首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flood is among the deadliest disasters in India, and the frequency of floods and extreme precipitation events is projected to increase under the warming climate. The frequency of floods in India varies geographically as some regions are more prone to floods than the others. The Kerala flood of 2018 caused enormous economic damage, affected millions of people, and resulted in the death of more than 400 people. Here we provide a hydroclimatological perspective on the Kerala flood of 2018. Using the observations and model simulations from the Variable Infiltration Capacity (VIC) model, we show that the 2018 extreme precipitation and runoff conditions that caused flooding were unprecedented in the record of the past 66 years (1951–2017). Our results show that mean monsoon precipitation has significantly declined while air temperature has significantly increased during 1951–2017 in Kerala. The drying and warming trends during the monsoon season resulted in a declined total runoff in large part of the state in the last 66 years. Apart from the mean hydroclimatic conditions, extreme precipitation, and extreme total runoff have also declined from 1951 to 2017. However, 1 and 2-day extreme precipitation and extreme runoff conditions in August 2018 exceeded substantially from the long-term 95th percentiles recorded during 1951–2017. Since there is no increase in mean and extreme precipitation in Kerala over the last six decades, the extreme event during August 2018 is likely to be driven by anomalous atmospheric conditions due to climate variability rather anthropogenic climate warming. The severity of the Kerala flood of 2018 and the damage caused might be affected by several factors including land use/land cover change, antecedent hydrologic conditions, reservoir storage and operations, encroachment of flood plains, and other natural factors. The impacts of key drivers (anthropogenic and natural) on flood severity need to be established to improve our understanding of floods and associated damage.  相似文献   

2.
The purpose of this study was to evaluate the effects of climate change on the drought and flood risks of a multipurpose dam. To achieve this, A2 climate change scenarios of RegCM3 were collected about Chungju Dam in Korea. To analyze drought risks, weather data obtained by the statistical downscaling method were entered to produce runoff series by runoff modeling and water balance was analyzed based on water use scenarios to review changes in the storage volume under climate change. To analyze flood risks, changes in water levels of the dam in future flood seasons were reviewed based on the current dam operation method. The results of the review indicated that both the drought and the flood risks of the dam would increase in the future. The reason was considered to be the movement of the flood season’s runoff characteristics from July and August to August and September because of climate change. Therefore, for climate change adaptation planning, not only quantitative changes in hydrologic values but also changes in temporal characteristics should be considered and given importance.  相似文献   

3.
Typhoon-induced extreme storm runoffs often cause flood hazards. In this study, a hydrological model (HEC-HMS) was applied to Shihmen watershed located in Taiwan. Three typhoon-induced storm events, with return period ranging from 1 to 90 years, were used in case studies to characterize storm runoff. With a 5-year storm for model calibration, model parameters were carefully calibrated through the comparison between model simulated and observed flows at a stream gage station. The calibrated model was then verified for a 90-year storm and a 1-year storm event. Results indicate that the calibrated and verified HEC-HMS hydrological model is capable of providing satisfactory predictions of the typhoon-induced extreme storm runoff to support reservoir operation and flood hazard mitigation. Based on model simulations, typhoon-induced water table increases for different initial water volumes at Shihmen Reservoir was derived by adding storm-runoff volume to the reservoir’s initial elevation-volume rating curve. Water tables above the top elevation of the dam in the reservoir indicate the need for immediate water releases to avoid the risk of overflow over the dam.  相似文献   

4.
广西靖西大龙潭水库枢纽,为浆砌石重力坝,坝轴线长249 工程于1963年竣工蓄水,同年坝基大量漏水,库内出现多处漏水漩涡,水从坝下穿流而过在下游涌出,当水库泄空后,发现库内有岩溶塌陷(落水洞)多处.以往采用常规的勘探方法仅能了解单个钻孔竖直方向的地质情况,不利于查清坝基横向连续发育的破碎带和溶洞空间分布.孔间电磁波CT探测技术与钻探相结合,正好可以弥补这方面的不足.孔间电磁波CT探测在大龙潭水库坝基的岩溶探测结果说明,这种方法可行有效,溶洞和破碎带探测结果还经过灌浆钻孔的验证.  相似文献   

5.
人类活动和气候变化显著地改变了河川径流及洪水的时空分配过程,直接影响下游断面的设计洪水。本文综述水库对下游水文情势的影响,提出梯级水库运行期设计洪水理论方法和研究内容;重点探讨非一致性洪水频率分析和基于Copula函数的最可能地区洪水组成法,比较各种方法的实用性;推荐采用运行期设计洪水及汛控水位指导水库调度运行,建议进一步加强水库运行期设计洪水计算理论和方法研究。  相似文献   

6.
人类活动和气候变化显著地改变了河川径流及洪水的时空分配过程,直接影响下游断面的设计洪水。本文综述水库对下游水文情势的影响,提出梯级水库运行期设计洪水理论方法和研究内容;重点探讨非一致性洪水频率分析和基于Copula函数的最可能地区洪水组成法,比较各种方法的实用性;推荐采用运行期设计洪水及汛控水位指导水库调度运行,建议进一步加强水库运行期设计洪水计算理论和方法研究。  相似文献   

7.
As streamflow is non-stationary due to climate change and human activities, adapting reservoir operation in the changing environment is of significant importance. Specifically, the flood limited water level (FLWL) needs to be re-established to ensure flood safety when the reservoir inflow is altered. The aims of this study are: (1) to clarify the relationship between the FLWL and streamflow when statistical parameters of the flood peak and volume vary through time and (2) to re-establish the FLWL when the reservoir inflow changes under the non-stationary condition. The adaptive FLWL is derived based on flood routing of non-stationary design floods, and the flood risk probability is then estimated. With China’s Three Gorges Reservoir (TGR) as a case study, the changing pattern of FLWL is quantified when statistical parameters (i.e., mean, \( C_{\text{V}} \) and \( C_{\text{S}} \)) of design floods have a linear temporal trend. The results indicate that the FLWL is sensitive with design floods, i.e., (1) means of design flood peak, 3-day volume, 7-day volume, 15-day volume and 30-day volume yearly decrease by 33 m3/s, 0.008, 0.021, 0.482 and 0.905 billion m3, respectively, (2) when the non-stationary design flood is used, the cumulative flood risk probability of the reservoir water level exceeding 175.0 m during 2011–2030 decreases from 1.98 to 1.82% with the conventional FLWL scheme and (3) the FLWL of the TGR could be re-set without increasing the flood risk probability, and the FLWL would increase about 4.7 m by 2030 in this non-stationary streamflow scenario. These findings are helpful to derive the FLWL in a changing environment.  相似文献   

8.
Risk assessment of earth dam overtopping and its application research   总被引:1,自引:0,他引:1  
The problem of dam safety is one of the most important research topics of water conservancy projects, and many researchers pay much attention to study the risk of earth dam overtopping. This paper synthesizes in the definition of risk the probabilities of dam failure and the corresponding losses, including the probability estimation, losses evaluation and criteria exploring risk approaches. Then, a comprehensive risk assessment system of dam flood overtopping is established, which is widely applicable. Gate failure, randomness of flood, initial water level and time-varying effects are incorporated in the failure probability model. Many complex factors are simplified in losses estimation. In addition, thresholds of various types of losses are proposed and are adapted to the national conditions. The methodology is applied to the Lianghekou hydropower station in China to illustrate the assessment process of flood overtopping risk and to evaluate its safe loophole with a view to the failure of spillway gates. Monte Carlo simulation and JC method programs are adopted to solve the model based on MATLAB tools and DELPHI. The results show that the losses pose significant impact on the risk assessment and should be considered in the assessment of risk. Probability calculation and loss estimation could be well combined with standards, providing a basis for risk management and decision-making.  相似文献   

9.
李平  黄跃飞  李兵 《水科学进展》2018,29(5):677-684
为研究梯级水库漫坝连溃的风险,并探索贝叶斯网络在水库连溃风险分析中的可行性,通过构建洪水作用下双库连溃的贝叶斯网络模型,并选取四川省大渡河上两相邻梯级水库进行分析,以推求水库漫(溃)坝概率及评估连溃风险。分析过程表明贝叶斯网络方法能直观、简便地分析多风险源共同作用下的水库群连溃风险问题。结果表明,两水库天然洪水漫坝条件概率的数量级均为10-6,洪水引发单库漫坝风险较小;正常蓄水位以上,上游水库溃坝洪水致下游水库漫坝条件概率超0.8,即上游水库溃坝导致水库连溃的风险很大。  相似文献   

10.
Floods account for more than half of the global hydrometeorological risks. Severe floods cause significant economic shocks and loss of lives, particularly for developing countries such as Jamaica. There is need for more information on the present and projected flood risks to justify macro-scale planning for climate change adaptation and facilitate the decision-making processes. In this study, a catalogue of 198 flood events occurring between 1678 and 2010 is compiled for Jamaica and used to examine the climatology, occurrence, trends, causes and duration of the island’s severe events. The annual flood risk is estimated to be a loss of life rate of 4 persons and estimated annual damage of USD96.3 million per annum in 2010 values and approximately 0.84 % of GDP per annum. Macro-scale models for flood risks (deaths and damages) are also developed using data from the flood catalogue and maximum precipitation at the town and parish level. The models examine the relationship between flood risks (death and damages) and extreme rainfall depths and intensities. Future climate risks of loss of lives and damages are predicted to increase 11 and 9 %, respectively, to 4.4 persons and USD105.2 million per annum.  相似文献   

11.
现有针对河湖水系连通伴生风险分析的方法或不具备物理过程模拟,或缺乏对风险随机性的探讨。以沂沭河水系连通工程为例,在水力学模型的基础上,考虑连通河网不同河流洪峰相关性,创建随机水情条件下河湖水系连通伴生风险分析模型。通过1 200组水情条件,对沂沭河水系上游进行洪水过程模拟,针对橡胶坝可能造成的洪峰叠加问题,提出不同洪水重现期下橡胶坝运行调度风险管控建议。结果表明:① 50年一遇与100年一遇洪水重现期条件下,均呈现出橡胶坝坝址处水位风险极高(概率P>0.8),流速风险较低(P < 0.3)的规律,且每当橡胶坝高度升高25%的设计坝高时,沂河与沭河坝前水位风险皆提高约70%,沭河坝址处流速风险降低约50%。②若在汛前塌坝下泄蓄水,人为洪峰的叠加会使沭河中下游河段产生极高风险。③通过划分水位、流速综合洪水风险安全域,洪水重现期50年一遇时,建议沂沭河橡胶坝在汛前调节至低于50%设计坝高,且控制沭河水深和流速分别在12 m和2.23 m/s以内,可以降低水位和流速风险至低风险(P < 0.4);洪水重现期100年一遇时,需将橡胶坝调至25%设计坝高以下,或者汛前尽早缓慢塌坝下泄蓄水,才能有效降低沂沭河水系防洪压力。  相似文献   

12.
This paper presents a preliminary study of time evolution and spatial accumulation of progressive failure for ancient landslide deposits in Xinhua slope. According to the geological response after impoundment, the Xinhua slope has shown the spatial accumulation of deformation, such as ground cracks in the rear edge, toe collapse, local shallow slides in intense rainfall, and progressive creep displacement. Approximately 2 years of monitoring was performed for the Xinhua slope with the assistance of the global navigation satellite system (GNSS), unmanned aerial vehicles (UAVs), and field investigations. The deformation process of a reservoir landslide is considered to be a comprehensive and complicated combination of geological influence from various adverse factors. Field investigations and monitoring indicate that the major serious influence after completion of dam construction comes from the initial large-scale impoundment, the fluctuation of water level, and the existence of a flood season. The creep/slip deformation of slope deposits is a result of integration with adverse hydraulic conditions, e.g., strong rainfall, intense currents and transient seepage flow inside the slope deposits, and activation by water level fluctuation, which can be verified from the twofold evident deformation in the flood season. For the reservoir with daily regulation ability, the occurrence of evident deformations in July highlights that the regulation plan for water level in the flood season is important for controlling the deformation of slope deposits, where the fluctuation of the water level is no more than 10 m in the operation period.  相似文献   

13.
The Dalongtan Reservoir Project is located in Jingxi County of Guangxi Autonomous Region; of which the masonry dam, is 249 meters long; it was completed and impounded in 1963. The dam foundation occurred a large number of water leakage; a number of vortex of leakage appeared; water flows under the dam into lower reaches. When emptying the reservoir, it is found that some karst collapses in the reservoir bottom. The past used conventional methods can only understand a single exploration drilling vertical direction of the geological conditions, not conducive to identify foundation for the development of horizontal and cave with broken spatial distribution. CT-between electromagnetic detection with drilling technology integration, it can make up for this deficiency. CT-between electromagnetic detection Dalongtan Reservoir dam foundation in the exploration of karst results show that this approach is feasible and effective.  相似文献   

14.
刘新有  李自顺  朱俊  尹炳槐 《水文》2013,33(3):61-64
受地形影响,西南山区水源以水库为主,由于大部分水库修建时间较早,在西南季风气候降水集中影响下,存在较大的溃坝风险。溃坝洪水突发性与破坏性极强,进行水库溃坝洪水计算及洪水演进分析,是在水库大坝发生突发性安全事故时科学应对的基础。结合西南山区实际,优选溃坝洪水计算与洪水演进模型,并以云南省昌宁县河西水库为例,分析确定相关参数,分析指出了西南山区水库溃坝形态以全溃为主,具有溃坝洪水量极大、洪水演进迅速的特点。研究不仅可为河西水库制定大坝安全管理应急预案提供技术支撑,也能为该地区水库溃坝洪水及其演进分析提供参考借鉴。  相似文献   

15.
目前在尾矿坝稳定性和溃坝模拟分析方面,对溃口位置及水砂的流动状态难以做出准确判断。将尾矿坝稳定性和溃坝模拟有机结合,采用FLAC3D计算正常水位、洪水位、漫顶水位三种工况下尾矿坝稳定性,并利用Rhino与Fluent建立尾矿库及下游精细地形,开展尾矿库溃坝水砂在不同时刻及不同地形下的流动状态研究分析。结果表明:(1)浸润线的埋深随尾矿库水位的升高而变小,由正常水位升高至洪水位时浸润线埋深下降5~8 m,漫顶水位时坝顶浸润线沿坡面向下运移约8 m;(2)库水位对剪切带及尾矿坝稳定性有显著影响,从正常水位到洪水位时,剪切带纵向上不断向坝体内部延伸,横向上不断向坝脚延伸,剪切应变率增大为5.78×10?5,尾矿坝稳定系数由1.80下降至1.32;(3)达到坝顶时剪切带急剧缩短,而剪切应变率进一步增大为3.32×10?4,尾矿坝稳定系数由1.32下降到1.18。溃坝水砂的流动状态受地形影响明显,在山谷中表现为范围减小、流速增大的汇聚流动,在平坦农田处表现为范围增大、流速减小的发散流动特点。  相似文献   

16.
《Comptes Rendus Geoscience》2008,340(9-10):644-650
The knowledge of past catastrophic events can improve flood risk mitigation policy, with a better awareness against risk. As such historical information is usually available in Europe for the past five centuries, historians are able to understand how past society dealt with flood risk, and hydrologists can include information on past floods into an adapted probabilistic framework. In France, Flood Risk Mitigation Maps are based either on the largest historical known flood event or on the 100-year flood event if it is greater. Two actions can be suggested in terms of promoting the use of historical information for flood risk management: (1) the development of a regional flood data base, with both historical and current data, in order to get a good feedback on recent events and to improve the flood risk education and awareness; (2) the commitment to keep a persistent/perennial management of a reference network of hydrometeorological observations for climate change studies.  相似文献   

17.
2009年汛期,广西河池卡马水库右岸溢洪道附近发生垮塌,大坝安全风险骤然增加.在应急除险实践中,同时对大坝不同状态进行了有限元渗流分析及采用非线性指标进行边坡稳定分析,初步确定出险位置可能处于放空洞中段,在此基础上,对水库溃决风险进行了分析,得出了风险决策依据,从而提出减灾措施,有效降低了水库溃决的风险.从卡马水库的应急处置出发,探讨了中国水库应急除险的关键技术,并提出了中国水库安全管理相关的一些重要问题.  相似文献   

18.
The Usoi dam was created in the winter of 1911 after an enormous seismogenic rock slide completely blocked the valley of the Bartang River in the Pamir Mountains of southeastern Tajikistan. At present the dam impounds 17 million cubic meters of water in Lake Sarez. Flood volume and discharge estimates were made for several landslide generated floods that could overtop the dam. For landslide volumes of 200, 500, and 1,000 million cubic meters, estimated overtopping flood volumes were 2, 22, and 87 million cubic meters of water, respectively. Estimated peak discharge at the dam for these three flood scenarios were 57,000, 490,000, and 1,580,000 m3/s, based on triangular hydrographs of 70-, 90-, and 110-s durations, respectively. Flood-routing simulations were made for the three landslide-induced overtopping floods over a 530-km reach of the Bartang and Panj Rivers below the Usoi dam. A one-dimensional flow model using a Riemann numerical solution technique was selected for the analysis. For the 87 million cubic meter volume overtopping flood scenario, the peak flows were approximately 1, 100, 800, and 550 m3/s at locations 50, 100, and 150 km downstream of the dam respectively.  相似文献   

19.
尹小涛  王水林  邓琴 《岩土力学》2009,30(Z2):440-445
以房县深峪沟病险水库黏土心墙坝为研究对象,对其渗流稳定和坝坡稳定性进行评估,目的是为加固设计提供参考。设计了校核洪水位、设计洪水位、正常蓄水位的稳定渗流计算,校核洪水位降到正常蓄水位、正常蓄水位降到死水位的非稳定流计算工况,其中正常蓄水位降到死水位的工况又设计了5种降速计算方案,利用自动搜索滑动面的Morgenstern-Price法计算了不同工况下的坝坡稳定性,分析发现:校核洪水位稳定渗流背水坡安全系数k<1.15,不满足工程稳定性要求;设计洪水位和正常蓄水位工况,安全系数k<1.25,不满足工程稳定性要求。校核洪水位到正常蓄水位的迎水坡满足k≥1.15的要求,背水坡不满足k≥1.15的要求;正常蓄水位到死水位迎水坡在设计的5种降速下均存在时间步不满足k≥1.25的要求,所以该水库属于病险库,需要加固处理  相似文献   

20.
In this paper, time-domain dynamic analysis of dam–reservoir–foundation interaction is presented by coupling the dual reciprocity boundary element method (DRBEM) in the infinite reservoir and foundation domain and the finite element method in the finite dam domain. An efficient coupling procedure is formulated by using the sub-structuring method. The effects of the reservoir bottom absorption are included in the formulations. Sharan's boundary condition for the far-end of the infinite fluid domain is implemented. To verify the proposed scheme, numerical examples are carried out by comparing with the available exact solutions and finite–finite element coupling results for the dam–reservoir interaction. A complete dam–reservoir–foundation interaction is also studied by including the bottom absorption effects. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号