首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Worldwide, earthquakes and related disasters have persistently had severe negative impacts on human livelihoods and have caused widespread socioeconomic and environmental damage. The severity of these disasters has prompted recognition of the need for comprehensive and effective disaster and emergency management (DEM) efforts, which are required to plan, respond to and develop risk mitigation strategies. In this regard, recently developed methods, known as multi-criteria decision analysis (MCDA), have been widely used in DEM domains by emergency managers to greatly improve the quality of the decision-making process, making it more participatory, explicit, rational and efficient. In this study, MCDA techniques of the Analytical Hierarchical Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), integrated with GIS, were used to produce earthquake hazard and risk maps for earthquake disaster monitoring and analysis for a case study region of Küçükçekmece in Istanbul, Turkey. The five main criteria that have the strongest influence on the impact of earthquakes on the study region were determined: topography, distance to epicentre, soil classification, liquefaction and fault/focal mechanism. AHP was used to determine the weights of these parameters, which were also used as input into the TOPSIS method and GIS (ESRI ArcGIS) for simulating these outputs to produce earthquake hazard maps. The resulting earthquake hazard maps created by both the AHP and TOPSIS models were compared, showing high correlation and compatibility. To estimate the elements at risk, population and building data were used with the AHP and TOPSIS hazard maps for potential loss assessment; thus, we demonstrated the potential of integrating GIS with AHP and TOPSIS in generating hazard maps for effective earthquake disaster and risk management.  相似文献   

2.
Both seismic and tsunami hazards design criteria are essential input to the rehabilitation and long-term development of city of Banda Aceh Post Sumatra 2004 (M w=9.3) disaster. A case study to develop design criteria for future disaster mitigation of the area is presented. The pilot study consists of probabilistic seismic and tsunami hazard analysis. Results of the probabilistic seismic hazard analysis indicates that peak ground acceleration at baserock for 10 and 2% probability of exceedance in 50 years is 0.3 and 0.55 g, respectively. The analysis also provides spectral values at short (T=0.2 s) and long period (T=1.0 s) motions. Some non-linear time-domain earthquake response analyses for soft, medium, and hard site-class were conducted to recommend design response spectra for each site-class. In addition, tsunami inundation maps generated from probabilistic tsunami hazard analysis were developed through tsunami wave propagation analysis and run-up numerical modeling associated with its probability of tsunamigenic earthquake source potential. Both the seismic and tsunami hazard curve and design criteria are recommended as contribution of this study for design criteria, as part of the disaster mitigation effort in the development process of the city. The methodology developed herein could be applied to other seismic and tsunami disaster potential areas.  相似文献   

3.
地震是典型的突发性地质灾害,破坏性极大.本文首先对1996~2005年这10年间的大陆地震发生情况以及地震灾害情况进行了统计分析,列举了直接经济损失超过1亿元的重大地震灾害,指出大陆防震减灾要有地域特点;然后提出了一些防震减灾建议,如注意防范地震引发的次生灾害,加强建筑抗震设计和加固,推广使用现代信息技术,积极开展防震减灾能力评价,通过合理的城市规划和土地利用规划来减轻地震灾害.  相似文献   

4.
Bakir  P.G. 《Natural Hazards》2004,33(3):405-425
While laboratory and analytical studies can provide valuable information about earthquake hazard mitigation, the most effective educator is the impact of a full-scale earthquake on a full-scale city. The recent earthquakes in Turkey showed that the governmental as well as individual attitudes towards earthquakes did not represent proportionate responses to the risk levels concerned. Turkey had weaknesses in preparing, planning, mitigating and responding to disasters in spite of the known seismic vulnerability of the country. Many steps have been taken after 1999 earthquakes in Turkey, however, the preparations largely concentrate on the response and recovery phases and a fundamental step to reform the current disaster management system and steps to rehabilitate the vulnerable building stock has not been undertaken until today. This would involve changing the present laws and regulations and de-centralising the disaster management system. The aim of this paper is to propose a national mitigation strategy for Turkey for a time-frame of 10 years. The model proposed is a very comprehensive model for earthquake risk reduction in Turkey and within this context, the legislative and technical aspects of mitigation will be discussed in detail. Strategies for mitigating and retrofitting the existing building stock will also be proposed.  相似文献   

5.
In urban area, popular and property is accumulated in a small area, potential risk of earthquake disaster in urban community is great. Pre-disaster emergency evacuation zoning has become a significant topic of disaster prevention and mitigation research. Based on the present layout of evacuation facilities and shelters as well as the evacuation demands in urban communities, a systematical methodology for occupant evacuation against earthquakes on community scale was developed by employing spatial analysis techniques of Geographical Information System (GIS). The methodology included the following aspects: the distribution analysis of emergency evacuation demands, the calculation of shelter space accessibility, and the optimization of evacuation destinations. This methodology was applied to Lujiazui Street in Pudong, a new district located in Shanghai, China. It was found that the proposed methodology could be used to formulate pre-event planning for earthquake disaster prevention and mitigation on a community scale, especially for organizing a rapid and smooth evacuation and optimizing the location allocation of shelters.  相似文献   

6.
The work presented in this paper is an outgrowth of a multi—year study at the Wharton School of the University of Pennsylvania on Managing Catastrophic Risks. We focus on the role of homeowners and insurance companies in managing the hazard from earthquake risk. Specifically, we consider alternative earthquake disaster management strategies for a typical homeowner and a small insurance company in the Oakland, California region. These strategies involve the adoption of mitigation measures and the purchase of earthquake insurance by the homeowner and the purchase of an indemnity contract (e.g., excess—of—loss reinsurance) by the insurer.

We focus on how uncertainty impacts these disaster management strategies. Specifically, we illustrate the impact of structural mitigation and risk—transfer mechanisms on the insurer's performance when there is uncertainty in the company's risk profile. This risk profile is captured through a loss exceedance probability (EP) curve, representing the probability that a certain level of monetary loss will be exceeded on an annual basis. Parameters considered in the sensitivity analysis that will shift the loss EP curve include: earthquake recurrence, ground motion attenuation, soil mapping schemes, and the exposure and vulnerability of the residential structures. The paper demonstrates how uncertainty in these parameters impacts the cost effectiveness of mitigation and reinsurance on the insurer's profitability and chances of insolvency, as well as the number of policies the insurer is willing to issue.  相似文献   

7.
Earthquake prediction is currently the most crucial task required for the probability, hazard, risk mapping, and mitigation purposes. Earthquake prediction attracts the researchers' attention from both academia and industries. Traditionally, the risk assessment approaches have used various traditional and machine learning models. However, deep learning techniques have been rarely tested for earthquake probability mapping. Therefore, this study develops a convolutional neural network (CNN) model for earthquake probability assessment in NE India. Then conducts vulnerability using analytical hierarchy process (AHP), Venn's intersection theory for hazard, and integrated model for risk mapping. A prediction of classification task was performed in which the model predicts magnitudes more than 4 Mw that considers nine indicators. Prediction classification results and intensity variation were then used for probability and hazard mapping, respectively. Finally, earthquake risk map was produced by multiplying hazard, vulnerability, and coping capacity. The vulnerability was prepared by using six vulnerable factors, and the coping capacity was estimated by using the number of hospitals and associated variables, including budget available for disaster management. The CNN model for a probability distribution is a robust technique that provides good accuracy. Results show that CNN is superior to the other algorithms, which completed the classification prediction task with an accuracy of 0.94, precision of 0.98, recall of 0.85, and F1 score of 0.91. These indicators were used for probability mapping, and the total area of hazard (21,412.94 km2), vulnerability (480.98 km2), and risk (34,586.10 km2) was estimated.  相似文献   

8.
Imposa  S.  Grassi  S.  Fazio  F.  Rannisi  G.  Cino  P. 《Natural Hazards》2016,86(2):327-343

Almost the entire Italian territory is prone to hydrogeological risk mostly due to landslides and flooding. The high frequency of extreme weather events in areas prone to geological–hydraulic hazards contributes significantly to increasing the risk for cities and its infrastructure, but above all for the people living there. Therefore, it is vital to research into rapid monitoring techniques to be applied following a disaster such as a landslide, so that important background information, useful for planning interventions aimed at hazard mitigation, can be obtained. This work seeks to identify the depth of the sliding surface of a landslide affecting the municipal area of Tripi (village in the Messina province, Sicily), through two geophysical field surveys (MASW and HVSR) undertaken in the same area at an interval of about 5 years. The MASW surveys have enabled to reconstruct the distribution of shear wave velocity with depth. The HVSR surveys have provided information on resonant frequency and directional effects. The data integration obtained by the two methods allowed to reconstruct impedance contrast sections indicating the depth of the sliding surface of the landslide.

  相似文献   

9.
Jin  Ju-Liang  Fu  Juan  Wei  Yi-Ming  Jiang  Shang-Ming  Zhou  Yu-Liang  Liu  Li  Wang  You-Zhen  Wu  Cheng-Guo 《Natural Hazards》2014,75(2):155-178

Regional waterlog disaster integrated risk system, affected by natural, social, and economic systems and its combination relationship, is a complex system with certain structure and function. Waterlog disaster integrated risk results from the combined effects of regional environment, impact factors, vulnerability, and disaster-reducing capability of flood hazards in the drainage area. Waterlog disaster integrated risk system can be divided into four subsystems of hazard, vulnerability, disaster-reducing capability, and disaster conditions. Evaluation indexes are selected using fuzzy analytic hierarchy process method, and the evaluation index system is established. Then, the waterlog disaster integrated risk evaluation model is proposed based on set pair analysis method. Taking Huaihe river in Anhui Province of China as the typical area in this study, the results show that the proposed approach is able to obtain the spatial distribution characteristics of waterlog hazard, vulnerability, mitigation capabilities, and integrated disaster risk within the study area. From the quantitative point of view, identification of the areas with high flood risk can provide a scientific basis for the flood management and technical support.

  相似文献   

10.
Earthquake loss estimation of residential buildings in Pakistan   总被引:1,自引:0,他引:1  
Pakistan is an earthquake-prone region due to its tectonic setting resulting in high hazard with moderate-to-strong ground motions and vulnerability of structures and infrastructures, leading to the loss of lives and livelihood, property damage and economic losses. Earthquake-related disaster in Pakistan is a regular and serious threat to the community; however, the country lack tools for earthquake risk reduction through early warning (pre-earthquake planning), rapid response (prompt response at locations of high risk) and pre-financing earthquake risk (property insurance against disaster). This paper presents models for physical damageability assessment and socioeconomic loss estimation of structures in Pakistan for earthquake-induced ground motions, derived using state-of-the-art earthquake loss estimation methodologies. The methodologies are being calibrated with the site-specific materials and structures response, whereas the derived models are tested and validated against recent observed earthquakes in the region. The models can be used to develop damage scenario for earthquakes (assess damaged and collapsed structures, casualties and homeless) and estimate economic losses, i.e., cost of repair and reconstruction (for a single earthquake event as well as all possible earthquakes). The models can provide help on policy- and decision-making toward earthquake risk mitigation and disaster risk reduction in Pakistan.  相似文献   

11.
层次分析法在单沟泥石流危险度评价中的应用   总被引:28,自引:0,他引:28  
单沟泥石流危险度评价是泥石流危险性评价中的重要内容,对实现山区的安全减灾有着重要意义。文章从系统理论出发,运用层次分析法(AHP)对影响泥石流沟谷危险度的相关因子进行分析,构建单沟泥石流危险度评价的层次指标系统,并对各参与评价因子的权重作了计算,建立起单沟泥石流危险度评价模型。通过对泥石流沟的实例验证,评价结果与实际情况有较好的一致性。该方法将定量与定性相结合,能很好地解决泥石流危险度综合评价问题,对提高泥石流危险度评价的可靠性、准确性及客观性有一定的实践意义。  相似文献   

12.
地震造成斜坡失稳是其引起的最为显著的次生灾害,在小震频发,大震多发的现实背景下,开展不同等级地震作用条件下斜坡危险性评价对区域防灾减灾、地质灾害风险管控及国土空间规划的现实意义日渐凸显。基于拟静力法,根据斜坡所处场地类别和不同超越概率水平地震作用,对其地震动峰值加速度进行调整,确定斜坡不同等级地震作用下的综合水平地震系数,计算不同等级地震作用引起的作用于斜坡重心处的水平和竖向惯性力,以极限平衡法为理论基础,计算不同等级地震作用下斜坡稳定性系数,结合危险性指数法,计算不同等级地震作用下斜坡失稳概率和危险性指数,据此对斜坡不同等级地震作用下的危险性进行划分。结果表明斜坡稳定性系数随地震作用的增强逐渐减小,斜坡失稳概率随地震作用的增强逐渐增大,斜坡危险性指数随地震作用的增强逐渐增大,斜坡危险性亦随地震作用的增强逐渐增大。  相似文献   

13.
A significant proportion of the urban areas in Turkey is subject to high seismic risk. An important step for seismic risk mitigation is to define the hazard and damage after an earthquake. This paper proposes an integrated seismic hazard assessment and disaster management processes for Turkey. The proposed methodology utilizes information technologies in its seismic assessment component that provides fast results for assessment. First, image process methodology by using satellite images was implemented in the seismic assessment process for fast evaluation right after an earthquake. Second, the seismic assessment process was integrated with disaster management process. As a result, through integrated seismic hazard evaluation and disaster management procedure, an effective, fast and dependable estimation of loss for Turkey was planned.  相似文献   

14.
Flood risk evaluation and prediction represents an essential analytic step to coherently link flood control and disaster mitigation. The paper established a hybrid evaluation model based on fuzzy analytic hierarchy process (AHP) and triangular fuzzy number. It comprises flood risk evaluation and prediction to obtain risk factors ranking and comprehensive flood risk prediction, and then analyzed flood risk response measures. A case study is proposed entailing a flood risk evaluation and prediction in the Lower Yangtze River region. The evaluation results showed that the proposed evaluation and prediction model was capable of adequately representing the actual setting. In addition, a comparison with the previously described AHP and trapezoidal fuzzy AHP, and experimental results are encouraging, which fully demonstrates the effectiveness and superiority of the proposed model.  相似文献   

15.
Industrial sites are key factors in urban and regional land use planning. Therefore, determining the location of industrial areas is a critical and complex process for development and success. Industrial site selection aims in identifying the most suitable sites for industry creation, considering a set of influential criteria. Therefore, site selection generally and industrial site selection specifically can be categorised as a multi-criteria decision-making (MCDM) problem that requires detailed evaluation of various dimensions. This study developed a set of clusters containing 10 selection criteria for industrial site selection in Isfahan metropolitan area, Iran. The relationships between the criteria and clusters were modelled and analysed using analytical hierarchy process (AHP) and analytical network process (ANP). AHP and ANP agree in finding distance to water bodies and distance to other industries as the most and least important selection criteria. Four patches have been identified as suitable alternatives for industrial construction. While AHP found Borkhar Patch 1 as the most appropriate alternative, ANP demonstrated the superiority of Ardestan Patch over others. Conducting a sensitivity analysis for the models confirmed both models robustness in industrial site selection decisions.  相似文献   

16.
Catastrophic natural hazards,such as earthquake,pose serious threats to properties and human lives in urban areas.Therefore,earthquake risk assessment(ERA)is indispensable in disaster management.ERA is an integration of the extent of probability and vulnerability of assets.This study develops an integrated model by using the artificial neural network–analytic hierarchy process(ANN–AHP)model for constructing the ERA map.The aim of the study is to quantify urban population risk that may be caused by impending earthquakes.The model is applied to the city of Banda Aceh in Indonesia,a seismically active zone of Aceh province frequently affected by devastating earthquakes.ANN is used for probability mapping,whereas AHP is used to assess urban vulnerability after the hazard map is created with the aid of earthquake intensity variation thematic layering.The risk map is subsequently created by combining the probability,hazard,and vulnerability maps.Then,the risk levels of various zones are obtained.The validation process reveals that the proposed model can map the earthquake probability based on historical events with an accuracy of 84%.Furthermore,results show that the central and southeastern regions of the city have moderate to very high risk classifications,whereas the other parts of the city fall under low to very low earthquake risk classifications.The findings of this research are useful for government agencies and decision makers,particularly in estimating risk dimensions in urban areas and for the future studies to project the preparedness strategies for Banda Aceh.  相似文献   

17.

This paper reports on a quantitative estimation of the risk to residents at the toe of Mount Albino, a carbonatic relief covered by shallow deposits of pyroclastic soils, which threatens the municipality of Nocera Inferiore (southern Italy). The quantitative risk analysis (QRA) focuses on one type of mass transport phenomena typical for the context at hand, namely the hyperconcentrated flows. The methodological approach includes three main steps: hazard analysis, consequence analysis and risk estimation. Based on historical incident data, the hazard analysis makes use of a high-resolution digital terrain model and advanced models that incorporate relevant geological and geotechnical input data collected via in situ investigations and laboratory tests. The consequence analysis takes into account information on the exposed persons (age, gender) and their vulnerability. The estimated risk to life is calculated at the individual level (risk to the average and most exposed person). The reported procedure is one of the first QRA’s applications to instabilities which potentially affect natural slopes in Italy, and it was successfully used as technical basis for a public participatory process in Nocera Inferiore, designed and developed to support decisions about risk mitigation measures.

  相似文献   

18.
地质灾害风险性评价对当地防灾减灾具有指导意义。本文以澜沧江重大水电工程扰动灾害为例,在遥感解译与野外实际调查的基础上,选取高程、坡度、坡向、植被归一化指数、距库区距离、工程地质岩组、断裂带密度、年均降雨量、地震峰值加速度9个因素,并基于加权信息量模型进行危险性评价,然后以人口密度、水电站、道路、土地覆盖类型和GDP为承灾体进行易损性评价,最后将危险性和易损性进行信息融合,构建地质灾害风险性矩阵,完成地质灾害风险性评价。评价结果表明:极高和高风险区主要分布在乌弄龙及其上游水电站附近,以及下游库区两岸人类活动相对密集区域,中风险区主要分布在乌弄龙上游库区两岸以及乌弄龙—托巴水电站全域,在下游零散分布;低风险区主要分布在中游高山峡谷段。本次研究较为准确地评估了地质灾害风险性,可为澜沧江流域扰动地质灾害风险规划提供科学依据和技术指导。  相似文献   

19.
Multi-criteria decision-making methods support decision makers in all stages of the decision-making process by providing useful data. However, criteria are not always certain as uncertainty is a feature of the real world. MCDM methods under uncertainty and fuzzy systems are accepted as suitable techniques in conflicting problems that cannot be represented by numerical values, in particular in energy analysis and planning. In this paper, a modified TOPSIS method for multi-criteria group decision-making with qualitative linguistic labels is proposed. This method addresses uncertainty considering different levels of precision. Each decision maker’s judgment on the performance of alternatives with respect to each criterion is expressed by qualitative linguistic labels. The new method takes into account linguistic data provided by the decision makers without any previous aggregation. Decision maker judgments are incorporated into the proposed method to generate a complete ranking of alternatives. An application in energy planning is presented as an illustrative case example in which energy policy alternatives are ranked. Seven energy alternatives under nine criteria were evaluated according to the opinion of three environmental and energy experts. The weights of the criteria are determined by fuzzy AHP, and the alternatives are ranked using qualitative TOPSIS. The proposed approach is compared with a modified fuzzy TOPSIS method, showing the advantages of the proposed approach when dealing with linguistic assessments to model uncertainty and imprecision. Although the new approach requires less cognitive effort to decision makers, it yields similar results.  相似文献   

20.
One of the biggest impacts of a disaster is the effect it can have on community and regional housing and the ability of people, communities and regions to recover from the damages. Policy decisions involving investments in loss reduction measures and response and recovery are best informed by the integration of scientific and socioeconomic information. Natural scientists develop hazard scenarios for stakeholders and emergency officials to assess the impacts of a particular disaster outcome. Social scientists have found that housing losses and recovery affect individuals in lower socioeconomic status disproportionately. By combining socioeconomic status data from the US Census with an earthquake scenario for southern California, an event-driven conditional distribution of earthquake risk is used to prioritize investment decisions for earthquake hazard mitigation. Simulation of the damages in the scenario showed a statistically significant risk concentration in census tracts with large numbers of residents of lower socioeconomic status living in multi-family housing and mobile homes. An application of the approach is demonstrated in Los Angeles County as a decision criterion in a building retrofit program. The earthquake scenario was used to evaluate the economic benefits of a program for voluntary mitigation and a combined program of voluntary mitigation and regulated mitigation based on socioeconomic status (mandate requiring mitigation in census tracts meeting specific damage and income thresholds). Although the analysis is a hypothetical scenario based on a simulation of a great earthquake, the results and potential outcomes show that a regulated program with a socioeconomic decision criterion would have significant benefits to vulnerable populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号