首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Geochemistry》1998,13(7):841-850
Increasing fumarolic activity at Popocatépetl volcano has been observed since 1992. On 21 December 1994, a series of eruptions at Popocatépetl volcano produced ash emissions that reached the city of Puebla located to the east of the volcano. Eruptive activity declined sharply from June 1995 until 5 March 1996 when ash emissions and fumarole flux increased to levels similar to those of December, 1994. Intermittent ash production has continued to 1997. Ash was sampled at more than 80 different locations around the volcano during the various eruptions. Gas produced during an eruption may be scavenged by the ash and leaching of the ash with water allows determination of the concentration of ions adsorbed from the volcanic gases. The leachates obtained from eruptions from December 1994 until 28 November 1996, were analyzed by potentiometry with selective electrodes for Cl and F and by ion chromatography for SO42−. Minor cations (Co2+, Pb2+, Zn2+, Cu2+, Mn2+, Sb2+, Ti4+, Cd2+, Tl3+) were determined in some samples by ICP-MS. The highest concentrations of Cl and SO42− were obtained for the 21 December 1994 ash at the start of the eruptions with 19 550 ppm SO42− and 1028 ppm Cl and for the emission which occurred on 5 March 1996, with 21 775 ppm SO42− and 1250 ppm Cl. At both times a concentration decrease was observed, but with particular trends in each case. The composition of the ash leachates suggests that the two Popocatépetl eruptions in 1994 and 1996 began with phreatic and magmatic components. The increase in F and the decrease in the Cl/F ratio may indicate a heating up of the volcanic system at the beginning of March, 1996, one week before the outpouring of lava in the bottom of the crater on 20 March 1996. The concentration trends for SO42−, Cl and F suggest that during the 1996 activity, the system attained higher temperatures than in 1994–1995.  相似文献   

2.
Roca Redonda volcano is a mostly submarine shield volcano that rises nearly 3 km from the adjacent seafloor. Over twenty lava flows and palagonite tuff are exposed in a 60 meter high oblong outcrop above sea level, and several other flows are exposed in the shallow water surrounding the islet. Thick, slightly alkaline picritic flows form the base of the section. Thinner picrites interbedded with sparsely porphyritic alkali-olivine basaltic pahoehoe toes characterize the upper section. The subaerial section probably records the filling of a palagonite tuff cone with younger lavas. Numerous fumaroles that may have a magmatic component are present in the shallow (<30 m) submarine zone and indicate that the volcano is probably still active. Three lava types are exposed: the basal picrites with 19% > MgO > 14%, high-Mg basalts with MgO of about 9%, and low-Mg basalts with MgO of about 6%. The Sr and Nd isotopic ratios of the three lava types are within analytical uncertainty. Olivine compositions indicate that the picrites are basaltic liquids that have accumulated olivine whose composition is in equilibrium with the host basaltic liquid. Apparently, basaltic magmas percolated through dunite and troctolite that had crystallized from slightly older Roca Redonda basaltic magma. Lavas from Roca Redonda have enriched trace element contents and isotopic ratios relative to nearby Wolf volcano, but they are quite similar to lavas from Cerro Azul and Ecuador volcanoes. The common characteristic of these volcanoes is that they lie on the periphery of the archipelago and are in a stage of subaerial growth. This suggests that Galápagos volcanoes may go through a juvenile alkaline stage before a mature tholeiitic stage, analogous to the Loihi stage of Hawaiian volcanism. A low 3He/4He ratio in olivine from one of the picrites indicates a small contribution by the Galápagos mantle plume. Received: 15 December 1997 / Accepted: 6 May 1998  相似文献   

3.
Late Pleistocene tephras derived by large explosive volcanic eruptions are widespread in the Mediterranean and surrounding areas. They are important isochronous markers in stratigraphic sections and therefore it is important to constrain their sources. We report here tephrochronology results using multiple criteria to characterize the volcanic products of the Late Pleistocene Ciomadul volcano in eastern–central Europe. This dacitic volcano had an explosive eruption stage between 57 and 30 ka. The specific petrological character (ash texture, occurrence of plagioclase and amphibole phenocrysts and their compositions), the high-K calc-alkaline major element composition and particularly the distinct trace element characteristics provide a strong fingerprint of the Ciomadul volcano. This can be used for correlating tephra and cryptotephra occurrences within this timeframe. Remarkably, during this period several volcanic eruptions produced tephras with similar glass major element composition. However, they differ from Ciomadul tephras by glass trace element abundances, ratios of strongly incompatible trace elements and their mineral cargo that serve as discrimination tools. We used (U-Th)/He zircon dates combined with U-Th in situ rim dates along with luminescence and radiocarbon dating to constrain the age of the explosive eruptions of Ciomadul that yielded distal tephra layers but lack of identified proximal deposits.  相似文献   

4.
5.
The Galeras volcanic complex, located in the Nariño department, SW Colombia, includes the most historically active volcano in the country, Galeras, a 4276 m high stratovolcano located 9 km west of the city of San Juan de Pasto (400,000 inhabitants). The area is also affected by the continental faulting represented by the Buesaco, Aranda and Pasto faults belonging to one of the most seismically active structures in Colombia, the Romeral fault system. Several moderate to strong shallow earthquakes affected the city of San Juan de Pasto and its neighbouring region since the XVII century. The coexistence of an active volcanic complex and an active fault system complicates the study and interpretation of the different processes taking place in the region as well as the identification of any connection or interaction among them.The reactivation of the volcano in 1989 was characterized by three main magmatic events: (1) a series of Vulcanian eruptions during 4–9 May 1989, with semi-continuous ash emissions from a secondary crater; (2) the emplacement of an andesitic lava dome at the bottom of the main crater from September 1990 until December 1991; and (3) six Vulcanian eruptions from the main crater during 1992–1993, with destruction of most of the dome during the first one on 16 July 1992. During the same period, four earthquake sequences were located in a limited area N and NE of Galeras volcano on August–September 1989 (AUG1989), April–June 1993 (APR1993), November–December 1993 (NOV1993) and March–August 1995 (MAR1995). The last one included a Ml4.7 main shock on 4 March 1995 producing moderate to high damage in the epicentral region (MSK maximum intensity VIII), and in the city of San Juan de Pasto (VI–VII). The last damaging earthquake in the region was a MSK-intensity VIII–IX in 1947.A detailed analysis of the spatio-temporal characteristics of the four earthquake sequences allowed identifying their different origin and suggesting some interrelationship between the reactivated eruptive process and the contemporaneous seismic activity. The AUG1989 sequence presents a typical volcanic swarm-like pattern most probably related with the process of magma intrusion from depth at the beginning of the volcano's reactivation. The APR1993, the NOV1993 and the MAR1995 sequences show a clear tectonic origin with events occurring on rupture planes almost vertical that can be associated to the active faults in the area, The seismogenic process of these three sequences could have been activated or accelerated by the main eruptions during 1992–1993.These results suggest that constrains provided by improved relocations and the detailed analysis of the space–time characteristics of earthquake sequences in Galeras volcanic environment allow to establish the different generation mechanisms involved and to suggest feasible explanations on the possible interrelationships of the magmatic–volcanic processes and the seismicity observed.  相似文献   

6.
Kelut volcano, East Java, is an active volcanic complex hosting a summit crater lake that has been the source of some of Indonesia’s most destructive lahars. In November 2007, an effusive eruption lasting approximately 7 months led to the formation of a 260-m-high and 400-m-wide lava dome that displaced most of the crater lake. The 2007–2008 Kelut dome comprises crystal-rich basaltic andesite with a texturally complex crystal cargo of strongly zoned and in part resorbed plagioclase (An47–94), orthopyroxene (En64–72, Fs24–32, Wo2–4), clinopyroxene (En40–48, Fs14–19, Wo34–46), Ti-magnetite (Usp16–34) and trace amounts of apatite, as well as ubiquitous glomerocrysts of varying magmatic mineral assemblages. In addition, the notable occurrence of magmatic and crustal xenoliths (meta-basalts, amphibole-bearing cumulates, and skarn-type calc-silicates and meta-volcaniclastic rocks) is a distinct feature of the dome. New petrographical, whole rock major and trace element data, mineral chemistry as well as oxygen isotope data for both whole rocks and minerals indicate a complex regime of magma-mixing, decompression-driven resorption, degassing and crystallisation and crustal assimilation within the Kelut plumbing system prior to extrusion of the dome. Detailed investigation of plagioclase textures alongside crystal size distribution analyses provide evidence for magma mixing as a major pre-eruptive process that blends multiple crystal cargoes together. Distinct magma storage zones are postulated, with a deeper zone at lower crustal levels or near the crust-mantle boundary (>15 km depth), a second zone at mid-crustal levels (~10 km depth) and several magma storage zones distributed throughout the uppermost crust (<10 km depth). Plagioclase-melt and amphibole hygrometry indicate magmatic H2O contents ranging from ~8.1 to 8.6 wt.% in the lower crustal system to ~1.5 to 3.3 wt.% in the mid to upper crust. Pyroxene and plagioclase δ18O values range from 5.4 to 6.7 ‰, and 6.5 to 7.6 ‰, respectively. A single whole rock analysis of the 2007–2008 dome lava gave a δ18O value of 7.6 ‰, whereas meta-basaltic and calc-silicate xenoliths are characterised by δ18O values of 6.2 and 10.3 ‰, respectively. Magmatic δ18O values calculated from individual pyroxene and plagioclase analyses range from 5.7 to 7.0 ‰, and 6.2 to 7.4 ‰, respectively. This range in O-isotopic compositions is explained by crystallisation of pyroxenes in the lower to mid-crust, where crustal contamination is either absent or masked by assimilation of material having similar δ18O values to the ascending melts. This population is mixed with isotopically distinct plagioclase and pyroxenes that crystallised from a more contaminated magma in the upper crustal system. Binary bulk mixing models suggest that shallow-level, recycled volcaniclastic sedimentary rocks together with calc-silicates and/or limestones are the most likely contaminants of the 2007–2008 Kelut magma, with the volcaniclastic sediments being dominant.  相似文献   

7.
Summary We present a detailed isotopic study of volcanic rocks emitted from Somma–Vesuvius volcano during three periods of interplinian activity: Protohistoric (3550 y B.P. to 79 A.D.), Ancient Historic (79 to 472 A.D.) and Medieval (472 to 1631 A.D.). Pb isotopic compositions of two acid leached fractions and whole rock residues of 37 whole rock samples (determined by Somma et al., 2001) show that each of the three interplinian periods is distinguished by small, systematic, and unique uranogenic and thorogenic Pb isotopic trends. This key and novel feature is compatible with the notion that the Pb isotopic data reflect small-scale source heterogeneity operating over relatively short periods of time. From this representative group of samples, a selected set of nine whole rocks were analysed for Th isotopes. 232Th/238U ratios in the source can be obtained independently from Pb and from Th isotopes. Those obtained from Pb isotopes represent source ratios, time-integrated over the whole age of the Earth; they range from 3.9 to 4.1. 232Th/238U obtained from Th isotopes are those of the present source. They are lower, and cluster around 3.5; this difference probably indicates recent U enrichment of the present source.The behaviour of Pb, as inferred by its isotopic ratios, is quite distinct from that of Sr and Nd isotopes: Pb isotope variations are not correlated to Sr or Nd isotope variations. The isotopic contrast is compatible with the idea that the isotopes were decoupled during magmatic production, evolution, and ascent through the crust. Thus, the Pb isotopes do not reflect the effects of the same processes as in the case of the Sr and Nd isotopes, or, as we also favor, they do not necessarily reflect the same source contributions into the magmas. Moreover, the Pb isotopic evolution of the interplinian rocks chiefly reflects mixing, driven by processes that are superimposed on, and independent of, other source contributions that determine the isotopic compositions of Sr and Nd. We suggest that reactions between magmas and fluids transported Pb and U, but not Sr. These data show that isotope mixing in the mantle is active at different times and scales.  相似文献   

8.
The results of hydrogeochemical observations on the Yuzhno-Sakhalinsk mud volcano in 2010–2014 are considered. The chemical analysis of samples of mud–volcanic waters was carried out at various analytical centers, which is similar to the common situation where hydrochemical data for a volcano are obtained by different researchers. It is shown that the chemical composition of the mud–volcanic waters is relatively stable in time and space (for different gryphons of the volcano). This allows us to determine the characteristic range of hydrogeochemical indicators. For each year of observations, the coefficients of variation for the concentrations of Na, Mg, Ca, K, and HCO3 mostly range from 10 to 30%. However, the concentrations analyzed in individual samples may differ significantly from each other. These natural variations are a likely source of errors in the interpretation of hydrochemical data. In addition, it is necessary to account for the specifics of mud–volcanic waters as an object of analytical chemical investigations.  相似文献   

9.
International Journal of Earth Sciences - Three-dimensional geophysical modelling of the early Late Miocene Pásztori volcano (ca. 11–10&nbsp;Ma) and adjacent area in the Little...  相似文献   

10.
Volcanism associated with the middle Proterozoic Gawler Range acid volcano‐plutonic province was initiated in the Kokatha area by the construction on Archaean basement of a large stratovolcano composed mainly of tholeiitic basalt and potassic basaltic‐andesite erupted possibly from a mantle‐derived ultramafic diapir.

Crustal melting above the diapir generated acid magma, rich in silica and potassium, which rose by major block‐stoping to form a subvolcanic magma chamber. Leakage from this chamber during the premonitory caldera phase gave rise to small explosive and effusive eruptions around an incipient ring‐fracture zone. In the caldera phase, the eruption of voluminous rhyodacite to dacite ignimbrite from the subvolcanic magma chamber resulted in collapse of the roof partway through the eruption to form the Chandabooka caldera, 15 x 10 km across: the ignimbrite comprises a thick compound cooling unit, the Chandabooka Dacite, of which both the caldera and outflow facies are preserved. Resurgent doming and subsequent uplift of the caldera block by 1 km followed in the post‐caldera phase, accompanied by minor acidic volcanism. Flat‐roofed stocks of the primitive S‐type Hiltaba Granite and a major dyke swarm intruded the volcanic pile to complete the volcano‐plutonic episode.  相似文献   

11.
This study presents a pre-eruptive magma storage model for the rhyodacite and andesite magmas erupted during the 3430 yBP caldera-forming eruption of Aniakchak volcano, Alaska, derived from phase equilibria experiments and petrological data. The compositions of Fe–Ti oxide pairs from the early erupted Plinian rhyodacite pumice yield core temperatures of 871–900°C, with rims up to ∼942°C, and fO2 from −10.6 to −11.8 log units. Melt inclusions entrapped in plagioclase phenocrysts have H2O contents between 3 and 5 wt%, estimated by FTIR and electron microprobe volatiles by difference methods, with no detectable CO2. Assuming water saturation, this corresponds to entrapment pressures between ∼65 and 150 MPa. Phase equilibria results reproduce the natural phase assemblages at of 95–150 MPa at 870–880°C, assuming water saturation. A mismatch in experimental versus natural glass SiO2 and Al2O3, and MELTS models for H2O-undersaturated conditions indicate that the rhyodacite may not have been H2O saturated. MELTS models with and P total of 125–150 MPa at 870–880°C reproduce the natural groundmass glass Al2O3 composition best, indicating the magma may have been slightly H2O undersaturated. Those pressures correspond to storage at 4.5–5.4 km depth in the crust. MELTS models and VBD estimates from melt inclusions in titanomagnetite grains from the andesite indicate pre-eruptive conditions of ∼1,000°C and > 110 MPa, corresponding to a minimum residence depth of ∼4.1 km assuming water saturation or greater if the magma was H2O undersaturated. Previous geochemical studies indicate separate histories of the two magmas, though they retain some evidence that they are ultimately related through fractional crystallization processes. Analogous to the 1912 Novarupta magmas, the rhyodacite and andesite presumably originated within the same crystal mush zone beneath the edifice, yet were separated laterally and underwent different degrees of crustal assimilation. The andesite must have resided in close proximity, with ascent occurring in response to movement of the rhyodacite, and resulting in extensive syn-eruptive mingling.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

12.
《International Geology Review》2012,54(11):1398-1416
ABSTRACT

The stratabound Tianhu iron deposit, with a reserve of 104 Mt at 42% Fe, is located in the eastern part of the Central Tianshan zone in the southern part of the Central Asian Orogenic Belt. The deposit hosts schist, quartzite, marble, amphibolite, and granitic gneiss belonging to the Tianhu Group. Laser ablation inductively coupled plasma mass spectrometry was used to perform zircon U–Pb geochronology, bulk-rock geochemistry, and in situ zircon Hf isotope analyses of the metavolcanic host rocks for constraining the timing and genesis of the Tianhu iron deposit. According to the newly determined age constraints of 452 ± 3 and 477 ± 4 Ma, the iron deposit was concluded to be Ordovician in age. Geochemistry and zircon Lu–Hf isotope analyses suggested that the host rocks of the deposit represent metamorphosed arc-type volcanic rocks generated by the partial melting of a lower crustal source. Combined with geological and ore petrographic characteristics, the Tianhu iron deposit is interpreted to be of volcano–sedimentary origin with enrichment during subsequent metamorphism. The early Palaeozoic marks a critical iron mineralization epoch in the Eastern Tianshan area. The results also support the model of the Central Tianshan area as a volcanic-arc during the early Palaeozoic, associated with the subduction of the Northern Tianshan Ocean.  相似文献   

13.
Global positioning system (GPS) and satellite-based InSAR (Interferometric Synthetic Aperture Radar) measurements of the subsidence and uplift of a populated area of Sidoarjo, East Java are due to the eruption of the Lusi mud volcano (2006–present). These data are the first direct quantitative measurements of deformation due to the growth of a mud volcano edifice. The GPS data were recorded over periods of a few hours to several months and show that between June 2006 and September 2007, the earth’s surface has been subsiding at rates of 0.1–4 cm/day. Maximum rates of subsidence occurred in an area 300–400 m to the northwest of the main mud volcano vent. Horizontal displacements were 0.03–0.9 cm/day and were also towards this area. In general uplifts of up to 0.09 cm/day were recorded in areas outside of the edifice. Changes in elevation measured using satellite imagery (InSAR technique) provide regional datasets of subsidence and uplift. They confirm that during the first year a roughly circular area was undergoing sag-like subsidence centered to the northwest of the main vent and that uplift was occurring 3–4 months after the initiation of the eruption due to the movement Watukosek fault system. Subsidence occurred due to the weight of mud and man-made dams and the collapse of the overburden due to removal of mud from the subsurface. Assuming constant rates of subsidence of 4 cm/day, then in the centre of the edifice there would be up to 44 m of subsidence in 3 years, and up to 16 m in 10 years. The mud volcano is now in a self-organizing state with new fluid conduits forming as a result of the collapse. An erratum to this article can be found at  相似文献   

14.
The Soufrière Hills volcano on Montserrat has for the past 12 years been erupting andesite with basaltic to basaltic–andesite inclusions. The andesite contains a wide variety of phenocryst textures and strongly zoned microlites. Analysis of minor elements in both phenocrysts and microlites allows us to put detailed constraints on their origins. Compositions of clinopyroxene, from overgrowth rims on quartz and orthopyroxene and coarse-grained breakdown rims on hornblende, are identical to those from the mafic inclusions, indicating that these rims form during interaction with mafic magma. In contrast, resorbed quartz and reversely zoned orthopyroxenes form during heating. Microlites of plagioclase and orthopyroxene are chemically distinct from the phenocrysts, being enriched in Fe and Mg, and Al and Ca respectively. However, microlites of plagioclase, orthopyroxene and clinopyroxene are indistinguishable from the compositions of these phases in the mafic inclusions. We infer that the inclusions disaggregated under conditions of high shear stress during ascent in the conduit, transferring mafic material into the andesite groundmass. The mafic component of the system is therefore greater than previously thought. The presence of mafic-derived microlites in the andesite groundmass also means that care must be taken when using this as a starting material for phase equilibrium experiments.  相似文献   

15.
Kahoolawe volcano (~10×17 km) forms one of the eight major Hawaiian islands. Access for geologic sampling has long been restricted due to military and preservation policies. However, limited visits to Kahoolawe in the 1980s yielded >200 samples, many of which have since been used to study the volcano within the framework of Hawaiian shield and mantle source geochemistry, petrology, mineralogy, and igneous processes.Kahoolawe is a tholeiitic shield with tholeiitic caldera-filling lavas, and at least seven postshield vents that erupted tholeiitic and (sparse) alkalic lavas. On smaller scales are a gabbro intrusion and ultramafic and gabbroic xenoliths in some postshield lavas. There is no evidence for rejuvenated volcanism. In its structural setting, Kahoolawe lies along the “Loa” trend of Hawaiian shields.Major element compositions of shield and caldera-filling lavas are similar and cluster at ~6–7 wt% MgO, range from ~5.5 to 16 wt% MgO, and include ~9 wt% MgO examples that can be modeled as parental to the evolved lavas. For example, least squares mass balancing demonstrates that from ~15% to 30% crystallization of olivine (±orthopyroxene), clinopyroxene, and plagioclase accounts for the ~5.5–6 wt% MgO range of tholeiitic lavas. Greater differentiation occurred in the gabbro (diabasic) intrusive body as a segregation vein with ~2.9 wt% MgO, and extreme differentiation produced local, small-volume rhyolitic melts that segregated into lava vesicles. Postshield lavas are mainly tholeiitic, have ~5–7 wt% MgO, and overlap shield compositions. Some are alkalic, as low as ~3.9 wt% MgO (hawaiite), and can be modeled as liquids after a ~9 wt% MgO alkalic magma crystallized ~30% olivine, clinopyroxene, plagioclase, and magnetite.Important aspects of Sr, Nd, Hf, and Pb isotopic ratios in Kahoolawe shield and caldera-filling lavas are slightly higher 87Sr/86Sr than in Koolau shield lavas (Oahu island; Makapuu-stage; e.g., Koolau mantle ‘endmember’) when compared at a given 143Nd/144Nd (e.g., ~0.7042 at 0.5128), 206Pb/204Pb largely at the low end of the range for Hawaiian shields (e.g., ~18), and εHf generally comparable to the values of other Hawaiian shields and ocean islands (e.g., εHf 8 at εNd 4). The isotopic ratios overall suggest small-scale source heterogeneity, considering the island size, and that Kahoolawe shield and caldera lavas were derived from a Hawaiian plume source containing recycled oceanic crust of gabbro and sediments. Based on certain geochemical indicators, however, such as Ce/Sr and La/Nb vs. 87Sr/86Sr, the source contained slightly less gabbro component than other shield sources (e.g., Koolau). Isotopic data for Kahoolawe postshield lavas are scarce, but those available generally overlap the shield data. However, ratios among certain alteration-resistant incompatible trace elements (e.g., Zr/Nb) discriminate some postshield alkalic from shield lavas. But because the different ratios for those postshield lavas can be explained by smaller partial-melting percentages of the shield source and by differentiation, neither isotopes nor trace elements identify postshield magmas as originating in a source unlike that for the shield lavas.  相似文献   

16.
This study presents laser step-heating 40Ar/39Ar age determinations of basaltic lava samples from Tamu Massif, the oldest and largest edifice of the submarine Shatsky Rise in the northwest Pacific and Earth’s proposed largest volcano. The rocks were recovered during Integrated Ocean Drilling Program Expedition 324, which cored 160 m into the igneous basement near the summit of Tamu Massif. The analyzed lavas cover all three major stratigraphic groups penetrated at this site and confirm a Late Jurassic/Early Cretaceous age for the onset of Shatsky Rise volcanism. Lavas analyzed from the lower and middle section of the hole yield plateau ages between 144.4 ± 1.0 and 143.1 ± 3.3 Ma with overlapping analytical errors (2σ), whereas a sample from the uppermost lava group produced a significantly younger age of 133.9 ± 2.3 Ma suggesting a late or rejuvenated phase of volcanism. The new geochronological data infer minimum (average) melt production rates of 0.63–0.84 km3/a over a time interval of 3–4 million years consistent with the presence of a mantle plume.  相似文献   

17.
Evaluating the magma depth and its physical properties is critical to conduct a better geophysical assessment of magma chambers of caldera volcanoes that may potentially cause future volcanic hazards. To understand pre-eruptive conditions of a magma chamber before its first appearance at the surface, this paper describes the case of Hijiori caldera volcano in northeastern Japan, which emerged approximately 12,000 years ago at a place where no volcano ever existed. We estimated the depth, density, bulk modulus, vesicularity, crystal content, and bulk H\(_2\)O content of the magma chamber using petrographic interpretations, bulk and microchemical compositions, and thermodynamic calculations. The chemical mass balance calculations and thermodynamic modeling of the erupted magmas indicate that the upper portion of the Hijiori magmatic plumbing system was located at depths between 2 and 4 km, and had the following characteristics: (1) pre-eruptive temperature: about 780 \(^{\circ }\)C; (2) bulk magma composition: 66 ± 1.5 wt% SiO\(_{2}\); (3) bulk magmatic H\(_2\)O: approximately 2.5 wt%, and variable characteristics that depend on depth; (4) crystal content: \(\le\)57 vol%; (5) bulk modulus of magma: 0.1–0.8 GPa; (6) magma density: 1.8–2.3 g/cm3; and (7) amount of excess magmatic H\(_2\)O: 11–32 vol% or 48–81 mol%. The range of melt water contents found in quartz-hosted melt inclusions (2–9 wt%) suggests the range of depth phenocrysts growth to be wide (2\(\sim\)13 km). Our data suggest the presence of a vertically elongated magma chamber whose top is nearly solidified but highly vesiculated; this chamber has probably grown and re-mobilized by repeated injections of a small amount of hot dacitic magma originated from the depth.  相似文献   

18.
In this study potential iron isotope fractionation by magmatic processes in the Earth's crust was systematically investigated. High precision iron isotope analyses by MC-ICP-MS were performed on a suite of rock samples representative for the volcanic evolution of the Hekla volcano, Iceland. The whole series of Hekla's rocks results from several processes. (i) Basaltic magmas rise and induce partial melting of meta-basalts in the lower part of the Icelandic crust. The resulting dacitic magma evolves to rhyolitic composition through crystal fractionation. During this differentiation the δ56/54FeIRMM-014 values increase successively from 0.051 ± 0.021‰ for the primitive dacites to 0.168 ± 0.021‰ for the rhyolites. This increase can be described by a Rayleigh fractionation model using a constant bulk fractionation factor between all mineral phases (M) and the silicate liquid (L) of Δ56/54FeM–L = ? 0.1‰. (ii) The basaltic magma itself differentiates by crystal fractionation to basaltic andesite composition. No Fe isotope fractionation was found in this series. All basalts and basaltic andesites have an average δ56/54FeIRMM-014 value of 0.062 ± 0.042‰ (2SD, n = 9), identical to mean terrestrial basaltic values reported in previous studies. This observation is consistent with the limited removal of iron from the remaining silicate melt through crystal fractionation and small mineral-melt Fe isotope fractionation factors expected at temperatures in excess of 1050 °C. (iii) Andesites are produced by mixing of basaltic andesite with dacitic melts. The iron isotope composition of the andesites is matching that of the basaltic andesites and the less evolved dacites, in agreement with a mixing process. In the Hekla volcanic suite Li concentrations are positively correlated with indicators of magma differentiation. All Hekla rocks have δ7Li values typical for the upper mantle and demonstrate the absence of resolvable Li isotope fractionation during crystal fractionation. As a fluid-mobile trace element, Li concentrations and isotopes are a potential tracer of magma/fluid interaction. At Hekla, Li concentrations and isotope compositions do not indicate any extensive fluid exsolution. Hence, the heavy Fe isotope composition of the dacites and rhyolites can be predominately attributed to fractional crystallisation. Iron isotope analyses on single samples from other Icelandic volcanoes (Torfajökull, Vestmannaeyjar) confirm heavy Fe isotope enrichment in evolving magmas. Our results suggest that the iron isotope composition of highly evolved crust can be slightly modified by magmatic processes.  相似文献   

19.
The activity of the Damavand volcano (Central Alborz, northern Iran) began 1.8 Ma ago and continued up to 7 ka BP. Although the volcanic suite is clearly of shoshonitic affinity, only two petrographic types can be distinguished in the studied lavas: (1) weakly differentiated absarokites (49 < %SiO2 < 51), scattered around the volcano but with a regional extension, (2) highly differentiated banakites (59 < %SiO2 < 63), which form the bulk of the 4,000 m thick volcanic pile. All lavas are alkalic (3.7 < %K2O < 5), REE and LILE-rich (e.g., 85 < La < 148 ppm; 9 < Th < 32 ppm) and show highly fractionated REE patterns (69 < La/Yb < 115) and pronounced Nb–Ta negative anomalies. The absarokites are characterised by Sr (0.7045–0.7046) and Nd (0.51266–0.51269) isotope compositions close to the Bulk Earth values, and distinct from those of the banakites (0.7047 < 87Sr/86Sr < 0.7049, 0.51258 < 143Nd/144Nd < 0.51262). The Pb isotope ratios are also slightly lower in the absarokites than in the banakites (18.71 < 206Pb/204Pb < 18.77, 15.62 < 207Pb/204Pb < 15.63, 38.85 < 208Pb/204Pb < 38.91, and 18.77 < 206Pb/204Pb < 18.84, 15.62 < 207Pb/204Pb < 15.64, 38.94 < 208Pb/204Pb < 39.06, respectively). Overall, there is a clear tendency towards higher Sr, Pb and lower Nd isotope ratios with increasing degree of differentiation. This study suggests that the absarokites result from a low degree of partial melting (∼5%) of a highly metasomatized mantle source, which inherited its characteristics from an old subduction setting. The initiation of volcanic activity 1.8 Ma ago results from variations in the lithospheric thermal regime, probably related to lithospheric delamination as proposed for Anatolia (Pearce et al. 1990). The banakites are mainly generated by extensive fractional crystallisation (∼70%) of the absarokitic magma, with a limited amount (a few percents) of assimilation of an old crustal component, in the form of bulk assimilation or AFC processes, which both can explain the Sr, Nd and Pb isotope data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号