首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 283 毫秒
1.
Historical tsunami records in the South China Sea are collected and analyzed in this paper. There have been about 54 tsunamis in the South China Sea since 1076. The impacts of the transoceanic tsunamis on the southeast coast of China are weak. However, the regional tsunamis in the South China Sea bring varying degrees of influence to the south coast of China, which occurred about 18 times. By the analysis of the potential tsunami sources in the South China Sea, numerical simulations of tsunami induced in the Manila Trench are carried out. It is found that the tsunami wave height is small near Haikou if the general earthquake tsunami occurred. But the tsunami wave height is large when a giant earthquake of M9.3 occurred. If this extreme situation arises, the impacts to the coast of Haikou will be serious.  相似文献   

2.
A suite of tsunami spaced evenly along the subduction zone to the south of Indonesia (the Sunda Arc) were numerically modelled in order to make a preliminary estimate of the level of threat faced by Western Australia from tsunami generated along the Arc. Offshore wave heights from these tsunami were predicted to be significantly higher along the northern part of the west Australian coast than for the rest of the coast south of the town of Exmouth. In particular, the area around Exmouth may face a higher tsunami hazard than other areas of the West Australian coast nearby. Large earthquakes offshore of Java and Sumbawa are likely to be a greater hazard to WA than those offshore of Sumatra. Our numerical models indicate that a magnitude 9 or above earthquake along the eastern part of the Sunda Arc has the potential to significantly impact a large part of the West Australian coastline. The Australian government reserves the right to retain a non-exclusive, royalty free license in and to any copyright.  相似文献   

3.
The December 2004 Indian Ocean Tsunami (IOT) had a major impact on the geomorphology and sedimentology of the east coast of India. Estimation of the magnitude of the tsunami from its deposits is a challenging topic to be developed in studies on tsunami hazard assessment. Two core sediments (C1 and C2) from Nagapattinam, southeast coast of India were subjected to textural, mineral, geochemical and rock-magnetic measurements. In both cores, three zones (zone I, II and III) have been distinguished based on mineralogical, geochemical and magnetic data. Zone II is featured by peculiar rock-magnetic, textural, mineralogical and geochemical signatures in both sediment cores that we interpret to correspond to the 2004 IOT deposit. Textural, mineralogical, geochemical and rock-magnetic investigations showed that the tsunami deposit is featured by relative enrichment in sand, quartz, feldspar, carbonate, SiO 2, TiO 2, K 2O and CaO and by a depletion in clay and iron oxides. These results point to a dilution of reworked ferromagnetic particles into a huge volume of paramagnetic materials, similar to what has been described in other nearshore tsunami deposits (Font et al. 2010). Correlation analysis elucidated the relationships among the textural, mineral, geochemical and magnetic parameters, and suggests that most of the quartz-rich coarse sediments have been transported offshore by the tsunami wave. These results agreed well with the previously published numerical model of tsunami induced sediment transport off southeast coast of India and can be used for future comparative studies on tsunami deposits.  相似文献   

4.
The Sultanate of Oman is among the Indian Ocean countries that were subjected to at least two confirmed tsunamis during the twentieth and twenty-first centuries: the 1945 tsunami due to an earthquake in the Makran subduction zone in the Sea of Oman (near-regional field tsunami) and the Indian Ocean tsunami in 2004, caused by an earthquake from the Andaman Sumatra subduction zone (far - field tsunami). In this paper, we present a probabilistic tsunami hazard assessment for the entire coast of Oman from tectonic sources generated along the Makran subduction zone. The tsunami hazard is assessed taking into account the contribution of small- and large-event magnitudes. Results of the earthquake recurrence rate studies and the tsunami numerical modeling for different magnitudes were used through a logic-tree to estimate the tsunami hazard probabilities. We derive probability hazard exceedance maps for the Omani coast considering the exposure times of 100, 250, 500, and 1000 years. The hazard maps consist of computing the likelihood that tsunami waves exceed a specific amplitude. We find that the probability that a maximum wave amplitude exceeds 1 m somewhere along the coast of Oman reaches, respectively, 0.7 and 0.85 for 100 and 250 exposure times, and it is up to 1 for 500 and 1000 years of exposure times. These probability values decrease significantly toward the southern coast of Oman where the tsunami impact, from the earthquakes generated at Makran subduction zone, is low.  相似文献   

5.
Tsunami impact on a coast can be reduced by applying a submerged vertical barrier to reflect tsunami before the catastrophic waves are built up near the coast. However, construction of such long walls by conventional submarine technology is difficult. In this paper, the construction of extended submarine walls at a depth of between 50 and 500 m below sea level by a relatively simple and efficient technology is described. The submarine walls can consist either of high-strength steel fences with anchors or two parallel steel fences with distance holders, lowered into the sea and fixed with rocks inserted from top. Alternatively, the barriers could be built from gabions (prefabricated steel net baskets filled with rocks) and lowered into the sea. The space between these tsunami barriers and the coast can be filled with solid material, thus allowing reclamation of new land, or this gap can be used for fish farming. These barriers can contribute to preservation of beaches and natural ecosystems at the coast.  相似文献   

6.
The earthquake we are dealing with occurred on December 28, 1908: because of the number of victims (about 60,000) and the extension of the destroyed area (6,000 km2), this earthquake with the epicentral MCS intensity XI may be considered the strongest event ever reported for Italy along with the 1693 eastern Sicily earthquake. The shock produced a large tsunami that caused severe damage and many victims. In all places the first sea movement was a withdrawal for a few minutes, followed by a flooding of the coast with at least three big waves. A post-event survey allowed to estimate flooding and run-up heights (more than 10 m in some places). In this work we perform some numerical simulations of the tsunami generation and propagation, taking into account different source faults: the model is based on the shallow water equations, solved numerically by means of a finiteelement method. The computational domain, covered by a mesh consisting of triangular elements, includes the Messina Straits and the sea facing the northeastern coast of Sicily and southern Calabria.  相似文献   

7.
Recent tsunamis affecting the West Coast of the USA have resulted in significant damage to ports and harbors, as well as to recreational and commercial vessels attempting to escape the tsunami. With the completion of tsunami inundation simulations for a distant tsunami originating from the Aleutian Islands and a locally generated tsunami on the Cascadia subduction zone (CSZ), the State of Oregon is now able to provide guidance on the magnitudes and directions of the simulated currents for the Oregon coast and shelf region. Our analyses indicate that first wave arrivals for an Aleutian Island event would take place on the north coast,?~?3 h 40 min after the start of the earthquake,?~?20 min later on the southern Oregon coast. The simulations demonstrated significant along-coast variability in both the tsunamis water levels and currents, caused by localized bathymetric effects (e.g., submarine banks and reefs). A locally generated CSZ event would reach the open coast within 7–13 min; maximum inundation occurs at?~?30–40 min. As the tsunami current velocities increase, the potential for damage in ports and harbors correspondingly increases, while also affecting a vessels ability to maintain control out on the ocean. Scientific consensus suggests that tsunami currents?<?1.54 m/s are unlikely to impact maritime safety in ports and harbors. No such guidance is available for boats operating on the ocean, though studies undertaken in Japan suggest that velocities in the region of 1–2 m/s may be damaging to boats. In addition to the effects of currents, there is the added potential for wave amplification of locally generated wind waves interacting with opposing tsunami currents in the offshore. Our analyses explore potential wave amplification effects for a range of generic sea states, ultimately producing a nomogram of wave amplification for a range of wave and opposing current conditions. These data will be useful for US Coast Guard and Port authorities as they evaluate maritime tsunami evacuation options for the Oregon coast. Finally, we identify three regions of hazard (high, moderate, and low) across the Oregon shelf, which can be used to help guide final designation of tsunami maritime evacuation zones for the coast.  相似文献   

8.
For the assessment of tsunami risk and vulnerability, one has to make use of past tsunami observations. The most comprehensive tsunami databases for the world have been prepared by the National Geophysical Data Center of USA which are listed on their website for all the four oceans as well as the following marginal seas: Caribbean Sea, Mediterranean Sea, Black Sea, Red Sea and Gulf of Mexico. The dataset goes back as far as the first century AD and lists the events on a confidence rating scale of 0–4; 0 being an erroneous entry and 4 being a definite tsunami. Based on these various datasets for different geographical areas, a comprehensive global dataset was prepared in this study, which included only tsunami events with confidence rating of 3 and 4, meaning either probable or definite. In this composite and abridged global tsunami database there is no distinction either according to geography or tsunami strength as implied by its impact on the coast. A simple and straightforward statistical analysis suggests an almost complete randomness and no patterns that can be used for future tsunami predictions with a few minor exceptions.  相似文献   

9.
2004年12月26日印度尼西亚苏门答腊岛西北近海发生ML9级强烈地震。地震的强度是100a来全球非常罕见的。地震引起了巨大海啸,浪高近10m,波及到东南亚、南亚和东非地区10多个国家,造成近30万人遇难。地震使印度尼西亚、泰国的部分岛屿发生了地形变化。海啸在受灾国留下了大片的盐碱地。苏门答腊板块边缘的一个长距离破裂带通过长时间积累,蓄积了巨大能量。这些能量在2004-12-26集中释放出来。导致了这次地震海啸的发生。地震海啸灾害本身规模巨大,发生异常突然,再加上受灾地区人员密集,缺乏海啸灾害逃生的知识和经验。印度洋沿岸国家没有海啸预警系统,是造成这次灾害巨大伤亡的原因。中国从台湾-海南岛一线的海区,存在地震海啸的可能性。因此应不断完善海啸预警系统,提高沿海地区建设工程的防灾抗灾标准,加强防波堤建设以及采取恢复红树林等生物工程措施,预防潜在的海啸灾害。  相似文献   

10.
By combining landslide dynamics research and tsunami research, we present an integrated series of numerical models quantitatively simulating the complete evolution of a landslide-induced tsunami. The integrated model simulating the landslide initiation and motion uses measured landslide dynamic parameters from a high-stress undrained dynamic-loading ring shear apparatus. It provides the numerical data of a landslide mass entering and moving under water to the tsunami simulation model as the trigger of tsunami. The series of landslide and tsunami simulation models were applied to the 1792 Unzen-Mayuyama megaslide and the ensuing tsunami disaster, which is the largest landslide disaster, the largest volcanic disaster, and the largest landslide-induced tsunami disaster to have occurred in Japan. Both the 1792 megaslide and the tsunami portions of the disaster are well documented, making this an excellent test of the reliability and precision of the new simulation model. The simulated tsunami heights at the coasts well match the historical tsunami heights recorded by “Tsunami-Dome-Ishi” (a stone showing the tsunami reaching point) and memorial stone pillars.  相似文献   

11.
To support development of a meteotsunami forecasting capability for the USA, the National Oceanic and Atmospheric Administration funded a project in 2011 focused on meteotsunami forecasting for the US east coast. Meteotsunami forecasting shares many similarities with traditional tsunami forecasting, though the characterization and integration of the source with numerical forecast models is much different. Given meteotsunami source characterization through atmospheric observations and models, it is conceivable that meteotsunami alerts could be issued and their impact forecasted using existing tsunami forecast models with high-resolution coastal definition. To test this, the 2008 Boothbay, Maine, meteotsunami is simulated using an atmospheric source consisting of a moving pressure disturbance coupled with a tsunami forecast model. Sensitivities of the modeled impact to the source characteristics, such as speed, wavelength, and direction, are also tested. Results show that the observed impact can be re-created through numerical modeling when the pressure disturbance period is roughly matched with the harbor resonance and observed meteotsunami period.  相似文献   

12.
The December 26, 2004 Sumatra tsunami caused severe damage at the coasts of the Indian ocean. We report results of a sedimentological study of tsunami run-up parameters and the sediments laid down by the tsunami at the coast of Tamil Nadu, India, and between Malindi and Lamu, Kenya. In India, evidence of three tsunami waves is preserved on the beaches in the form of characteristic debris accumulations. We measured the maximum run-up distance at 580 m and the maximum run-up height at 4.85 m. Flow depth over land was at least 3.5 m. The tsunami deposited an up to 30 cm thick blanket of moderately well to well-sorted coarse and medium sand that overlies older beach deposits or soil with an erosional unconformity. The sand sheet thins inland without a decrease of grain-size. The deposits consist frequently of three layers. The lower one may be cross-bedded with foresets dipping landward and indicating deposition during run-up. The overlying two sand layers are graded or parallel-laminated without indicators of current directions. Thus, it remains undecided whether they formed during run-up or return flow. Thin dark laminae rich in heavy minerals frequently mark the contacts between successive layers. Benthic foraminifera indicate an entrainment of sediment by the tsunami from water depths less than ca. 30 m water depth. On the Indian shelf these depths are present at distances of up to 5 km from the coast. In Kenya only one wave is recorded, which attained a run-up height of 3 m at a run-up distance of ca. 35 m from the tidal water line at the time of the tsunami impact. Only one layer of fine sand was deposited by the tsunami. It consists predominantly of heavy minerals supplied to the sea by a nearby river. The sand layer thins landward with a minor decrease in grain-size. Benthic foraminifera indicate an entrainment of sediment by the tsunami from water depths less than ca. 30 m water depth, reaching down potentially to ca. 80 m. The presence of only one tsunami-related sediment layer in Kenya, but three in India, reflects the impact of only one wave at the coast of Kenya, as opposed to several in India. Grain-size distributions in the Indian and Kenyan deposits are mostly normal to slightly positively skewed and indicate that the detritus was entrained by the tsunami from well sorted pre-tsunami deposits in nearshore, swash zone and beach environments.  相似文献   

13.
The explosion of the Montserrat volcano (Caribbean Sea) could trigger a major landslide and lead to the generation of a tsunami in the Caribbean Sea. In the worst case scenario, the volume of material reaching the sea has been estimated at 80 millions of cubic meters. The sliding of this mass and the generation of the associated tsunami have been simulated numerically, assuming that the debris behave like a heavy fluid flowing into the sea. The numerical model solves the 3D Navier-Stokes equations for a mixture composed of rocks and water. The generated water waves is then propagated around the coast of Montserrat by means of a shallow water model. The numerical results show that the water heights above sea level are higher than 5 meters within a radius of 5 km of the source.  相似文献   

14.
A method is introduced for issuing tsunami warnings in the Australian region based on numerical model output. The method considers the maximum modelled wave amplitude within pre-defined coastal waters zones and uses this as a proxy for the potential impact on the coast. A three-level stratified warning is proposed: (1) No threat, (2) Marine threat and (3) Land threat. This method is applied to several case studies and the resulting warning characteristics are shown. While the method has its limitations, it is a significant improvement over current operational warning strategies, which are typically based solely on the magnitude of the earthquake and distance from the source.  相似文献   

15.
The 26 December 2004-tsunami has deposited sediments in the Pichavaram mangrove ecosystem, east coast of India. Ten surface and three core sediment samples were collected within 30 days of the event and analyzed for nutrients. Water samples were also analyzed to see the impact of tsunami on the geochemical behavior of nutrients. An increase in the concentration of various nutrients namely nitrate and phosphate was observed. The geochemistry of the mangrove forest was observed to be influenced by a number of factors like rapid increase of aquaculture farms, agricultural practices and the anthropogenic discharge from the nearby-inhabited areas. Further the sediment column was disturbed due to energetic tsunami waves, which has caused a sheer increase in the dissolved oxygen in water. As a result, the change in the redox potential has resulted in change in the nutrients absorbed/associated with the sediments. In addition, role of retreating water after tsunami on the nutrient geochemistry was also evaluated.  相似文献   

16.
The 2004 tsunami that struck the Sumatra coast gave a warning sign to Malaysia that it is no longer regarded as safe from a future tsunami attack. Since the event, the Malaysian Government has formulated its plan of action by developing an integrated tsunami vulnerability assessment technique to determine the vulnerability levels of each sector along the 520-km-long coastline of the north-west coast of Peninsular Malaysia. The scope of assessment is focused on the vulnerability of the physical characteristics of the coastal area, and the vulnerability of the built environment in the area that includes building structures and infrastructures. The assessment was conducted in three distinct stages which stretched across from a macro-scale assessment to several local-scale and finally a micro-scale assessment. On a macro-scale assessment, Tsunami Impact Classification Maps were constructed based on the results of the tsunami propagation modelling of the various tsunami source scenarios. At this stage, highly impacted areas were selected for an assessment of the local hazards in the form of local flood maps based on the inundation modelling output. Tsunami heights and flood depths obtained from these maps were then used to produce the Tsunami Physical Vulnerability Index (PVI) maps. These maps recognize sectors within the selected areas that are highly vulnerable to a maximum tsunami run-up and flood event. The final stage is the development of the Structural Vulnerability Index (SVI) maps, which may qualitatively and quantitatively capture the physical and economic resources that are in the tsunami inundation zone during the worst-case scenario event. The results of the assessment in the form of GIS-based Tsunami-prone Vulnerability Index (PVI and SVI) maps are able to differentiate between the various levels of vulnerability, based on the tsunami height and inundation, the various levels of impact severity towards existing building structures, property and land use, and also indicate the resources and human settlements within the study area. Most importantly, the maps could help planners to establish a zoning scheme for potential coastline development based on its sensitivity to tsunami. As a result, some recommendations on evacuation routes and tsunami shelters in the potentially affected areas were also proposed to the Government as a tool for relief agencies to plan for safe evacuation.  相似文献   

17.
A case study was conducted for the Thailand Khao Lak coast using a forward numerical model to understand uncertainties associated with interpreting tsunami deposits and relating them to their tsunami sources. We examined possible effects of the characteristics of tsunami source, multiple waves, sediment supply and local land usages. Numerical results showed that tsunami-deposit extent and thickness could be indicative of the slip value in the source earthquake near the surveyed coastal locations, provided that the sediment supply is unlimited and all the deposits are well preserved. Deposit thickness was found to be largely controlled by the local topography and could be easily modified by backwash flows or subsequent tsunami flows. Between deposit extent and deposit thickness, using deposit extent to interpret the characteristics of a tsunami source is preferable. The changing of land usages between two tsunami events could be another important factor that can significantly alter deposit thickness. There is a need to develop inversion models based on tsunami heights and/or run-up data for studying paleotsunamis.  相似文献   

18.
海底滑坡海啸的颗粒流耦合模型   总被引:1,自引:0,他引:1  
海底滑坡的运动可能引发海啸,破坏离岸设施,威胁海岸带安全。国内外关于海底滑坡引发海啸的研究方兴未艾。采用Mih颗粒流模型控制具弱黏聚力的砂土滑坡运动,利用两相流模型计算岩土体-水体相互作用及RNG湍流模型控制水体运动,构建了基于颗粒流模型的海底滑坡海啸全耦合数值分析方法。通过简单水槽水下滑坡案例进行了海底滑坡海啸全过程研究。数值分析再现了变形滑体的不均一运动、密度分异流动、水滑机制和以波谷为典型特征的涌浪波等典型海底滑坡及海啸现象,这表明数值模型具有有效性。许多海域(包括中国南海北部)都存在弱黏聚力和无黏聚力的水下滑坡,该数值方法值得推广和进一步研究完善。  相似文献   

19.
Based on the general physical nature of tsunami generation, it is established that it is an attribute of seismically hazardous areas and regions adjacent to large water reservoirs and is threatening to the population and infrastructure of the coastal zones. The main preconditions and possibilities for the occurrence of tsunami on Lake Baikal are considered: the information on earthquakes in the Baikal hollow during the instrumental-historical period (1724–2011) is generalized in the map of epicenters of shocks of magnitude M ⩾ 5 and histograms of the distribution of numbers of shocks with respect to magnitude. It is shown that the tsunami waves start forming on Baikal if the earthquake magnitude M is ≈5, but since a system of tsunami monitoring on Baikal is absent, it can be observed only during the strongest earthquakes of M > 7. The catastrophic Tsagan earthquake (1861, M ≈ 7.5) is given as an example. It happened near the eastern coast of Lake Baikal and caused a tsunami with people’s deaths.  相似文献   

20.
Tsunamis are destructive natural phenomena which cause extensive damage to the built environment, affecting the livelihoods and economy of the impacted nations. This has been demonstrated by the tragic events of the Indian Ocean tsunami in 2004, or the Great East Japan tsunami in 2011. Following such events, a few studies have attempted to assess the fragility of the existing building inventory by constructing empirical stochastic functions, which relate the damage to a measure of tsunami intensity. However, these studies typically fit a linear statistical model to the available damage data, which are aggregated in bins of similar levels of tsunami intensity. This procedure, however, cannot deal well with aggregated data, low and high damage probabilities, nor does it result in the most realistic representation of the tsunami-induced damage. Deviating from this trend, the present study adopts the more realistic generalised linear models which address the aforementioned disadvantages. The proposed models are fitted to the damage database, containing 178,448 buildings surveyed in the aftermath of the 2011 Japanese tsunami, provided by the Ministry of Land, Infrastructure Transport and Tourism in Japan. In line with the results obtained in previous studies, the fragility curves show that wooden buildings (the dominant construction type in Japan) are the least resistant against tsunami loading. The diagnostics show that taking into account both the building’s construction type and the tsunami flow depth is crucial to the quality of the damage estimation and that these two variables do not act independently. In addition, the diagnostics reveal that tsunami flow depth estimates low levels of damage reasonably well; however, it is not the most representative measure of intensity of the tsunami for high damage states (especially structural damage). Further research using disaggregated damage data and additional explanatory variables is required in order to obtain reliable model estimations of building damage probability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号