations greater than 5 mg/L inhibited growth of Dehalococcoides populations despite the availability of electron donor and otherwise appropriate geochemical conditions. After implementing a groundwater recirculation system targeting the inhibited area, chloroform concentrations decreased permitting significant increases in concentrations of Dehalococcoides and vinyl chloride reductase gene copies.  相似文献   

10.
Cross-borehole flowmeter tests have been proposed as an efficient method to investigate preferential flowpaths in heterogeneous aquifers, which is a major task in the characterization of fractured aquifers. Cross-borehole flowmeter tests are based on the idea that changing the pumping conditions in a given aquifer will modify the hydraulic head distribution in large-scale flowpaths, producing measurable changes in the vertical flow profiles in observation boreholes. However, inversion of flow measurements to derive flowpath geometry and connectivity and to characterize their hydraulic properties is still a subject of research. In this study, we propose a framework for cross-borehole flowmeter test interpretation that is based on a two-scale conceptual model: discrete fractures at the borehole scale and zones of interconnected fractures at the aquifer scale. We propose that the two problems may be solved independently. The first inverse problem consists of estimating the hydraulic head variations that drive the transient borehole flow observed in the cross-borehole flowmeter experiments. The second inverse problem is related to estimating the geometry and hydraulic properties of large-scale flowpaths in the region between pumping and observation wells that are compatible with the head variations deduced from the first problem. To solve the borehole-scale problem, we treat the transient flow data as a series of quasi-steady flow conditions and solve for the hydraulic head changes in individual fractures required to produce these data. The consistency of the method is verified using field experiments performed in a fractured-rock aquifer.  相似文献   

11.
A systematic investigation of the effect of configurations of stochastically distributed fracture networks on hydraulic behaviour for fractured rock masses could provide either quantitative or qualitative correlation between the structural configuration of the fracture network and its corresponding hydraulic behaviour, and enhance our understanding of appropriate application of groundwater flow and contaminant transport modelling in fractured rock masses. In this study, the effect of block sizes, intersection angles of fracture sets, standard deviations of fracture orientation, and fracture densities on directional block hydraulic conductivity and representative elementary volume is systematically investigated in two dimensions by implementing a numerical discrete fracture fluid flow model and incorporating stochastically distributed fracture configurations. It is shown from this investigation that the configuration of a stochastically distributed fracture network has a significant quantitative or qualitative effect on the hydraulic behaviour of fractured rock masses. Compared with the deterministic fracture configurations that have been extensively dealt with in a previous study, this investigation is expected to be more practical and adequate, since fracture geometry parameters are inherently stochastically distributed in the field. Moreover, the methodology and approach presented in this study may be generally applied to any fracture system in investigating the hydraulic behaviours from configurations of the fracture system while establishing a ‘bridge’ from the discrete fracture network flow modelling to equivalent continuum modelling in fractured rock masses. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Comparison of flowpaths to a well and spring in a karst aquifer   总被引:3,自引:0,他引:3  
Toran L  Herman EK  White WB 《Ground water》2007,45(3):281-287
The permeability of some karst aquifers consists of networks of poorly integrated conduits and dissolution-widened fractures. The flow includes conduit flow, especially during storm recharge, but lacks the focused recharge into single master conduits that occurs in more highly developed karst systems. The proportions of conduit and dispersed flow are difficult to quantify in such systems. This study examines the flowpaths in a small karst watershed, based on comparing the physical and chemical response to storm flow at both a spring and a well. By conducting continuous monitoring at both locations, a better understanding of the flowpaths in a poorly integrated network was obtained. A more permeable flowpath to the spring leads to faster storm response and lower ion concentrations. The flowpath to and from the well is more complicated. The higher ion content and slower storm response suggest slower, more dispersed flowpaths. However, the well has greater variation in ion chemistry. Periodic recharge may dilute well concentrations due to faster (conduit or fracture) flowpaths. Although karst systems such as this are difficult to characterize, applying a variety of geochemical and physical monitoring techniques at multiple locations illustrates that the flowpaths can vary in both space and time.  相似文献   

13.
Reductive dechlorination of perchloroethylene (PCE) and trichloroethylene (TCE) by vitamin B12 is an analogue of the microbial reductive dechlorination reaction and is presently being applied as a remediation technique. Stable carbon isotopic analysis, an effective and powerful tool for the investigation and monitoring of contaminant remediation, was used to characterize the isotopic effects of reductive dechlorination of PCE and TCE by vitamin B12 in laboratory microcosms. In laboratory experiments, 10 mg/L vitamin B12 degraded >90% of the initial 20 mg/L PCE with TCE, the primary product of PCE degradation, accounting for between 64% and 72% of the PCE degraded. In experiments with TCE, 147 mg/L vitamin B12 degraded >90% of the initial 20 mg/L TCE with cis -dichloroethene ( c DCE), the primary product of degradation accounting for between 30% and 35% of the TCE degraded. Degradation of both PCE and TCE exhibited first-order kinetics. Strong isotopic fractionation of the reactant PCE and of the reactant TCE was observed over the course of degradation. This fractionation could be described with a Rayleigh model using enrichment factors of −16.5%o and −15.8%o for PCE, and −17.2%o and −16.6%o for TCE. Fractionation was similar in all experiments, with a mean enrichment factor of −16.5%o ± 0.6%o. The occurrence of such large enrichment factors indicates that isotopic analysis can be used to monitor the dechlorination of PCE and TCE by vitamin B12 and remediation of ground water plumes. Evidence indicates that isotopic fractionation is taking place during complexation of the chlorinated ethenes to vitamin B12, as has been suggested for reductive dechlorination by zero valent iron. The differences between e values for this reaction and those observed for anaerobic biodegradation of the chlorinated ethenes suggest that there may be differences in the rate-determining step for these two processes.  相似文献   

14.
Mineralization of 14C‐radiolabled vinyl chloride ([1,2‐14C] VC) and cis‐dichloroethene ([1,2‐14C] cis‐DCE) under hypoxic (initial dissolved oxygen (DO) concentrations about 0.1 mg/L) and nominally anoxic (DO minimum detection limit = 0.01 mg/L) was examined in chloroethene‐exposed sediments from two groundwater and two surface water sites. The results show significant VC and dichloroethene (DCE) mineralization under hypoxic conditions. All the sample treatments exhibited pseudo‐first‐order kinetics for DCE and VC mineralization over an extended range of substrate concentrations. First‐order rates for VC mineralization were approximately 1 to 2 orders of magnitude higher in hypoxic groundwater sediment treatments and at least three times higher in hypoxic surface water sediment treatments than in the respective anoxic treatments. For VC, oxygen‐linked processes accounted for 65 to 85% of mineralization at DO concentrations below 0.1 mg/L, and 14CO2 was the only degradation product observed in VC treatments under hypoxic conditions. Because the lower detection limit for DO concentrations measured in the field is typically 0.1 to 0.5 mg/L, these results indicate that oxygen‐linked VC and DCE biodegradation can be significant under field conditions that appear anoxic. Furthermore, because rates of VC mineralization exceeded rates of DCE mineralization under hypoxic conditions, DCE accumulation without concomitant accumulation of VC may not be evidence of a DCE degradative “stall” in chloroethene plumes. Significantly, mineralization of VC above the level that could reasonably be attributed to residual DO contamination was also observed in several nominally anoxic (DO minimum detection limit = 0.01 mg/L) microcosm treatments.  相似文献   

15.
Benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons are typically the most abundant carbon source for bacteria in gasoline-contaminated ground water. In situ bioremediation strategies often involve stimulating bacterial heterotrophic production in an attempt to increase carbon demand of the assemblage. This may, in turn, stimulate biodegradation of contaminant hydrocarbons. In this study, ground water circulation wells (GCWs) were used as an in situ treatment for a fuel-contaminated aquifer to stimulate bacterial production, purportedly by increasing oxygen transfer to the subsurface, circulating limiting nutrients, enhancing bioavailability of hydrocarbons, or by removing metabolically inhibitory volatile organics. Bacterial production, as measured by rates of bacterial protein synthesis, was stimulated across the zone of influence (ZOI) of a series of GCWs. Productivity increased from ∼102 to >105 ng C/L hour across the ZOI, suggesting that treatment stimulated overall biodegradation of carbon sources present in the ground water. However, even if BTEX carbon met all bacterial carbon demand, biodegradation would account for <4.3% of the total estimated BTEX removed from the ground water. Although bacterial productivity measurements alone cannot prove the effectiveness of in situ bioremediation, they can estimate the maximum amount of contaminant that may be biodegraded by a treatment system.  相似文献   

16.
《Advances in water resources》2007,30(6-7):1547-1561
Recent laboratory experimental evidence has suggested that bioremediation may be an attractive management strategy for dense non-aqueous phase liquid (DNAPL) source-zones. In particular, metabolic reductive dechlorination has been shown to reduce aqueous phase chlorinated ethene contaminant concentrations and enhance DNAPL dissolution, reducing source longevity. Transitioning this technology from the laboratory to the field will be facilitated by tools capable of simulating bioenhanced dissolution. This work presents a mathematical model for metabolic reductive dechlorination in a macroscale two-phase (aqueous-organic) environment. The model is implemented through adaptation of an existing multi-phase compositional simulator, which has been modified to incorporate eight chemical components and four microbial populations: a fermentative population, two dechlorinating populations, and a competitor population (e.g., methanogens). Monod kinetics, modified to incorporate electron donor thresholds, electron acceptor competition, and competitor inhibition, are used to simulate microbial growth and component degradation. The developed model is numerically verified and demonstrated through comparisons with published column-scale dechlorination data. Dechlorination kinetics, electron donor concentrations, and DNAPL saturation and distribution are all found to affect the extent of dissolution enhancement, with enhancements ranging from 1.0 to ∼1.9. Comparison of simulation results with those from a simplified analytic modeling approach suggest that the analytical model may tend to over-predict dissolution enhancement and fail to account for the transient nature of dissolution enhancement, leading to significant (70%) under-prediction of source longevity.  相似文献   

17.
Emulsified vegetable oil (EVO) is widely used as a fermentable substrate to enhance the reductive dechlorination of chlorinated ethenes (CEs) in groundwater systems. The fermentation of EVO by naturally occurring bacteria produces molecular hydrogen (H2) which acts as an electron donor driving microbially mediated reductive dechlorination. While dissolved H2 drives much of the dechlorination associated with CE bioremediation, the dynamics of H2 production and consumption associated with EVO addition to groundwater systems is seldom documented. The present study shows how H2 concentrations changed over a 4-year period following EVO addition to a sandy coastal plain aquifer underlying Naval Air Station Pensacola, Florida, USA. Prior to EVO addition, H2 concentrations at the site were in the range characteristic of Fe(III)-reducing conditions (0.2–0.6 nM). Following EVO addition, H2 concentrations increased exponentially, peaking at approximately 25,000 nM. Hydrogen concentrations then began decreasing exponentially, and by 4 years after EVO addition had stabilized at 4.0 nM. That pattern suggests symbiotic cross-feeding between fermentative and respirative microbial populations resulting in a Gaussian rise and fall of H2 concentrations. That, in turn, suggests while EVO biostimulation can temporarily increase H2 concentrations to very high levels, those higher concentrations are unlikely to be sustained indefinitely.  相似文献   

18.
This study evaluated the relationship between concentrations of operationally defined potentially bioavailable organic ‐carbon (PBOC) and hydrolyzable amino acids (HAAs) in sediments collected from a diverse range of chloroethene‐‐contaminated sites. Concentrations of PBOC and HAA were measured using aquifer sediment samples collected at six selected study sites. Average concentrations of total HAA and PBOC ranged from 1.96 ± 1.53 to 20.1 ± 25.6 mg/kg and 4.72 ± 0.72 to 443 ± 65.4 mg/kg, respectively. Results demonstrated a statistically significant positive relationship between concentrations of PBOC and total HAA present in the aquifer sediment (p < 0.05). Higher levels of HAA were consistently observed at sites with greater levels of PBOC and first‐order decay rates. Because amino acids are known to be readily biodegradable carbon compounds, this relationship suggests that the sequential chemical extraction procedure used to measure PBOC is a useful indicator of bioavailable carbon in aquifer sediments. This, in turn, is consistent with the interpretation that PBOC measurements can be used for estimating the amount of natural organic carbon available for driving the reductive dechlorination of chloroethenes in groundwater systems.  相似文献   

19.
In contaminant hydrogeology, investigations at fractured rock sites are typically undertaken to improve understanding of the fracture networks and associated groundwater flow that govern past and/or future contaminant transport. Conventional hydrogeologic, geophysical, and hydrophysical techniques used to develop a conceptual model are often implemented in open boreholes under conditions of cross-connected flow. A new approach using high-resolution temperature (±0.001°C) profiles measured within static water columns of boreholes sealed using continuous, water-inflated, flexible liners (FLUTe™) identifies hydraulically active fractures under ambient (natural) groundwater flow conditions. The value of this approach is assessed by comparisons of temperature profiles from holes (100 to 200 m deep) with and without liners at four contaminated sites with distinctly different hydrogeologic conditions. The results from the lined holes consistently show many more hydraulically active fractures than the open-hole profiles, in which the influence of vertical flow through the borehole between a few fractures masks important intermediary flow zones. Temperature measurements in temporarily sealed boreholes not only improve the sensitivity and accuracy of identifying hydraulically active fractures under ambient conditions but also offer new insights regarding previously unresolvable flow distributions in fractured rock systems, while leaving the borehole available for other forms of testing and monitoring device installation.  相似文献   

20.
Hydrochemical, inverse geochemical modelling and isotopic approaches are used to assess the hydrogeochemical evolution of groundwater from the basement aquifers in the southeastern part of the Plateaux Region, Togo. Groundwater originates from present-day rainwater infiltration and is mostly fresh and slightly acidic to neutral. Hydrochemical facies are predominantly mixed cations-HCO3 associated with Ca/Mg-Cl, Na-HCO3 and Na-Cl water types in equilibrium with kaolinite and Ca/Mg-smectites. They are related to silicates hydrolysis, anthropogenic contamination, nitrification/denitrification, mixing along flowpaths and dissolution/precipitation of secondary minerals. The pattern of flow paths is in accordance with an increasing trend in total dissolved solids (TDS) toward the potentiometric depression located in the central and southern parts of the aquifer system. Inverse geochemical modelling using the NETPATH-WIN model showed the relative importance of biotite, plagioclase and amphibole weathering and dissolution of secondary carbonate minerals along the flowpath, suggesting that an abundance of minerals is not necessarily the main factor controlling the groundwater chemistry evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号