首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
薛艳  程佳  刘杰  杨文 《地球科学》2014,39(4):481-491
巽他海沟西侧地壳北向运动的差异性是2012年苏门答腊地震发生的动力学成因.库仑应力计算表明,2004年和2005年苏门答腊2次特大逆冲型地震对本次地震具有显著的触发作用.有记录以来至2011年,本次地震的发震断裂带没有发生过7级以上地震,震源区附近存在5级地震空区,2004年大震后该空区被打破.震前6年、4.5年和3个月发生了3组前震活动,其中最显著的是震前3个月发生的7.2级直接前震.   相似文献   

2.
Natural Hazards - The Mexican Seismic Alerting System (SASMEX) successfully alerted for the June 23, 2020, La Crucecita earthquake (Mw 7.4) in southern Mexico. The time between the alert broadcast...  相似文献   

3.
汶川M_w 7.9级地震同震断层陡坎类型与级联破裂模型   总被引:1,自引:0,他引:1       下载免费PDF全文
2008年5月12日,汶川Mw7.9级地震在青藏高原东缘沿龙门山逆冲断裂带中段形成了两条NE向和一条NW向逆冲走滑型地表破裂。依据同震地表陡坎形态特征,将其分为8种类型:逆断层陡坎、上盘垮塌陡坎、挤压推覆陡坎、右旋挤压推覆陡坎、断层相关褶皱陡坎、后冲挤压陡坎、上冲叠覆陡坎和局部正断层陡坎。汶川地震所形成的同震地表破裂主要由以逆冲为主的映秀破裂段和兼具逆冲、右旋走滑的北川破裂段两部分组成,这两个破裂段分别对应于Mw7.8与Mw7.6级地震事件;它们还可进一步细分为分别对应于Mw7.5、Mw7.7、Mw7.0和Mw7.5等4个次级事件的4个次级破裂段。这些次级破裂段的级联破裂可以用来解释为什么汶川地震的持续时间长达110 s。余震震源机制分析结果表明,发震断层的倾角随深度的增加而变缓,且从西南向北东逐渐变陡可以用来解释走滑分量增加的成因。此次大地震还表明,沿青藏高原东缘地形抬高的主要驱动力可能是地壳挤压缩短,而不一定是下地壳物质流动和膨胀引起上地壳的隆升。  相似文献   

4.
Novikova  O. V.  Gorshkov  A. I. 《Natural Hazards》2022,111(2):1335-1354
Natural Hazards - The horizontal components of S-wave data from 25 events (Mw 2.9–4.2) recorded at five borehole seismograph sites in the Koyna–Warna seismic zone, Maharashtra, India,...  相似文献   

5.
During the 1st decade of the 21st century, the study area of Talala, Saurashtra of western India witnessed three damaging earthquakes of moderate magnitude, year 2007 [Mw 5.0; Mw 4.8] and in the year 2011 [Mw 5.1] that generated public panic in the region. The last damaging moderate earthquake of the 20th October 2011 in Talala region (21.09°N;70.45°E), located at about 200 km south to the devastating 2001 Bhuj (23.412°N, 70.232°E) mainshock (Mw 7.6), jolted the entire Saurashtra region of Gujarat. A long series of aftershocks followed hereafter, recorded at nine seismograph/accelerograph stations. Hypocenters of aftershocks were relocated accurately using absolute and relative travel time (double-difference) method. In this study, we, for the first time, determined 3-D tomographic images of the upper crust beneath the 2011 Talala earthquake source zone by inverting about 1135 P and 1125 S wave arrival time data. Estimates of seismic velocities (Vp, Vs) and Poisson’s ratio (σ) structures offer a reliable interpretation of crustal heterogeneities and their bearing on geneses of moderate earthquakes and their aftershock sequences beneath the source zone. It is found that the 2011 Talala mainshock hypocenter depth (6 km) is located near the boundary of the low and high velocity (Vp, Vs) and the source zone is associated with low-σ anomalies guarded by the prominent high-σ anomalies along the active fault zone having strike-slip motion beneath the earthquake source zone. The pattern of distribution of (Vp, Vs, σ) and its association with occurrences of aftershocks provide seismological evidence for the neo-tectonics in the region having left lateral strike-slip motion of the fault.  相似文献   

6.
Dang  Pengfei  Liu  Qifang  Song  Jian 《Natural Hazards》2020,103(2):2295-2321
Natural Hazards - An improved stochastic finite-fault method was used to simulate the Mw 6.6 earthquake that occurred on August 8, 2017, in Jiuzhaigou, Sichuan, China. A variation of the stochastic...  相似文献   

7.
Tsai  Chi-Chin  Hwang  Yu-Wei  Lu  Chih-Chieh 《Acta Geotechnica》2020,15(6):1363-1379
Acta Geotechnica - On February 6, 2016, a moment magnitude (Mw) 6.4 earthquake struck southern Taiwan and devastated the Tainan area. Although the intensity of ground shaking was only moderate...  相似文献   

8.
Abstract: Dextral-slip thrust movement of the Songpan-Garzê terrain over the Sichuan block caused the Ms 8.0 Wenchuan earthquake of May 12, 2008 and offset the Central Longmenshan Fault (CLF) along a distance of ~250 km. Displacement along the CLF changes from Yingxiu to Qingchuan. The total oblique slip of up to 7.6 m in Yingxiu near the epicenter of the earthquake, decreases northeastward to 5.3 m, 6.6 m, 4.4 m, 2.5 m and 1.1 m in Hongkou, Beichuan, Pingtong, Nanba and Qingchuan, respectively. This offset apparently occurred during a sequence of four reported seismic events, EQ1–EQ4, which were identified by seismic inversion of the source mechanism. These events occurred in rapid succession as the fault break propagated northeastward during the earthquake. Variations in the plunge of slickensides along the CLF appear to match these events. The Mw 7.5 EQ1 event occurred during the first 0–10 s along the Yingxiu-Hongkou section of the CLF and is characterized by 1.7 m vertical slip and vertical slickensides. The Mw 8.0 EQ2 event, which occurred during the next 10–42 s along the Yingxiu-Yanziyan section of the CLF, is marked by major dextral-slip with minor thrust and slickensides plunging 25°–35° southwestward. The Mw 7.5 EQ3 event occurred during the following 42–60 s and resulted in dextral-slip and slickensides plunging 10° southwestward in Beichuan and plunging 73° southwestward in Hongkou. The Mw 7.7 EQ4 event, which occurred during the final 60–95 s along the Beichuan-Qingchuan section of the CLF, is characterized by nearly equal values of dextral and vertical slips with slickensides plunging 45°–50° southwestward. These seismic events match and evidently controlled the concentrations of landslide dams caused by the Wenchuan earthquake in Longmenshan Mountains.  相似文献   

9.
Doklady Earth Sciences - This study analyzes the set of parameters of geophysical fields and geodynamic events before the very strong Sea of Okhotsk earthquake of May 24, 2013, with Mw = 8.3 and a...  相似文献   

10.
Dang  Pengfei  Liu  Qifang 《Natural Hazards》2020,100(3):1215-1241
Natural Hazards - The Ya’an, Sichuan Mw 6.7 earthquake occurred on April 20, 2013. In this article, the stochastic finite-fault method (EXSIM) based on dynamic corner frequency, proposed by...  相似文献   

11.
Landslides - On January 24, 2020, an earthquake with the Mw of 6.8 occurred on the East Anatolian Fault Zone in Elazig Province, Turkey, and triggered many landslides. Even though Turkey is in a...  相似文献   

12.
Ma  Siyuan  Xu  Chong 《Natural Hazards》2019,96(1):389-412
Natural Hazards - The April 20, 2013 Mw6.6 earthquake of Lushan County, Sichuan Province, China, has triggered 4540 landslides (>?1000 m2). Exploring a more effective method...  相似文献   

13.
Dang  Jiaxiang  Zhou  Yongsheng  He  Changrong  Ma  Shengli 《Mineralogy and Petrology》2018,112(3):341-355
Mineralogy and Petrology - There are two co-seismic bedrock surface ruptures from the Mw 7.9 Wenchuan earthquake in the northern and central parts of the Beichuan-Yingxiu fault, Sichuan Province,...  相似文献   

14.
The Assam Seismic Gap has witnessed a long seismic quiescence since the \({ Mw}{\sim }8.4\) great Assam earthquake of AD 1950. Owing to its improper connectivity over the last decades, this segment of the Himalaya has long remained inadequately explored by geoscientists. Recent geodetic measurements in the eastern Himalaya using GPS document a discrepancy between the geologic and geodetic convergence rates. West to east increase in convergence rate added with shorter time span earthquakes like the 1697 Sadiya, 1714 (\({ Mw}{\sim }8\)) Bhutan and 1950 (\({ Mw}{\sim } 8.4\)) Tibet–Assam, makes this discrepancy more composite and crucial in terms of seismic hazard assessment. To understand the scenario of palaeoearthquake surface rupturing and deformation of youngest landforms between the meizoseismal areas of \({ Mw}{\sim }8.1\) 1934 and 1950 earthquakes, the area between the Manas and Dhanshiri Rivers along the Himalayan Frontal Thrust (HFT) was traversed. The general deformation pattern reflects north-dipping thrust faults. However, back facing scarps were also observed in conjugation to the discontinuous scarps along the frontal thrust. Preliminary mapping along with the published literature suggests that, in the eastern Himalayan front the deformation is taking place largely by the thrust sheet translation without producing a prominent fault-related folds, unlike that of the central and western Himalayas.  相似文献   

15.
Assessment of soil loss through Sediment Yield Index (SYI) is important for watershed planning, prioritization, and development. In the absence of measured sediment data, SYI expressing the relative sediment yield from different basins work as a basis for grading another basin to adopt erosion control measures. An attempt was made to evaluate SYI in wider scale by using cost-effective tools like remote sensing and geographical information system (GIS). SYI was calculated for Madia subwatershed, which consists of 29 microwatersheds and located in Sagar District, Madhya Pradesh (M.P.) The IRS LISS III data and Shuttle Radar Topography Mission (SRTM) digital elevation models (DEM) of 90-m resolution were used to identify land use characteristics and geomorphometric analysis. Major land use was observed as agricultural land (24.7 %), water bodies (16.7 %), forest area (10.2 %), and settlement (21.3 %). In categorization, similar overall accuracy was observed for dense forest, barren land, settlement, and water bodies. The highest SYI with a value more than 20 was observed in microwatershed Mw6, Mw7, and Mw24, which comprises 33 % of the total watershed area. It gives the information about the watershed area that requires very high priority.  相似文献   

16.
We use InSAR to measure deformation and kinematics of the Mw = 4.9 Borujerd (2005/05/03) and Mw = 6.1 Chalan‐Chulan (2006/03/31) earthquakes that occurred in the Zagros fold‐and‐thrust belt. The focal mechanism of the 2006 event is consistent with right lateral strike‐slip motion and the event ruptured the Dorud‐Borujerd segment of the Main Recent Fault. An Envisat interferogram spanning the 2006 event shows peak ground deformation of 9 cm in the satellite line‐of‐sight along a 10 km long fault portion. The interferogram spanning the 2005 earthquake is rather related to atmospheric artefact than to ground deformation. Dislocation models of the 2006 Chalan‐Chulan event indicate dextral slip amounting to a maximum of 90 cm at a depth of 4 km. The predicted vertical displacements are in good agreement with differential levelling data. The 2006 event filled only a small part of the seismic gap located between large M = 7 events that occurred in 1909 and 1957.  相似文献   

17.
Spatial-temporal patterns of aftershocks of the 2001 Mw7.7 Bhuj earthquake during 2001–2008 reveal a northward spatial migration of seismic activity in the Kachchh seismic zone, which could be related with the loading stresses caused by the continued occurrences of aftershocks on the north Wagad fault (NWF), the causative fault of the 2001-mainshock. Aiming at explaining the observed northward migration of activity, we modelled the Coulomb failure stress change (DCFS) produced by the 2001-mainshock, the 2006 Mw5.6 Gedi fault (GF) and the 2007 Mw4.5 Allah bund fault (ABF) events on optimally oriented plane. A strong correlation between occurrences of earthquakes and regions of increased DCFS is obtained on the associated three faults i.e. NWF, ABF and GF. Predicted DCFS on the GF increased by 0.9 MPa at 3 km depth, where the 7th March 2006 Mw5.6 event occurred, whereas predicted DCFS on the ABF increased by 0.07 MPa at 30 km depth, where the 15th December 2007 Mw4.5 event occurred. Focal mechanism solutions of three events on the ABF have been estimated using the iterative inversion of broadband data from 5–10 stations, which are also constrained by the first P-motion data from 8–12 stations. These focal mechanism solutions for the ABF events reveal a dominant reverse movement with a strike-slip component along a preferred northwest or northeast dipping plane (∼50–70°). Focal mechanisms of the events on all the three fault zones reveal an N-S oriented P- axis or maximum principal stress in the region, which agrees with the prevailing N-S compression over the Indian plate. It is apparent that the northward migration of the static stress changes from the NWF, resulting from the occurrence 2001 Bhuj mainshock, might have caused the occurrence of the events on the GF and ABF during 2006–08.  相似文献   

18.
New palaeoseismic trenching across the main splay of the Fucino fault system provides evidence for a High Middle Age surface‐faulting episode conceivably associated with a disruptive earthquake, similar to the one that occurred in 1915 (Mw 7.0). The existence of this event, which has already been suggested by some previous studies, implies a shortening of the recurrence interval for Mw 7.0 earthquakes with respect to current knowledge. If we assume that the palaeoseismic Holocene record is complete, this shortening is focused in the historical period, when the Fucino structure sourced three strong earthquakes in only 1.4 ka. A similar clustering of energy release in the recent past is consistent with both palaeoseismological studies on other faults affecting the Apennine divide, and the high GPS strain rates observed in the same chain sectors.  相似文献   

19.
The frequency–magnitude distributions of earthquakes are used in this study to estimate the earthquake hazard parameters for individual earthquake source zones within the Mainland Southeast Asia. For this purpose, 13 earthquake source zones are newly defined based on the most recent geological, tectonic, and seismicity data. A homogeneous and complete seismicity database covering the period from 1964 to 2010 is prepared for this region and then used for the estimation of the constants, a and b, of the frequency–magnitude distributions. These constants are then applied to evaluate the most probable largest magnitude, the mean return period, and the probability of earthquake of different magnitudes in different time spans. The results clearly show that zones A, B, and E have the high probability for the earthquake occurrence comparing with the other seismic zones. All seismic source zones have 100 % probability that the earthquake with magnitude ≤6.0 generates in the next 25 years. For the Sagaing Fault Zone (zones C), the next Mw 7.2–7.5 earthquake may generate in this zone within the next two decades and should be aware of the prospective Mw 8.0 earthquake. Meanwhile, in Sumatra-Andaman Interplate (zone A), an earthquake with a magnitude of Mw 9.0 can possibly occur in every 50 years. Since an earthquake of magnitude Mw 9.0 was recorded in this region in 2004, there is a possibility of another Mw 9.0 earthquake within the next 50 years.  相似文献   

20.
Natural Hazards - An earthquake of moment magnitude Mw 5.7 shook the northeastern region of India on 3 January 2017 at 14 h:39 min:0.5 s local time. The duration of the...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号