共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Applied Geochemistry》1987,2(3):337-345
An inter-laboratory comparison has been made of X-ray fluorescence analyses of 10 samples of lava and pumices from El Chichón Volcano, Chiapas, Mexico. Some determinations of major-element constituents agree within analytical uncertainty, whereas others exchibit significant bias. Analyses carried out at the Michigan Technological University (MTU) laboratory are systematically lower in MgO (26–48%), Fetotal(5–18%), CaO (4–15%) and higher in K2O (0–15%) than analyses made at the U.S. Geological Survey (USGS) Denver laboratory. These differences are ascribed in part to a complex combination of calibration assumptionsand mineralogical and particle-size effects inherent in the use of pressed rock-powder pellets in the analytical procedure of the MTU laboratory. Other, but as yet unknown, differences in sample preparation and/or analytical technique may also be important; effects related to natural sample inhomogeneityare believed to be insignificant. The inter-laboratory differences in the analytical data complicated accurate assessment of whether El Chichón magmas have changed composition during the past 300 000 a. Knowledge of such change is needed for understanding petrogenetic history and for such related studies as evaluation of volcanic hazards. 相似文献
3.
The equilibrium phase relations of two volcanic rocks from thesubduction-related Mexican Volcanic Belt have been determinedwith an argon-pressurized internally heated vessel. One rockis the trachyandesite erupted from El Chich?n Volcano in 1982;the other is a primitive basalt erupted from Jorullo Volcanoin 1759. A simplified synthetic equivalent to the trachyandesitewas also investigated in lesser detail. All charges were saturatedwith hydrous vapor and a sulfur-bearing mineral. Temperatureranged from 800 to 1000?C, pressure from 1 to 4 kb, and fo2was controlled by four different solid oxygen buffers in a doublegold capsule configuration: fayalite-magnetite-quartz (FMQ),Ni-NiO (NNO), manganosite-hausmanite (MNH), and magnetite-hematite(MTH). Pyrrhotite was the only sulfur-bearing mineral observed in chargesbuffered under FMQ and NNO, whereas anhydrite crystallized underthe more oxidizing MNH or MTH; both of these observations areconsistent with those of earlier workers. With increasing temperatureand pressure, SiO2 and K2O decreased in the experimental melts,whereas Al2O3 and CaO increased. Sulfur solubility in silicatemelts was low (<0?1 wt% equivalent SOt3) for pyrrhotite-saturatedcharges, but significantly greater (to 1?3 wt.% SOt3) when anhydritewas present. Sulfur solubility in anhydrite-saturated meltsshowed strong positive dependence on both temperature and Pvapor. Sulfur amounted to some 2?5 wt.% (SOt3) of the total ejectaduring the 1982 El Chich?n eruptions, and the original magmaticsulfur content was in the range 1?2525 wt% SOt3.Extrapolations of experimental temperature and pressure dependencesfor sulfur solubility indicate that such concentrations couldbe contained in a hydrous, oxidized, basaltic parent melt generatedunder Benioff zone conditions. During ascent through the uppermantle and crust, the sulfur solubility limit of the melt wouldcontinuously decrease; in response, most of the sulfur wouldbe transferred from the melt to anhydrite crystals and a separategas phase. Trachyandesite pumices erupted from El Chich?n in1982 contained both pyrrhotite and anhydrite at a temperatureof 800?C. The composition of the natural pyrrhotite yieldedan fo2 estimate 1 log unit above the NNO buffer. Based on compositionalvariations in the experimental melts with temperature and pressure,the composition of the matrix glass in the 1982 pumices indicatesequilibration of the magmatic liquid at about Ptotal=Pvapor=2kb just before eruption. At that time, sulfur in El Chich?ntrachyandesite was about equally partitioned between anhydritemicrophenocrysts and some 20 vol.% gas phase in which H2S wasprobably the dominant sulfur-bearing species. The melt thencontained only 0?05 wt.% SOt3, consistent with experimentalsolubility limits at 800?C and Pvapor=2 kb. 相似文献
4.
This retrospective study focuses on the fine silicate particles (<62 µm in diameter) produced in a large eruption that was otherwise well studied. Fine particles represent a potential hazard to aircraft, because as simple particles they have very low terminal velocities and could potentially stay aloft for weeks. New data were collected to describe the fine particle size distributions of distal fallout samples collected soon after eruption. Although, about half of the mass of silicate particles produced in this eruption of ~1 km3 dense rock equivalent magma were finer than 62 µm in diameter, and although these particles were in a stratospheric cloud after eruption, almost all of these fine particles fell to the ground near (<300 km) the volcano in a day or two. Particles falling out from 70 to 300 km from the volcano are mostly <62 µm in diameter. The most plausible explanation for rapid fallout is that the fine ash nucleates ice in the convective cloud and initiates a process of meteorological precipitation that efficiently removes fine silicates. These observations are similar to other eruptions and we conclude that ice formation in convective volcanic clouds is part of an effective fine ash removal process that affects all or most volcanic clouds. The existence of pyroclastic flows and surges in the El Chichón eruption increased the overall proportion of fine silicates, probably by milling larger glassy pyroclasts. 相似文献
5.
《International Geology Review》2012,54(4):501-524
The alkaline El Chichón and calc-alkaline Tacaná volcanoes, located in southern Mexico, form parts of the Chiapanecan Volcanic Belt and Central American Volcanic Arc, respectively. El Chichón has emitted potassium-, sulphur-, and phosphorus-rich trachyandesites and trachybasalts (as mafic enclaves), whereas Tacaná has erupted basalts to dacites with moderate potassium contents, and minor high-Ti magmas (1.5–1.8 wt.% TiO2). The magmatic evolution in the two volcanoes has involved similar fractionating assemblages: Fe-Ti oxides, olivine, plagioclase, pyroxenes, amphibole, and apatite. K2O/P2O5 ratios and isotopic signatures indicate that magmas from both El Chichón and Tacaná have undergone significant crustal contamination. The volcanism at both Tacaná and El Chichón was previously related to northeastward subduction of the Cocos Plate, representing the main arc and the backarc, respectively. Although such an origin is in accord with Tacaná occurring 100 km above the Cocos Benioff Zone, it is inconsistent with: (a) the absence of a calc-alkaline belt between El Chichón and the Middle America Trench; and (b) truncation of the subducted Cocos Plate by the southwesterly dipping Yucatan slab near the Middle America Trench (i.e. the Cocos Plate does not presently underlie El Chichón). On the other hand, El Chichón and the Chiapanecan Volcanic Belt are located on the sinistral Veracruz fault zone that forms the northern boundary of the Southern Mexico block, which has been migrating relatively to the east since ca. 5 Ma. In this context, the anomalous high potassium, sulphur, and phosphorus levels in the El Chichón magmas are explicable in terms of rifting in a pull-apart system with the weak subduction fingerprint inherited from the Yucatan slab. 相似文献
6.
José Manuel Marrero Alicia García Angeles Llinares Servando De la Cruz-Reyna Silvia Ramos Ramón Ortiz 《Natural Hazards》2013,68(2):955-980
Decision making regarding massive evacuation of a population threatened by a probable volcanic eruption is a major problem in crisis management. Such a decision is general on the number of people to be evacuated, available resources and infrastructure, quantity and quality of the escape routes and shelters, and the economic, social and political costs involved in the operation, coupled with the updated information provided by scientists about the forecast of future activity and probable eruption scenarios. Knowing time-lapse between the evacuation decision-making time and the time in which the evacuation is completed is another critical issue that must be carefully considered in densely populated areas. In such areas, it is really important to estimate in advance this time-lapse, as the forecast must be released with enough time to complete all the evacuation process before the destructive manifestations of the eruption begin. In this context, evacuation planning is a crucial component of emergency management. It is common for Emergency Plans to include pre-established strategies. However, an evacuation procedure should be flexible, depending on the above-mentioned timing, and on the decisions, evacuation schemes, environmental characteristics and other factors. In this work, several hazard models such as a lava flow model based on a Monte Carlo algorithm, a pyroclastic density current based on energy cone model, a semi-empirical inversion model to estimate the thickness of ash deposits, and all available information about the El Chión volcano have been used to obtain the area that should be evacuated in case of an eruption. Then, multiple evacuation strategies at El Chichón volcano have been designed, considering not only the characteristics of the eruption forecast, but also environmental factors (e.g., weather conditions) and social factors (e.g., tourism and farming seasons). The variable scale evacuation model has been used to estimate the evacuation time. In the paper, those virtual tools are briefly described as well as the information obtained from the drill of 2009. In addition to the optimization of evacuation under variable conditions and situations, one of the main objectives of this work is to provide a reliable estimation of the mitigation action time, for an Emergency Plan. 相似文献
7.
A. Montalto 《Natural Hazards》1995,11(1):57-73
Active volcanic areas are sometimes affected by phreatic eruptions, which are explosions due to the outbreak of a confined pocket of steam and gas without the direct involvement of molten magma. Eruptive activity at La Fossa Volcano, Island of Vulcano (Italy), typically starts with a phreatic explosion, continues as phreatomagmatic and turns into a late magmatic stage, depending on the reduction in the efficiency of magma-water interaction. The present risk is mainly related to a village located at the very foot of the active volcanic cone, which in summer seasons is inhabited by more than 10,000 people. Because the last eruptive episode occurred in 1888–1890, when no local instrumental control was performed, the scientific community does not have any information about the seismic phenomena which could precede the initial phreatic blast. Inferences from similar monitored volcanoes, which awakened in the last few years after more or less long quiescence, are therefore made to tentatively depict possible pre-eruptive seismic scenarios and also to evaluate the most appropriate surveillance and alert criteria to adopt. Appreciable signs of volcanic unrest have been detected in recent years, mainly related to modifications in the physical and chemical features of fumarolic fluids discharged at the active crater. Following the classification of local seismic shocks, the recording oflong-period events (peak frequency 2 Hz) should be taken into account as a realistic seismic warning of volcanic hazard enhancement. A likely short-term seismic precursor may be finally given by the appearance of the so-calledbanded tremor, a seismic signal likely produced by intermittent hydrothermal boiling accompanying the hydraulic fracturing of rocks at the top of a pressurized aquifer. Real-time recognition of tremor can be therefore very useful to avoid, at least, injuries to volcanologists and visitors working or staying on the most dangerous sectors of the volcano. 相似文献
8.
The San Ramón Fault is an active west-vergent thrust fault system located along the eastern border of the city of Santiago, at the foot of the main Andes Cordillera. This is a kilometric crustal-scale structure recently recognized that represents a potential source for geological hazards. In this work, we provide new seismological evidences and strong ground-motion modeling from hypothetic kinematic rupture scenarios, to improve seismic hazard assessment in the Metropolitan area of Central Chile. Firstly, we focused on the study of crustal seismicity that we relate to brittle deformation associated with different seismogenic fringes in the main Andes in front of Santiago. We used a classical hypocentral location technique with an improved 1D crustal velocity model, to relocate crustal seismicity recorded between 2000 and 2011 by the National Seismological Service, University of Chile. This analysis includes waveform modeling of seismic events from local broadband stations deployed in the main Andean range, such as San José de Maipo, El Yeso, Las Melosas and Farellones. We selected events located near the stations, whose hypocenters were localized under the recording sites, with angles of incidence at the receiver <5° and S–P travel times <2 s. Our results evidence that seismic activity clustered around 10 km depth under San José de Maipo and Farellones stations. Because of their identical waveforms, such events are interpreted like repeating earthquakes or multiplets and therefore providing first evidence for seismic tectonic activity consistent with the crustal-scale structural model proposed for the San Ramón Fault system in the area (Armijo et al. in Tectonics 29(2):TC2007, 2010). We also analyzed the ground-motion variability generated by an M w 6.9 earthquake rupture scenario by using a kinematic fractal k ?2 composite source model. The main goal was to model broadband strong ground motion in the near-fault region and to analyze the variability of ground-motion parameters computed at various receivers. Several kinematic rupture scenarios were computed by changing physical source parameters. The study focused on statistical analysis of horizontal peak ground acceleration (PGAH) and ground velocity (PGVH). We compared the numerically predicted ground-motion parameters with empirical ground-motion predictive relationships from Kanno et al. (Bull Seismol Soc Am 96:879–897, 2006). In general, the synthetic PGAH and PGVH are in good agreement with the ones empirically predicted at various source distances. However, the mean PGAH at intermediate and large distances attenuates faster than the empirical mean curve. The largest mean values for both, PGAH and PGVH, were observed near the SW corner within the area of the fault plane projected to the surface, which coincides rather well with published hanging-wall effects suggesting that ground motions are amplified there. 相似文献
9.
Debris flows and soil and rock slides are among the main geological hazards in the mountain foothills of Central Chile. Geological risk associated with the development of landslides, especially debris flows triggered in the basins of ravines that drain into the capital city, Santiago, has increased in time due to accelerated urban expansion. A landslide hazard evaluation in the San Ramón Ravine, located within the foothills of Santiago is presented. Hazard evaluation is based on a methodology that combines the determination of landslide susceptibility calculated by integration of conditioning factors, with the assessment of slope failure and runout probabilities incorporating geotechnical engineering approaches. The methodology is appropriate for medium or subregional scale studies with limited data. The results show that in San Ramón Ravine the landslide hazard consists mainly of debris flows, rock block slides, rock falls and shallow soil slides. Among these, debris flows are the most important due to the urban area that can be affected. Other case studies show that the method can be used in other regions with minor adaptations for territorial planning or for engineering and environmental purposes. 相似文献
10.
Giancarlo Capitani Nobuyoshi Miyajima Roberto Sulpizio Maria D’Addabbo Lucia Galimberti Massimo Guidi Giovanni B. Andreozzi 《Environmental Earth Sciences》2018,77(13):521
In this study, we performed leaching experiments for timescales of hours-to-months in deionized water on fresh volcanic ash from Mt. Etna (Italy) and Popocatépetl (Mexico) volcanos to monitor Fe release as a function of ash mineral chemistry and size, with the aim of clarifying Fe release mechanisms and eventually evaluating the impact of volcanic ash on marine and lacustrine environments. To define sample mineralogy and Fe speciation, inclusive characterization was obtained by means of XRF, SEM, XRPD, EELS and Mössbauer spectroscopies. For Etna and Popocatépetl samples, glass proportions were quantified at 73 and 40%, Fe2O3 total contents at 11.6–13.2 and 5.8 wt%, and Fe3+/FeTot ratios at 0.33 and 0.23, respectively. Leaching experiments showed that significant amounts of iron, ~?30 to 150 and ~?750 nmol g?1 l?1 for pristine Etna and Popocatépetl samples, respectively, are released within the first 30 min as a function of decreasing particle size (from 1 to 0.125 mm). The Popocatépetl sample showed a very sustained Fe release (up to 10 times Etna samples) all along the first week, with lowest values never below 400 nmol g?1 l?1 and a maximum of 1672 nmol g?1 l?1 recorded after 5 days. This sample, being composed of very small particles (average particle size 0.125 mm) with large surface area, likely accumulated large quantities of Fe-bearing sublimates that quickly dissolved during leaching tests, determining high Fe release and local pH decrease (that contributed to release more Fe from the glass) at short timescale (hours-to-days). The fractional Fe solubility (FeS) was 0.004–0.011 and 0.23% for Etna and Popocatépetl samples, respectively, but no correlation was found between Fe released in solution and either ash Fe content, glass/mineral ratio or mineral assemblage. Results obtained suggest that volcanic ash chemistry, mineralogy and particle size assume a relevant role on Fe release mostly in the medium-to-long timescale, while Fe release in the short timescale is dominated by dissolution of surface sublimates (formed by physicochemical processes occurring within the eruption plume and volcanic cloud) and the effects of such a dissolution on the local pH conditions. For all samples, a moderate to sustained Fe release occurred for leaching times comparable with their residence time within the euphotic zone of marine and lacustrine environments (variable from few minutes to few hours), revealing their possible contribution to increase Fe bioavailability. 相似文献
11.
《Applied Geochemistry》2002,17(8):961-973
Legal regulation of heavy metal contents is an important issue in many European countries, where laws still do not exist establishing the heavy metal levels permitted in soils. As a first step to determine the reference levels of heavy metals, it is necessary to know their contents in soils under natural conditions. To achieve this goal in the Autonomous Community of Aragón, a total of 133 sites have been sampled. A balanced allotment of the sampling sites, according to soil spatial distribution in the region, has been carried out by selecting 9 soil types that represent 97.5% of its surface area. Fifteen elements (Cr, Cu, Ba, As, Sb, Hg, Sn, Mn, Fe, Al, Zn, Ni, Co, Cd and Pb) have been analysed by (ICP–AES) after a partial acid extraction. The content of analysed elements has been correlated to some soil parameters such as organic matter, pH, and granulometric fractions. Results of the statistical analyses have shown a large variety and complexity in some of these relationships. The main factors for variation in the heavy metal contents are both the soil type and the lithology. Gypsisols and Calcisols developed on sedimentary rocks have the lowest contents while Leptosols overlying metamorphic and igneous rocks have the highest contents. The spatial distribution of heavy metal contents shows a large variability with the highest contents in the mountain ranges (Iberian and Pyrenees) and the lowest in the plains of the central Ebro valley. 相似文献
12.
The present study deals with the application of analytical hierarchy process to prepare landslide hazard risk map of the Shivkhola Watershed applying remote sensing and geographic information system (GIS). Firstly, to integrate all the required thematic data layers and to prepare landslide susceptibility map, prioritised class rating value and prioritised factor rating value were obtained by developing couple-comparing matrix with a reasonable consistency and with the help of MATLAB software after Saaty. Three important risk factor/element maps, that is, weighted land use/land cover map, road contributing area map and settlement density map, were developed and their weighted linear combination was performed to prepare landslide risk exposure map. Then by integrating landslide susceptibility map and landslide risk exposure map, a classification was incorporated on ARC GIS Platform to prepare landslide hazard risk map. To evaluate the validity of the landslide hazard risk map, probability/chance of landslide hazard risk event has been estimated by means of frequency ratio between landslide hazard risk area (%) and number of risk events (%) for each landslide hazard risk class. Finally, an accuracy assessment was also made on ERDAS Imagine (8.5) which depicts that the classification accuracy of the landslide hazard risk map was 92.89 with overall Kappa statistics of 0.8929. 相似文献
13.
Pyroclastic materials dispersed in recent volcanic eruptions in Northern Patagonia were analysed in order to characterize the volcanic provenance by the geochemical fingerprint. The volcanic products studied were dispersed by eruptions of volcanoes Calbuco in 1961, Chaitén in 2008, and Cordón Caulle Volcanic Complex (CCVC) in 1960 and 2011. The geochemical characterization was based on the determination of 35 major and trace elements by Instrumental Neutron Activation Analysis, including geochemical tracer such as Rare Earth Elements (REE). The study of the pyroclastic products also included the morphological analysis by petrographic and scanning electron microscopy, and the mineralogical characterization by X-ray diffraction.Geochemical tracers determined in the glass fraction of the dispersed pyroclastic materials allowed a clear discrimination of the three volcanoes that gave origin to the tephras, the three of them with different evolution degree. Tephras from 1960 and 2011 CCVC eruptions showed the same geochemical signature. The geochemical parameters providing the differential characterization are the normalized REE and multi-element patterns, the Eu anomaly, the heavy to light and medium to light REE normalized ratios, and the Cs, Sc, Rb, Ta and Th concentrations. The bulk glassy fraction showed the same composition for each volcanic eruption in samples collected even in distant sites (from 100 to 220 km in Chaitén, 2008, and from 80 to 650 km in CCVC 2011), attesting to be the most reliable material for correlation purposes.According to the mineralogy, cristobalite was found in volcano Chaitén tephra as an indicator of such origin. Arsenic, an element of environmental interest, exhibited concentrations ranging from 6 to 16 μg g−1, with the highest values corresponding to Puyehue–Cordón Caulle and Chaitén products. 相似文献
14.
《International Geology Review》2012,54(1):84-115
We present new geochemical data (major- and trace-elements, as well as Sr and Nd isotopic compositions) of volcanic rocks erupted from Popocatépetl volcano during the volcanic event from December 2000 to January 2001. These data along with an exhaustive compilation of geochemical and Sr, Nd, and Pb isotope data reported for Popocatépetl rocks and nearby volcanic areas are used to examine the origin and geochemical evolution of the magmas in the central Mexican volcanic belt (CMVB). During this period of volcanic eruptions Popocatépetl produced ash columns as high as 7 km. Pyroclastic flows and lahars were observed after the completion of the activity. Samples of banded pumice and a bomb fragment transported by the lahar were chemically analysed for this work. Rocks show an andesitic composition with 58.5–61.7 wt.% SiO2 and 5.9–4.0 wt.% MgO. Contents of large ion lithophile elements (LILE), rare-earth elements (REE) and Zr are nearly constant through the compositional range. No significant Eu anomaly is present, but the samples show Nb-anomaly relative to LILE and high-field strength elements (HFSE). Nd- and Sr-isotopic compositions of these samples range from 143Nd/144Nd = 0.51291 to 0.51287 and 87Sr/86Sr = 0.70399 to 0.70422. Comparison of Popocatépetl products with volcanic rocks from the nearby areas shows that the magmas in CMVB were generated in a heterogeneously veined-mantle source enriched in LILE, HFSE, and REE. Additional crustal assimilation as well as fractional crystallization could account for the great chemical variability of rocks in the CMVB. Statistical comparison of the geochemical compositions of the volcanic products ejected from 1994 to 2000 to those ejected during the 2001 event shows that most geochemical parameters (major- and trace-elements, normative minerals, Sr and Nd isotopic composition, as well some elemental ratios) present no statistically significant differences. Statistically significant differences in the mean only were computed for the major-elements SiO2, FeO, MgO, CaO, and K2O, as well as for the rare-earth elements Nd, Sm, Eu, Gd, Dy, Ho, Tm, and Yb. 相似文献
15.
Uwe Hoffmann Christoph Breitkreuz Karel Breiter Sergey Sergeev Klaus Stanek Marion Tichomirowa 《International Journal of Earth Sciences》2013,102(1):73-99
Nine SHRIMP U/Pb ages on zircon and two Pb/Pb single zircon ages have been determined from Late Paleozoic volcanic rocks from Saxony and northern Bohemia. Samples came from the Teplice-Altenberg Volcanic Complex, the Meissen Volcanic Complex, the Chemnitz Basin, the Döhlen Basin, the Brandov-Olbernhau Basin, and the North Saxon Volcanic Complex. The Teplice-Altenberg Volcanic Complex is subdivided into an early Namurian phase (Mikulov Ignimbrite, 326.8 ± 4.3 Ma), thus older than assumed by previous studies, and a late caldera-forming phase (Teplice Ignimbrite, 308.8 ± 4.9 Ma). The age of the latter, however, is not well constrained due to a large population of inherited zircon and possible hydrothermal overprint. The Leutewitz Ignimbrite, product of an early explosive volcanic episode of the Meissen Volcanic Complex yielded an age of 302.9 ± 2.5 Ma (Stephanian A). Volcanic rocks intercalated in the Brandov-Olbernhau Basin (BOB, 302 ± 2.8 Ma), Chemnitz Basin (CB, 296.6 ± 3.0 Ma), Döhlen Basin (DB, 296 ± 3.0 Ma), and the North Saxon Volcanic Complex (NSVC, c. 300–290 Ma) yielded well-constrained Stephanian to Sakmarian ages. The largest Late Paleozoic ignimbrite-forming eruption in Central Europe, the Rochlitz Ignimbrite, has a well-defined middle Asselian age of 294.4 ± 1.8 Ma. Ages of palingenic zircon revealed that the Namurian-Westphalian magmatism assimilated larger amounts of crystalline basement that formed during previous Paleozoic geodynamic phases. The Precambrian inherited ages support the chronostratigraphic structure assumed for the Saxo-Thuringian Zone of the Variscan Orogen. The present results help to improve the chronostratigraphic allocation of the Late Paleozoic volcanic zones in Central Europe. At the same time, the radiometric ages have implications for the interbasinal correlation and for the geodynamic evolution of the Variscan Orogeny. 相似文献
16.
The article draws a comparison between different ways of landslide geometry interpretation in the scope of the statistical
landslide hazard and risk assessment processing. The landslides are included as a major input variable, which are compared
with all of the input parametric factors. Based on the above comparison the input data are classified and the final map of
landslide susceptibility is constructed. Methodology of multivariate conditional analysis has been used for the construction
of final maps. Unique condition units was developed by combination of geological map (lithological units) and slope angle
map. Lithological units were derived from geological map and subsequently reclassified into 22 classes. Slope angle map was
calculated from digital elevation model (contour map at a scale 1:10,000) and reclassified into nine classes. As a case study,
a wide area of Horná Súča (western Slovakia) strongly affected by landsliding (predominantly made of Flysch) has been chosen.
Spatial data in the form of parametric maps, as well as final statistical data set were processed in GIS GRASS environment.
Four different approaches are used for landslides interpretation: (1) area of landslide body including accumulation zone,
(2) area of depletion zone, (3) lines of elongated main scarps, (4) lines of main scarp upper edge. For each approach, a zoning
map of landslide susceptibility was compiled and these were compared with each other. Depending on the interpretation approach,
the final susceptibility zones are markedly different (in tens of percent). 相似文献
17.
The aim of this study is to quantify the crustal differentiation processes and sources responsible for the origin of basaltic
to dacitic volcanic rocks present on Cordón El Guadal in the Tatara-San Pedro Complex (TSPC). This suite is important for
understanding the origin of evolved magmas in the southern Andes because it exhibits the widest compositional range of any
unconformity-bound sequence of lavas in the TSPC. Major element, trace element, and Sr-isotopic data for the Guadal volcanic
rocks provide evidence for complex crustal magmatic histories involving up to six differentiation mechanisms. The petrogenetic
processes for andesitic and dacitic lavas containing undercooled inclusions of basaltic andesitic and andesitic magma include:
(1) assimilation of garnet-bearing, possibly mafic lower continental crust by primary mantle-derived basaltic magmas; (2)
fractionation of olivine + clinopyroxene + Ca-rich plagioclase + Fe-oxides in present non-modal proportions from basaltic
magmas at ∼4–8 kbar to produce high-Al basalt and basaltic andesitic magmas; (3) vapor-undersaturated (i.e., P
H2O<P
TOTAL) partial melting of gabbroic crustal rocks at ∼3–7 kbar to produce dacitic magmas; (4) crystallization of plagioclase-rich
phenocryst assemblages from dacitic magmas in shallow reservoirs; (5) intrusion of basaltic andesitic magmas into shallow
reservoirs containing crystal-rich dacitic magmas and subsequent mixing to produce hybrid basaltic andesitic and andesitic
magmas; and (6)␣formation and disaggregation of undercooled basaltic andesitic and andesitic inclusions during eruption from
shallow chambers to form commingled, mafic inclusion-bearing andesitic and dacitic lavas flows. Collectively, the geochemical
and petrographic features of the Guadal volcanic rocks are interpreted to reflect the development of shallow silicic reservoirs
within a region characterized by high crustal temperatures due to focused basaltic activity and high magma supply rates. On
the periphery of the silicic system where magma supply rates and crustal temperatures were lower, cooling and crystallization
were more important than bulk crustal melting or assimilation.
Received: 2 July 1997 / Accepted: 25 November 1997 相似文献
18.
E. Ruiz-Agudo B. Lubelli A. Sawdy R. van Hees C. Price C. Rodriguez-Navarro 《Environmental Earth Sciences》2011,63(7-8):1475-1486
San Jerónimo Monastery (Granada, Spain) was selected as a case study for the investigation of the effect of indoor environmental conditions on salt weathering and for on-site testing of a remediation treatment using crystallization inhibitors on account of the extreme salt damage affecting both the building stone, a biomicritic limestone, calcarenite and wall paintings. A methodology combining several analysis techniques, phenomenological observations, salt and moisture analysis, environmental monitoring and thermodynamic simulations, was adopted in order to study the salt damage problems affecting this building. Within the collected samples, the majority of salts were found to be magnesium sulphate in the form of either hexahydrite or epsomite, depending on the climate conditions, together with minor amounts of gypsum, nitrates and chlorides. Comparison of empirical observations with thermodynamic simulations of the salt mixture behaviour clearly showed that salt-induced damage events take place during the seasonal changes from spring to summer and winter to spring. An aqueous solution of an organic phosphonate, which in laboratory experiments was found to be an effective inhibitor of magnesium sulphate crystallization, was sprayed over a selected test area of unpainted stonework at the site. Preliminary results seem to indicate that after the application of the treatment both the amount of efflorescence and ongoing damage to the stone support is reduced. However, long-term monitoring of the future condition of the test area is needed to confirm whether indeed this treatment is appropriate and effective in reducing salt damage at this case study site. The outcome of this study extends beyond the particular problems at San Jerónimo Monastery, as it demonstrates a methodological approach for the study and evaluation of salt weathering problems affecting cultural heritage. 相似文献
19.
K. S. R. Murthy V. Subrahmanyam A. S. Subrahmanyam G. P. S. Murty K. V. L. N. S. Sarma 《Natural Hazards》2010,55(2):167-175
The South Indian (Peninsular) Shield which includes both the Eastern and Western Continental Margins of India is not as stable
as it was originally thought of. The importance of intraplate seismicity within this Shield has recently been realized with
some devastating earthquakes that occurred during the last few decades. It is also significant to note that most of the Precambrian
tectonic lineaments in this Shield are oriented in either a NW–SE or W–E direction, joining the eastern offshore. In contrast,
the western margin has an elevated coast, associated with a linear coast parallel escarpment, particularly on the southern
side, superimposed by Deccan Trap volcanics on the northern side. The fault reactivation and the associated seismicity are
hence more predominant on the east coast. Recent geophysical studies delineated land–ocean tectonics (LOTs) over the eastern
margin, in some cases associated with moderate seismicity as a result of the compressional stress acting on the Indian Plate.
Though the Eastern Continental Margin of India (ECMI) is considered as a passive margin, coastal seismicity due to the reactivation
of the pre-existing tectonic lineaments extending offshore represents a potential natural hazard. In this context, the ECMI
appears to be much more vulnerable compared to its counterpart on the west. 相似文献
20.
Tomás Martín-Crespo Cristina De Ignacio-San José David Gómez-Ortiz Silvia Martín-Velázquez Javier Lillo-Ramos 《Environmental Earth Sciences》2010,59(6):1275-1284
Mining of massive (Cu, Pb and Zn) sulphide bodies in the Iberian Pyrite Belt (SW Spain) has generated a great number of abandoned
waste deposits such as mine ponds. These represent large accumulations of reactive minerals and subsequently, emission sources
of trace elements and formation of acid drainage. Even if they have been restored, monitoring studies are required to evaluate
the corrective effects and how they may change over time. This work presents the results of a monitoring study carried out
at Mine Concepción mine pond, based on mineralogical (XRD), geochemical (INAA, X-ray fluorescence, ICP-MS) and geophysical
(electrical resistivity tomography) techniques. In it, a series of relevant parameters have been well delimited, such as the
infilling thickness and its variation and, the position, geometry and absence of water leakages through the base of the mine
pond. Additionally, the existence of an internal, remnant flow of acid waters that tends to come out through the pond dyke
has been identified. Chemistry of these waters indicates that oxidation processes affecting the Mina Concepción mine tailings
are generating acid drainage waters which could potentially release substantial amounts of trace elements to the river Odiel.
Thus, giving that not complete sealing is accomplished by the restoration capping and rainfall water infiltrates into the
pond materials, at least the sealing of the dyke through which leakages occur should be revised. 相似文献