首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Based on state-space method and component analysis, this paper builds a comprehensive evaluation system of carrying capacity for the Beijing–Tianjin–Hebei region from four aspects, namely economy, environment, ecology and energy. The results show that the comprehensive carrying capacity in this region gradually rises in recent years and the economic carrying capacity plays an important role in this situation. Ecological and environmental carrying capacity are gradually enhanced but still affected by water shortages. The energy carrying capacity of this region is low, which is the major factor restricting its sustainable development. Based on the empirical results, following policy suggestions should be adopted: Firstly, local government should accelerate technological progress, promoting the optimization and upgrading of industrial structure; Secondly, the contradiction between supply and demand of water resource should be solved gradually; thirdly, government should develop recycling economy, realizing the coordinated development of economy and environment; last but not least, saving energy and improving energy efficiency.  相似文献   

2.
In this paper, first, the criteria that make logistics service providers more “green” are determined as: cooperation with customer’s company and its customer, green government regulations, environmental management system, green process design, reduction in energy consumption and green network design. The criteria weights are determined by fuzzy AHP, based on expert opinions. Then, a new method is proposed, which is the combination of fuzzy TOPSIS and GRA, and used to evaluate green 3PLs based on different separation measures, as an extension, using trapezoidal fuzzy numbers. Five Turkish 3PLs serve in Istanbul are selected in order to apply a case study to show the applicability of the proposed method. Finally, the proposed method is verified with respect to different resolving coefficient values and separation measures and also compared with fuzzy TOPSIS and fuzzy VIKOR method results. Different multi-criteria decision-making methods can be applied and compared to check validity of our results for future studies. The proposed method can also be implemented to 3PLs in other countries.  相似文献   

3.
4.
Landslide often exhibits characteristics of multi-stage destruction in practical engineering. However, the most dangerous slip surface and corresponding minimum safety factor are only concerned in general computing and design, this often leaves security risk. Considering the softening characteristics of geomaterial, a theoretical framework of effective simulation and evaluation of landslide multi-stage destruction is established with FLAC(3D) and Matlab software platform. Taken landslide in low-rent housing area of Dangjiaba in Xunyang county as an example, the process of forming multi-slip surfaces is revealed by progressive evolution of plastic shear strain, plastic tensile strain and shear strain increment and so on. It is shown that time and space sequences are not necessarily corresponding sequence. The temporal sequences of multi-slip surfaces are first-class main slip surface, second-class main slip surface and sub-slip surface; the spatial sequence is first-class master slip surface, sub-slip surface and second-class main slip surface. The number of slip surfaces is equal to the number of tension cracks in collecting on-site. The entry location of first-class main slip surface is in excellent agreement with the tension crack in the frontal part of landslide, but the positions of second-class master slip surface and sub-slip surface have little error with the tension crack on-site. The distribution and magnitude of strength parameters in the slip surfaces gradually change with the development of slip surface from peak strength to residual strength, this is the root reason why the multi-slip surfaces of landslide can be simulated effectively. The evolution of vector sum safety factors according the temporospatial distribution of material parameters in the multi-slip surfaces is obtained. It turns out that there are three different sequences of safety factors in the process of forming the multi-slip surfaces of landslide. It illustrates the active and passive relationships among all slip surfaces in the formation process.  相似文献   

5.
Formaldehyde’s, as the irritant and active gas in atmosphere, pollution assessment by perception of people is significative. Although related study is seldom reported, it is necessary to improve the general contamination evaluation based on Weber–Fischna law and combine with human’s real feeling. Therefore, based on the law, Weber exponents were counted by a convenient optimal calculation, and the results could accurately embody the different standard range of formaldehyde concentration. In addition, by the human smell perception experiment, it was firstly found that the score assessment could also express the pollution condition more practically. According to the scores, expanding exponents could cause the assessment more clearly and closer to human real smell perception.  相似文献   

6.
Groundwater solute transport phenomena typically occur in water-bearing zones with heterogeneous solute dispersive characteristics and/or media hydraulic properties. A radial basis function collocation method (RBFCM)-based numerical method was developed in order to investigate the ability of RBFCM to accurately portray solute transport phenomena under heterogeneous conditions. Simulations were performed for 1-D and 2-D transport scenarios in which scale-dependent dispersivity fields were taken into consideration and compared with available analytical solutions. Different radial basis functions (RBFs) were employed for assessing the sensitivity of the present method on the selected RBFs. The simulation results were also compared with the results of MT3DMS which is a modular three-dimensional transport model with alternative solution schemes including the method of characteristics, the implicit central finite difference and the third order total variation diminishing finite volume. The proposed model was also used to simulate a real case condition where solute transport through a two-layer soil medium had been investigated experimentally. The results showed that RBFCM represented a powerful tool for predicting the solute transport occurrence under heterogeneous conditions with high accuracy.  相似文献   

7.
Dongchuan City is highly threatened by debris-flow disasters originating from Shengou gully, a typical debris-flow gully along Xiaojiang River in Yunnan Province (Kang et al. 2004). Shengou gully is studied, and a hazard assessment with numerical simulation is developed using ArcGIS 9.2 software. Debris-flow numerical simulation is an important method for predicting debris-flow inundation regions, zoning debris-flow risks, and helping in the design of debris-flow control works. Meanwhile, vulnerability measurement is essential for hazard and risk research. Based on the self-organized map neural network method, we combine the six vulnerability indicators to create an integrated debris-flow vulnerability map that depicts the vulnerability levels of Dongchuan City in Shengou Basin. Based on the risk assessment (including hazard assessment and vulnerability assessment), we adopt the principal–agent theory and use the risk degree of debris flows as an important index to build the insurance model and analyze the insurance premium of debris-flow disasters in Dongchuan City. This paper discusses the model and mechanism of property insurance in debris-flow risk regions and aims to provide technical support for insurance companies to participate in disaster prevention and reduction.  相似文献   

8.
9.
Soil flow and induced air blasts are of great harm to humanity, and historically they have caused a lot of damage to infrastructure. However, these phenomena cannot be described by traditional analog modeling methods that limit their use in disaster prevention efforts. Computational fluid dynamics (CFD) is an applied technique commonly used in a range of fields including the chemical industry, and aircraft and automobile manufacturing, but little is reported on the use of this method to simulate flowing soil in geotechnical engineering applications. The CFD method can effectively make up for the deficiency of normal calculation methods in the analysis of soil flow and air blasts. This paper uses the FLUENT (version 6.3) CFD calculation software to simulate the processes of soil flow and induced air blast changes during soil flow with an Eulerian air–soil two-phase model included in a standard k-ε turbulence model. Velocity vectors of air blasts at different times during soil flow are obtained, and the characteristics of turbulent flow can be found based on the velocity vectors. The numerical simulation techniques adopted in this paper captured precise configurations of soil flow. The results show that the CFD method is especially suitable for simulating the process of soil flow; hazard assessments can be implemented, and the performance of structures involved with disaster prevention can be improved based on the numerical simulation of changing air blasts.  相似文献   

10.
The role of the seismic soil–pile–structure interaction (SSPSI) is usually considered beneficial to the structural system under seismic loading since it lengthens the lateral fundamental period and leads to higher damping of the system in comparison with the fixed-base assumption. Lessons learned from recent earthquakes show that fixed-base assumption could be misleading, and neglecting the influence of SSPSI could lead to unsafe design particularly for structures founded on soft soils. In this study, in order to better understand the SSPSI phenomena, a series of shaking table tests have been conducted for three different cases, namely: (i) fixed-base structure representing the situation excluding the soil–structure interaction; (ii) structure supported by shallow foundation on soft soil; and (iii) structure supported by floating (frictional) pile foundation in soft soil. A laminar soil container has been designed and constructed to simulate the free field soil response by minimising boundary effects during shaking table tests. In addition, a fully nonlinear three dimensional numerical model employing FLAC3D has been adopted to perform time-history analysis on the mentioned three cases. The numerical model adopts hysteretic damping algorithm representing the variation of the shear modulus and damping ratio of the soil with the cyclic shear strain capturing the energy absorbing characteristics of the soil. Results are presented in terms of the structural response parameters most significant for the damage such as foundation rocking, base shear, floor deformation, and inter-storey drifts. Comparison of the numerical predictions and the experimental data shows a good agreement confirming the reliability of the numerical model. Both experimental and numerical results indicate that soil–structure interaction amplifies the lateral deflections and inter-storey drifts of the structures supported by floating pile foundations in comparison to the fixed base structures. However, the floating pile foundations contribute to the reduction in the lateral displacements in comparison to the shallow foundation case, due to the reduced rocking components.  相似文献   

11.
The purpose of this paper is to identify areas with high flash-flood potential based on an evaluation of physiographic factors controlling the formation of surface runoff. The research method relies on the use of the Flash Flood Potential Index (FFPI), which incorporates physiographic characteristics from the catchment (terrain slope, profile curvature, land use and soil texture). The spatial distribution of the physiographic factors (which contribute to the creation, control and concentration within the drainage network of the overland flow) and the classified zoning of areas according to their hydrological response were achieved with GIS techniques. The results obtained show that physiographic factors on 227 sq km (29%) favor surface runoff on slopes and its localization towards the drainage network. Notably, the highest values of FFPI belong to the lower part of the catchment, where high human population density can be found, reflecting an increased vulnerability to floods and inundations of this area.  相似文献   

12.
We apply the general concept of seismic risk analysis based on morphostructural analysis of the territory, pattern recognition of earthquake-prone nodes, and the Unified Scaling Law for Earthquakes, USLE, in another seismic region of Russia to the west from Lake Baikal, i.e., Altai–Sayan Region. The USLE generalizes the empirical Gutenberg–Richter relationship making use of apparently fractal distribution of earthquake sources of different size: \( \log_{10} N\left( {M,L} \right)\, = \,A\, + \,B \cdot \left( {5\, - \,M} \right)\, + \,C \cdot \log_{10} L, \) where N (M, L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. The local estimates of A, B, and C allow determination of the expected maximum credible magnitude in a given time interval and the associated spread around ground shaking parameters (e.g., peak ground acceleration, PGA, or macroseismic intensity, I0). Compilation of the corresponding seismic hazard map of Altai–Sayan Region and its rigorous testing against the available seismic evidences in the past is used to model regional maps of specific earthquake risks for population, cities, and infrastructures.  相似文献   

13.
Fractionation between Nb and Ta, elements generally regarded as geochemical ‘identical twins’, is a key to deciphering the formation of the continental crust (CC). Here we show that Nb/Ta of rutile grains in eclogitic rocks from the Chinese Continental Scientific Drilling (CCSD) project are remarkably heterogeneous but overall subchondritic at core depths of 100–700 m, and are less variable and mainly suprachondritic at core depths of 700–3025 m, indicating clear Nb/Ta fractionation across a subducted slab. To understand the potential mechanism of Nb/Ta fractionation within the subducted plate, we analysed by laser ablation ICPMS a thermal migration experiment in which a wet andesite was placed in a large thermal gradient (300°C/cm with ends ranging from 950–350°C) at 0.5Gpa. Results show that Nb, Ta and Ti, driven by the thermal gradient, preferentially migrate by diffusion through supercritical fluids into the cooler end of the experiment (at 650–350°C). Due to contrasting Nb and Ta thermal migration patterns, dramatic fractionation between Nb, Ta, and Ti took place in the cooler end. Experimental results are consistent with the measured Nb, Ta in rutile from CCSD drillhole samples. We consider that major fractionation between Nb, Ta must occur before rutile appears, most likely during the prograde blueschist to amphibole–eclogite transformation, when Ti is also mobile. Before rutile appears, partitioning between Ti‐rich dominant minerals such as amphiboles and fluids in the hotter region where dehydration preferentially occurs, produces Nb–Ta–Ti‐rich fluids with subchondritic Nb/Ta, and dehydration residues with suprachondritic Nb/Ta. Meanwhile, owing to evolution of the thermal gradient within the subducting slab, thermal migration of Nb, Ta, and Ti in aqueous fluids result in Nb, Ta, and Ti enrichment in the cooler region and depletion in the hotter region. As a result of high‐pressure metamorphism, hydrous rutile‐rich eclogites with overall subchondritic Nb/Ta form in the cooler region, whereas relatively anhydrous rutile‐poor eclogites with suprachondritic Nb/Ta form in the hotter region. Subsequently, partial melting of hydrous rutile‐rich eclogites with initial subchondritic Nb/Ta at deeper levels transfers overall subchondritic Nb/Ta coupled with Nb, Ta, and Ti depletion characteristics to the CC, leaving dry rutile‐poor eclogites with suprachondritic Nb/Ta and rutile‐rich residual eclogites with overall, heterogeneous subchondritic Nb/Ta as a complementary reservoir to the CC.  相似文献   

14.
The load distribution and deflection of large diameter piles are investigated by lateral load transfer method (py curve). Special attention is given to the soil continuity and soil resistance using three-dimensional finite element analysis. A framework for determining a py curve is calculated based on the surrounding soil stress. The appropriate parametric studies needed for verifying the py characteristic are presented in this paper. Through comparisons with results of field load tests, the three-dimensional numerical methodology in the present study is in good agreement with the general trend observed by in situ measurements and thus, represents a realistic soil–pile interaction for laterally loaded piles in clay than that of existing py method. It can be said that a rigorous numerical analysis can overcome the limitations of existing py methods to some extent by considering the effect of realistic three-dimensional combination of pile–soil forces.  相似文献   

15.
Natural Hazards - One of the requirements for planning and decision-making to develop the infrastructures is to prepare the landslide occurrence hazard map. For this purpose, in this article, the...  相似文献   

16.
The use of yield in supports to control the final loading that develops upon a support system has been one of the most important deformation control techniques used by tunnelling engineers, both historically and currently. Successful use of this approach requires a thorough understanding of the process of rock–support interaction as it is an approach that can fail dramatically if incorrectly applied. There is a fine line between the yield support technique improving the conditions, and the approach resulting in the development of a large area of failed rock, which could ultimately be detrimental. The relationship between the support action and the rock has historically been studied using analytical approaches with the application of significant simplifying assumptions.This paper presents a new approach, where a state-of-the-art numerical model is run repeatedly to develop rock–support interaction curves. This has the advantage of allowing more realistic tunnel geometry, stress states and ground conditions to be simulated. It does, however, use the familiar output form of the relatively simple rock–support interaction curve as opposed to complex and voluminous graphics. Its disadvantage lies in the considerable number of computer runs required to develop the full solutions. Computer software has, however, been written to automate much of this process using a programming language within the modelling package.The analysis approach has been further improved by plotting not one rock–support interaction curve but a whole family of curves representing variations in the rock mass quality of the assumed ground, since this is the most variable of the input parameters for most tunnelling situations. This form of output allows engineers to study the practical range of yield they may require for their rock conditions and also to define at what rock mass quality they can expect the yielding approach to cease to be an effective strategy. This new approach has been presented on a test case history with idealized rock mass properties to illustrate the approach. However, it is an approach that can be specially tailored to any set of rock conditions, tunnel geometry or stress.  相似文献   

17.
Won  Jongmuk 《Acta Geotechnica》2022,17(10):4667-4680
Acta Geotechnica - This study investigated the microscale assessment of the stability of fine particles from calculated hydrodynamic and adhesive torques of attached fine particles on sand...  相似文献   

18.
Dong  Hui  Peng  Bocheng  Gao  Qian-Feng  Hu  Yin  Jiang  Xiuzi 《Acta Geotechnica》2021,16(2):595-611

Because of spatial variability and complex compositions, the mechanical test results of natural soil–rock mixtures (SRMs) are often discrete and lack reproducibility, which has greatly restricted the practical application of the experimental findings. The objective of this study was to examine the general mechanical behavior of SRMs under the influences of some hidden factors (e.g., structural parameters, parent rock type and weathering degree). To that end, the abstraction idea was adopted to prepare purified SRM samples. Large-scale triaxial tests were performed on these purified materials. On this basis, the influences of three structural parameters on the mechanical behavior of SRMs were studied. Moreover, the relationship between the shear strength and parent rock type and that between the shear strength and the spatial distribution of rock blocks were quantified. Some additional intrinsic behavior was distinguished from individual experimental phenomena through the comparative analysis of the test data in this study and those reported in the literature. The results show that the hidden factors had significant influences on the mechanical behavior of SRMs. A greater saturated uniaxial compressive strength of rock blocks generally led to a larger shear strength of SRMs. According to the significance of their influences on the shear strength parameters of SRMs, the structural parameters are ordered as: the gradation of rock blocks, the initial dry density of sample and the spatial distribution of rock blocks. The deformation and failure feature of SRMs were considerably affected by the spatial distribution of rock blocks and shear rate. And the shear strength parameters of SRMs were mainly influenced by the content of grains between 40 and 60 mm. The findings of this study would provide useful guidance for engineering practice.

  相似文献   

19.
20.
Probabilistic evaluation of slope failures is increasingly seen as the most appropriate framework for accounting for uncertainties in design. This paper performs reliability assessments for rock slopes based on the latest version of the Hoek–Brown failure criterion. The purpose of this study is to demonstrate the use of a new form of stability number for rock slope designs that has been recently developed from finite element upper and lower bound limit analysis methods, and to provide guidance for its use in probabilistic assessments. The analyses show that by using this newly proposed stability number, the probability of failure (Pf) obtained from case studies agrees well with the true state of the slope. In addition, this paper details a procedure to determine the magnitude of safety factor required for rock slope design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号