首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Floods in Malaysia have been increasing in frequency and magnitude as reflected in the Kelantan Flood event in 2014 that resulted in a huge loss of lives and properties. Whereas remote sensing (RS) and geographical information system (GIS) tools have been extensively applied in flood disaster management, there are few reports and studies on the impact of floods on the land use/land cover environment in a post-disaster assessment. In this study, an integrated modelling approach was developed that used Landsat 8 OLI TIRS (Operational Land Imager (OLI) and Thermal Infrared Sensor) data, flood indexing and classification processes to estimate the impact of flood on the environment. The Normalized Difference Flood Index-3 (NDFI3) is an improvement on NDFI2 that takes into account the effects of cloud shadow in the images when extracting flood index areas. The flood model developed showed good agreement when compared with flooded areas shown in SAR (synthetic-aperture radar) image. The results of the flood extent as a proxy for damage estimation showed that the total flooded area was 502.34 km2 for the Kelantan Flood event in 2014, with plantation and built-up area accounting for 43 and 34.6% respectively. The least affected land uses/land covers were deforested area and forest, which accounted for 12.2 and 10.2% respectively. The RS and GIS technique developed in this post-disaster damage assessment is effective, relatively inexpensive and simple to implement by local authorities in support of post-flood disaster planning and decision-making.  相似文献   

2.
The integration of remote sensing, geographic information system, landscape ecology and statistical analysis methods was applied to study the urban thermal environment in Guangzhou. Normalized Difference Vegetation Index (NDVI), Normalized Difference Build-up Index (NDBI), Normalized Difference Barren Index (NDBaI) and Modified Normalized Difference Water Index (MNDWI) were used to analyze the relationships between land surface temperature (LST) and land use/land cover (LULC) qualitatively. The result revealed that, most urban built-up lands were located in the middle part, and high LST areas mostly and were in the middle and southern parts. Therefore, the urbanization and thermal environment in the middle and southern parts need to be determined. Land surface temperature increased with the density of urban built-up and barren land, but decreased with vegetation cover. The relationship between MNDWI and LST was found to be negative, which implied that pure water would decrease the surface temperature and the polluted water would increase the surface temperature. A multiple regression between LST and each indices as well as the elevation was created to elevate the urban thermal environment, which showed that NDVI, NDBI, NDBaI, MNDWI were effective indicators for quantifying LULC impacts on LST.  相似文献   

3.

It is axiomatically true that urbanization in India's metropolises and large cities has been exacerbated since the beginning of the millennium, consuming the natural and semi-natural ecosystem on the outskirts of the city, resulting in a zone with a distinct climate known as urban climate. Such a climate—the result of a built-up environment is distinctly different from the natural climate as the paved surface and concrete skyscrapers not only destroy the natural ecosystem, it peculiarly induce a different kind of insolation, cooling and air drainage were lacking in green space, water bodies and open space cannot accommodate with environmental rhythm properly, resulting into the accumulation of heat, ecological derangement of subsurface soil which can easily be predicted by GIS analysis. This paper is an attempt to measure urban growth and its impact on the environment in the metropolitan city Kolkata. The use of satellite data and GIS techniques to detect urban expansion is a highly scientific strategy. Using geospatial techniques, the current study attempts to examine major urban changes in Kolkata and its surroundings from 1988 to 2021. Landsat 5 TM and Landsat 8 OLI temporal data are used to identify land-use change through unsupervised classification; Spectral Radiance Model and Split Window Algorithm method are used for identifying land surface temperature change. SRTM DEM (30 m) has been used to identify flood risk zones and several spectral indices like Normalized Difference Vegetation Index and Modified Normalized Difference Water Index are a further extension for environmental assessment. By all such suitable methods, a clearer change in an urban environment is detected within the period of 33 years (1988–2021). The result shows that the population changes, vegetation cover and built-up area, and accessibility are at a rapid rate. These changes are causing major environmental degradation in the city. The classification result indicates that appropriate land use planning and environmental monitoring are required for the long-term exploitation of these resources.

  相似文献   

4.
In the Himalayan states of India, with increasing population and activities, large areas of forested land are being converted into other land-use features. There is a definite cause and effect relationship between changing practice for development and changes in land use. So, an estimation of land use dynamics and a futuristic trend pattern is essential. A combination of geospatial and statistical techniques were applied to assess the present and future land use/land cover scenario of Gangtok, the subHimalayan capital of Sikkim. Multi-temporal satellite imageries of the Landsat series were used to map the changes in land use of Gangtok from 1990 to 2010. Only three major land use classes (built-up area and bare land, step cultivated area, and forest) were considered as the most dynamic land use practices of Gangtok. The conventional supervised classification, and spectral indices-based thresholding using NDVI (Normalized Difference Vegetation Index) and SAVI (Soil Adjusted Vegetation Index) were applied along with the accuracy assessments. Markov modelling was applied for prediction of land use/land cover change and was validated. SAVI provides the most accurate estimate, i.e., the difference between predicted and actual data is minimal. Finally, a combination of Markov modelling and SAVI was used to predict the probable land-use scenario in Gangtok in 2020 AD, which indicted that more forest areas will be converted for step cultivation by the year 2020.  相似文献   

5.
Flood risk is expected to increase in many regions of the world in the next decades with rising flood losses as a consequence. First and foremost, it can be attributed to the expansion of settlement and industrial areas into flood plains and the resulting accumulation of assets. For a future-oriented and a more robust flood risk management, it is therefore of importance not only to estimate potential impacts of climate change on the flood hazard, but also to analyze the spatio-temporal dynamics of flood exposure due to land use changes. In this study, carried out in the Alpine Lech Valley in Tyrol (Austria), various land use scenarios until 2030 were developed by means of a spatially explicit land use model, national spatial planning scenarios and current spatial policies. The combination of the simulated land use patterns with different inundation scenarios enabled us to derive statements about possible future changes in flood-exposed built-up areas. The results indicate that the potential assets at risk depend very much on the selected socioeconomic scenario. The important conditions affecting the potential assets at risk that differ between the scenarios are the demand for new built-up areas as well as on the types of conversions allowed to provide the necessary areas at certain locations. The range of potential changes in flood-exposed residential areas varies from no further change in the most moderate scenario ‘Overall Risk’ to 119 % increase in the most extreme scenario ‘Overall Growth’ (under current spatial policy) and 159 % increase when disregarding current building restrictions.  相似文献   

6.
Tiwari  Anuj  Shoab  Mohammad  Dixit  Abhilasha 《Natural Hazards》2021,105(2):1189-1230

This study performs a comparative evaluation of Frequency Ratio (FR), Analytic Hierarchy Process (AHP), and Fuzzy AHP (FAHP) modeling techniques for forest fire susceptibility mapping in Pauri Garhwal, Uttarakhand, India. Locations of past forest fire events reported from November 2002 to July 2019 were collected from the Uttarakhand Forest Department and Forest Survey of India and combined with the ground observations obtained from the manual survey. Then, the locations were categorized into two groups of 70% (10,500 locations) and 30% (4500 locations), randomly, for training and validation purposes, respectively. Forest fire susceptibility mapping was performed on the basis of fourteen different topographic, biological, human-induced and climatic criteria such as Digital Elevation Model, Slope, Aspect, Curvature, Normalized Difference Vegetation Index, Normalized Difference Moisture Index, Topographic Wetness Index, Soil, Distance to Settlement, Distance to Road, Distance to Drainage, Rainfall, Temperature, and Wind Speed. The Receiver Operating Characteristic curve and the Area Under the Curve (AUC) were implemented for validation of the three achieved Forest Fire Susceptibility Maps. The AUC plot evaluation revealed that FAHP has a maximum prediction accuracy of 83.47%, followed by AHP (81.75%) and FR (77.21%). Thus, the map produced by FAHP exhibits the most satisfactory properties. Results and findings of this study will help in developing more efficient fire management strategies in both the open and the protected forest areas (Rajaji and Jim Corbett National Park) of the district.

  相似文献   

7.
In many parts of Canada, limited data are available for hydrodynamic model inputs, and the ability to generate quality flood grids through 1D, 2D or 3D methods is nonviable. In this paper, the capability of simplified flood models, which rely solely on digital terrain models (DTMs), was explored to assess the quality and speed of their results. Results were validated against historic floods in two locations. Three non-physics-based simplified conceptual flood models were tested: (1) planar method, (2) inclined plane and (3) height above nearest drainage network (HAND) model. The accuracy and performance were evaluated using three criteria: inundation extent, water depth and computation time. Findings show that the HAND model is the best predictor of inundation extent, with Probability of Detection and Critical Success Index being higher than 0.90 in both study areas. Though the preprocessing time for the HAND model is lengthy, once completed, the time to simulate flooding at a variety of water levels is rapid, making this model the most suitable choice for web-based, on-demand flood inundation mapping. Knowledge of the fit of these flood models and associated uncertainty can be helpful to emergency managers such that they can better understand exposure and vulnerability while preparing flood response plans.  相似文献   

8.
西南地区2001-2014年植被变化时空格局   总被引:2,自引:0,他引:2  
冯国艳  马明国 《中国岩溶》2018,37(6):866-874
时序植被动态变化研究一直是全球变化研究的热点之一,对地区生态治理有重要意义。基于西南地区2001至 2014年的MODIS植被指数数据集以及DEM数据和土地利用数据,进行季节合成植被指数(SINDVI)的趋势模拟、空间统计和相关分析,探讨西南地区植被变化趋势和空间分异特征,研究结果表明:(1)74.52%的区域SINDVI变化不显著,显著改善的区域占22.07%,而显著退化的区域占3.41%,改善面积远远大于退化面积。(2)从地形因子结果来看,中低海拔地区和缓坡地区植被变化趋势最明显,海拔3 500 m以下植被变化趋势比海拔3 500 m以上明显。随着坡度的增加,改善趋势和退化趋势都在变小。(3)从土地利用分析结果来看,SINDVI变化趋势在人工表面最明显,改善和退化趋势都相对较大。(4)受人类活动的影响,人工表面和裸地的增多、林地的减少是植被呈退化趋势的主要原因。   相似文献   

9.
Tidal inundation by high tide under enhanced land subsidence is a damaging phenomenon and a major threat to the Semarang urban area in Indonesia. It impacts on economic activities, as well as the cost of an emergency program and causes interruption of pubic services, danger of infectious diseases and injury to human lives. This study examines a spatial analysis tool on the GIS-raster system for the tidal inundation mapping based on the subsidence-benchmark data and modified detail digital elevation model. Neighborhood operation and iteration model as a spatial analysis tool have been applied in order to calculate the encroachment of the tidal inundation on the coastal area. The resulting map shows that the tidal flood spreads to the lowland area and causes the inundation of coastal settlement, infrastructure, as well as productive agricultural land, i.e., the fish-pond area. The monitoring of the vulnerable area due to the tidal inundation under the scenario of extended land subsidence plays an important role in long-term coastal zone management in Semarang.  相似文献   

10.
Remote sensing is the most practical method available to managers of flood-prone areas for quantifying and mapping flood impacts. This study explored large inundation areas in the Maghna River Basin, around the northeastern Bangladesh, as determined from passive sensor LANDSAT data and the cloud-penetrating capabilities of the active sensors of the remote imaging microwave RADARSAT. This study also used passive sensor LANDSAT wet and dry images for the year 2000. Spatial resolution was 30 m by 30 m for comparisons of the inundation area with RADARSAT images. RADARSAT images with spatial resolution of 50 m by 50 m were used for frequency analysis of floods from 2000 to 2004. Time series images for 2004 were also used. RADARSAT remote sensing data, GIS data, and ground data were used for the purpose of flood monitoring, mapping and assessing. A supervised classification technique was used for this processing. They were processed for creating a maximum water extent map and for estimating inundation areas. The results of this study indicated that the maximum extent of the inundation area as estimated using RADARSAT satellite imaging was about 29, 900.72 km2 in 2004, which corresponded well with the heavy rainfall around northeast region, as seen at the Bhairab Bazar station and with the highest water level of the Ganges–Brahmaputra–Meghna (GBM) Rivers. A composite of 5 years of RADARSAT inundation maps from 2000 to 2004, GIS data, and damage data, was used to create unique flood hazard maps. Using the damage data for 2004 and the GIS data, a set of damage maps was also created. These maps are expected to be useful for future planning and flood disaster management. Thus, it has been demonstrated that RADARSAT imaging data acquired over the Bangladesh have the ability to precisely assess and clarify inundation areas allowing for successful flood monitoring, mapping and disaster management.  相似文献   

11.
The 2004 tsunami that struck the Sumatra coast gave a warning sign to Malaysia that it is no longer regarded as safe from a future tsunami attack. Since the event, the Malaysian Government has formulated its plan of action by developing an integrated tsunami vulnerability assessment technique to determine the vulnerability levels of each sector along the 520-km-long coastline of the north-west coast of Peninsular Malaysia. The scope of assessment is focused on the vulnerability of the physical characteristics of the coastal area, and the vulnerability of the built environment in the area that includes building structures and infrastructures. The assessment was conducted in three distinct stages which stretched across from a macro-scale assessment to several local-scale and finally a micro-scale assessment. On a macro-scale assessment, Tsunami Impact Classification Maps were constructed based on the results of the tsunami propagation modelling of the various tsunami source scenarios. At this stage, highly impacted areas were selected for an assessment of the local hazards in the form of local flood maps based on the inundation modelling output. Tsunami heights and flood depths obtained from these maps were then used to produce the Tsunami Physical Vulnerability Index (PVI) maps. These maps recognize sectors within the selected areas that are highly vulnerable to a maximum tsunami run-up and flood event. The final stage is the development of the Structural Vulnerability Index (SVI) maps, which may qualitatively and quantitatively capture the physical and economic resources that are in the tsunami inundation zone during the worst-case scenario event. The results of the assessment in the form of GIS-based Tsunami-prone Vulnerability Index (PVI and SVI) maps are able to differentiate between the various levels of vulnerability, based on the tsunami height and inundation, the various levels of impact severity towards existing building structures, property and land use, and also indicate the resources and human settlements within the study area. Most importantly, the maps could help planners to establish a zoning scheme for potential coastline development based on its sensitivity to tsunami. As a result, some recommendations on evacuation routes and tsunami shelters in the potentially affected areas were also proposed to the Government as a tool for relief agencies to plan for safe evacuation.  相似文献   

12.
Flood inundation maps are dependent on the topographic and geomorphologic features of a wadi (drainage basin) in arid regions, which are most susceptible for potential flash flood occurrences, such as in the southwestern part of the Kingdom of Saudi Arabia. It is not possible to control the potential flood hazards by using only technological instruments that forewarn the occurrences or imminence. Additionally, it would be better to prepare flood risk maps so as to delineate the risky areas to educate the administrators and local settlers. The availability of these maps is the key requirement for any urban development that entails land use allocation, identification of dam, tunnel, highway, bridge sites, and infrastructure locations for sustainable future. This paper suggests the necessary steps in flood inundation map preparation after determining the possible flood discharge. For this purpose, a set of critical cross-sections along the possible flood plain are taken in the field with surveying methods and measurements. The calculation of the average flow velocity in each section is calculated according to the cross-section geometric, hydraulic, and material properties. Synthetic rating curves (SRC) are prepared for each cross section, which are very useful especially in arid and semi-arid regions where there are no perennial surface water flows for natural rating curve measurements. All the SRCs appear in the form of power function which relates the flow depth to discharge in a given cross section. It is then possible to calculate the flood depth in the cross section through its SRC. Depending on the cross-section shape, the flood width can be calculated. The connection of a series of widths on a scaled topographic map delineates the flood inundation area. If digital elevation map (DEM) is available, then the SRCs can be integrated with these maps and the flood inundation delineation can be achieved automatically. Since DEMs are not available, the topographic maps are used for this purpose in order to delineate flood inundation areas within wadis Hali and Yiba from the southwestern Kingdom of Saudi Arabia.  相似文献   

13.
Ajman is a rapidly urbanizing emirate with land development succeeding at a fast pace. This study aims to monitor land use/land cover changes and assesses the impact of these changes on groundwater quality and quantity of the shallow aquifer using multitemporal remote sensing data and geographic information system (GIS). To monitor the land use/land cover changes, the Spectral Angle Mapper (SAM) and the Normalized Difference Vegetation Index (NDVI) algorithms were utilized. The obtained maps were correlated against a set of total dissolved solid (TDS); Mg, Cl, and NO3 groundwater quality index; and depth to the groundwater table maps constructed from groundwater data. The spatial analysis revealed a sharp depletion in groundwater quality and quantity related to the increase in the land use/land cover classes. The mean total TDS is from 21,971 to 26,450 mg/L and depth to groundwater level from ?12.33 to ?17.2 m over a period of 15 years. Maps of normalized difference and groundwater quality sustainability showed that the eastern side of the study area has a high value of groundwater quality sustainability and normalized difference, while the western side of the study area has a minimal value of groundwater quality sustainability and normalized difference. This study is of great assistance for decision makers and land developers to relate to municipal land allotment in rapidly developing regions such as Ajman.  相似文献   

14.
This paper presents a proposed integrated approach for flood hazardous evaluation in arid and semi-arid areas. Wadi Fatimah in Saudi Arabia is utilized for implementation of such an approach. The approach consists of four stages. In the first stage, a statistical analysis of rainfall data is performed to determine the design storms at specified return periods. In the second stage, geological and geomorphologic analyses are followed to estimate the geomorphic parameters. The third stage concerned with land use and land cover analyses linked with hydrological analysis to estimate the hydrographs. The fourth stage is related to the delineation of the inundation area under two scenarios: the presence and absence of the dam. The statistical analysis proved that some rainfall stations do not follow a Gumbel distribution. The presence of the dam reduces the inundation depth by about 10 %. The reduction in the inundation area due the presence of the dam is about 25 %.  相似文献   

15.
Shanghai is physically and socio-economically vulnerable to accelerated sea level rise because of its low elevation, flat topography, highly developed economy and highly-dense population. In this paper, two scenarios of sea level rise and storm surge flooding along the Shanghai coast are presented by forecasting 24 (year 2030) and 44 (year 2050) years into the future and are applied to a digital elevation model to illustrate the extent to which coastal areas are susceptible to levee breach and overtopping using previously developed inflow calculating and flood routing models. Further, the socio-economic impacts are examined by combining the inundation areas with land use and land cover change simulated using GeoCA-Urban software package. This analysis shows that levee breach inundation mainly occurs in the coastal zones and minimally intrudes inland with the conservative protection of dike systems designed. However, storm surge flooding at the possible maximum tide level could cause nearly total inundation of the landscape, and put approximately 24 million people in Shanghai under direct risk resulting from consequences of flooding (e.g. contamination of potable water supplies, failure of septic systems, etc.).  相似文献   

16.
黄淮海流域旱涝时空分布及组合特性   总被引:1,自引:0,他引:1  
以黄淮海流域及其周边地区204个气象站点1961-2010年逐日降水过程资料、国家1:25万DEM数据和1:20万土地利用数据为基础,在利用降水Z指数对黄淮海流域旱涝进行评价的基础上,采用下垫面数据对结果进行修正,并分析黄淮海流域旱涝面积的时间变化特征,对黄淮海地区的易旱区、易涝区进行了划分,进一步选取集对分析法划分了流域内季节间旱涝交替的易发区。结果表明:黄淮海流域内夏秋两季旱涝问题较为严重,且秋旱面积上升趋势较为明显;黄河和海河流域以干旱居多,淮河则是干旱和雨涝并存,季节间的旱涝交替多集中在淮河流域中上游地区。  相似文献   

17.
Pakistan has experienced severe floods over the past decades due to climate variability. Among all the floods, the flood of 2010 was the worst in history. This study focuses on the assessment of (1) riverine flooding in the district Jhang (where Jhelum and Chenab rivers join, and the district was severely flood affected) and (2) south Asiatic summer monsoon rainfall patterns and anomalies considering the case of 2010 flood in Pakistan. The land use/cover change has been analyzed by using Landsat TM 30 m resolution satellite imageries for supervised classification, and three instances have been compared, i.e., pre-flooding, flooding, and post-flooding. The water flow accumulation, drainage density and pattern, and river catchment areas have been calculated by using Shutter Radar Topography Mission digital elevation model 90 m resolution. The standard deviation of south Asiatic summer monsoon rainfall patterns, anomalies and normal (1979–2008) has been calculated for July, August, and September by using rainfall data set of Era interim (0.75° × 0.75° resolution). El Niño Southern Oscillation has also been considered for its role in prevailing rainfall anomalies during the year 2010 over Upper Indus Basin region. Results show the considerable changing of land cover during the three instances in the Jhang district and water content in the rivers. Abnormal rainfall patterns over Upper Indus Basin region prevailed during summer monsoon months in the year 2010 and 2011. The El Niño (2009–2010) and its rapid phase transition to La Niña (2011–2012) may be the cause of severity and disturbances in rainfall patterns during the year 2010. The Geographical Information System techniques and model based simulated climate data sets have been used in this study which can be helpful in developing a monitoring tool for flood management.  相似文献   

18.
Wetlands play an important role in water conservation, environmental protection, and biodiversity conservation. Remote sensing is an economical and efficient technique for wetland monitoring which can limit disturbance in sensitive areas and support wetland conservation. In this paper, we used three phases of Thematic Mapper/Enhanced Thematic Mapper plus (TM/ETM+) remote sensing images from October 1989, October 1999, and October 2009 to study wetlands in Xingzi County. The images were segmented using the object-oriented remote sensing image interpretation software eCognition Developer 8.64, then segmented images were classified by slope, digital elevation model (DEM) data, Normalized Difference Vegetation Index (NDVI), Specific Leaf Area Vegetation Index (SLAVI), and Land and Water Masks (LWM) index to produce land type classification maps. Land use change information was obtained by analyzing the superposition of two classification maps of the wetland area from different years. The results showed that landscape patches in Xingzi County displayed fragmentation in their spatial distribution over time. Based on an index of changes in landscape patches, the fastest growing landscape type is grassland, while the fastest decreasing type is irrigated land. Dominant driving factors of changes in Xingzi County’s wetland landscape are population growth and policy changes.  相似文献   

19.
Geomorphological zoning for flood inundation using satellite data   总被引:3,自引:0,他引:3  
The authors investigated geomorphological features on the central plain of Thailand utilizing satellite remote sensing data and made geomorphological land classification map showing flood-stricken area. Land classification maps showing flood-striken area tell us former flood inundation area, such as inundation depth, inundation width, flood flow course and flood direction, as well as estimating of the features of flooding. Thus map is useful for planning of flood control works.We classified land form units in the central plain of Thailand as following; delta, tidal flat, lagoon, mud spit, back marsh, natural levee, fan and former river course and so on. After that, the principal component analysis is applied to Landsat TM data and gives good results for photo interpretation of land form units and we transfer geomorphological land classification map to make zoning map of flood risk for the purpose of evaluating the flood damages.  相似文献   

20.
In the tropical and subtropical wet and dry regions, maintaining natural hydrologic connections between coastal rivers and adjacent ephemeral wetlands is critical to conserving and sustaining high levels of fisheries production within these systems. Though there is a consensus that there is a need to maintain these natural connections, little is known about what attributes of floodplain inundation regimes are most important in sustaining fisheries production. Two attributes of the flood season and thus floodplain inundation that may be particularly influential to fisheries are the amplitude of the flood season (floodplain water depth and spatial extent of inundation) and the duration of the flood season (i.e., time floodplains are inundated). In mangrove-dominated Everglades coastal rivers, seasonal inundation of upstream marsh floodplains may play an important role in provisioning recreational fisheries; however, this relationship remains unknown. Using two Everglades coastal river fisheries as a model, we tested whether the amplitude of the flood season or the duration of the flood season is more important in explaining variation in angler catch records of common snook and largemouth bass collected from 1992 to 2012. We validated angler catches with fisheries-independent electrofishing conducted in the same region from 2004 to 2012. Our results showed (1) that bass angler catches tracked electrofishing catches, while snook catches were completely mismatched. And (2) that previous year's marsh dynamics, particularly the duration of the flood season, was more influential than the flood season amplitude in explaining variation in bass catches, such that bass angler catches were negatively correlated to the period time that floodplains remained disconnected from coastal rivers in the previous year, while snook catches were not very well explained by floodplain inundation terms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号