首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The level of exposure to the impact of natural and man-made hazards of the main critical facilities at Grand Cayman (GC), Cayman Islands, was determined using the methodology developed by the National Oceanic and Atmospheric Administration Coastal Services Center. Previous studies identified hurricanes as the most important natural hazard for GC. However, other hazards include earthquakes, tsunamis and explosions or leaks of fuel storage tanks. Our results indicate that: (1) About 82% of the emergency response infrastructure, 95% of the government facilities, and 85% of the utilities have a level of exposure from low to moderate; (2) only 12% of all identified critical facilities at GC are highly exposed; (3) large explosions or leaks of the Airport Texaco Fuel Depot, the local fuel pipeline, and the Home Gas Terminal could impact nearby critical infrastructure. The facilities identified with a high level of exposure are as follows: the Bodden Town Clinic and Police Station, the West Bay Fire Station, the Georgetown Dock and Port, and the Esso and Texaco Fuel terminals. Most portions of the coastal roads are moderately exposed to natural and man-made hazards. The most exposed sections are four short segments of the road system located along the North Sound, Little Sound and Eastern West Bay area. In some cases, the high exposure of critical facilities stems from their location on the coastline. In other cases, however, adequate policies to either protect or to relocate these facilities would help to reduce their level of exposure to both natural and man-made hazards.  相似文献   

2.
The discussion on the social-ecological dimensions of hazards is constantly evolving. This paper explores the trajectory of research relating to hazards and their impact on vulnerable human populations. Interpretations of disaster risk have included estimating losses in terms of human life and property, and analyzing the social mechanisms in place that exacerbate or mitigate a population’s sensitivity to hazard events. In keeping with recent trends in research relating to disaster risk, the paper focuses on the social dimension of vulnerability and the contribution of social structures and relationships in building community resilience. Institutional frameworks and policies in particular determine the quantity and quality of resources and services available to people that contribute to resilience over time. The hazard-risk-location-model (HRLM) is proposed that is based on re-specifying disaster risk in terms of exposure and coping ability to capture the focus on social vulnerability and resilience. The framework of the HRLM incorporates the following components: (1) linkages within existing social capital; (2) spatial variation in social and institutional frameworks; (3) positive and negative feedbacks; and (4) characteristics of the hazard event. The model contributes to the range of place-based assessments designed to address the human-environmental impacts of hazards and disasters.  相似文献   

3.
Zhu  Chonghao  Zhang  Jianjing  Liu  Yang  Ma  Donghua  Li  Mengfang  Xiang  Bo 《Natural Hazards》2020,101(1):173-194

Communities everywhere are being subjected to a variety of natural hazard events that can result in significant disruption to critical functions. As a result, community resilience assessment in these locations is gaining popularity as a means to help better prepare for, respond to, and recover from potentially disruptive events. The objective of this study was to identify key vulnerabilities relevant to addressing rural community resilience through conducting an initial flood impact analysis, with a specific focus on emergency response and transportation network accessibility. It included a use case involving the flooding of a rural community along the US inland waterway system. Special consideration was given to impacts experienced by at-risk populations (e.g., low economic status, youth, and elderly), given their unique vulnerabilities. An important backdrop to this work is recognition that Federal Emergency Management Agency’s Hazus, a free, publicly available tool, is commonly recommended by the agency for counties, particularly those with limited resources (i.e., rural areas), to use in developing their hazard mitigation plans. The case study results, however, demonstrate that Hazus, as currently utilized, has some serious deficiencies in that it: (1) likely underestimates the flood extent boundaries for study regions in a Level 1 analysis (which solely relies upon filling digital elevation models with precipitation), (2) may be incorrectly predicting the number and location of damaged buildings due to its reliance on out-of-date census data and the assumption that buildings are evenly distributed within a census block, and (3) is incomplete in its reporting of the accessibility of socially vulnerable populations and response capabilities of essential facilities. Therefore, if counties base their flood emergency response plans solely on Hazus results, they are likely to be underprepared for future flood events of significant magnitude. An approach in which Hazus results can be augmented with additional data and analyses is proposed to provide a more risk-informed assessment of community-level flood resilience.

  相似文献   

4.
Transportation networks daily provide accessibility and crucial services to societies. However, they must also maintain an acceptable level of service to critical infrastructures in the case of disruptions, especially during natural disasters. We have developed a method for assessing the resilience of transportation network topology when exposed to environmental hazards. This approach integrates graph theory with stress testing methodology and involves five basic steps: (1) establishment of a scenario set that covers a range of seismic damage potential in the network, (2) assessment of resilience using various graph-based metrics, (3) topology-based simulations, (4) evaluation of changes in graph-based metrics, and (5) examination of resilience in terms of spatial distribution of critical nodes and the entire network topology. Our case study was from the city of Kathmandu in Nepal, where the earthquake on April 25, 2015, followed by a major aftershock on May 12, 2015, led to numerous casualties and caused significant damage. Therefore, it is a good example for demonstrating and validating the developed methodology. The results presented here indicate that the proposed approach is quite efficient and accurate in assisting stakeholders when evaluating the resilience of transportation networks based on their topology.  相似文献   

5.
The study addresses disaster risks in Delhi through a resilience approach. It utilizes the Climate Disaster Resilience Index (CDRI) tool, which assesses disaster resilience from five dimensions: physical, social, economic, institutional, and natural. Each dimension comprises 5 parameters, and each parameter consists of 5 variables. The study is carried out in the nine revenue districts of Delhi and reveals that East Delhi is least resilient and New Delhi is most resilient. The CDRI analysis in East Delhi points out the urgent need to focus on key parameters such as housing and land use, population, intensity and frequency of natural hazards, ecosystem services, and land use in natural terms. On the other hand, New Delhi is the most resilient due to all five dimensions, where most significant parameters responsible for its high resilience are housing and land use, population, income, employment, intensity and frequency of natural hazards, ecosystem services, and land use in natural terms. In addition, the overall results of all nine districts show an inverse relationship between resilience score and population density. For example, districts with higher population density show low resilience and vice versa. Moreover, districts located on hazard-prone areas show low resilience. For example, East Delhi and North East Delhi scored low resilience because they both are situated on the Yamuna flood catchment areas. The study further develops key suggestions that are required to address disaster risk in all nine districts of Delhi and discusses future implications of CDRI to address city??s vulnerability. The approach??s distinctness is reflected through its consideration of micro-level diversities and presents some implications to resilience.  相似文献   

6.
Challenges of analyzing multi-hazard risk: a review   总被引:9,自引:6,他引:3  
Many areas of the world are prone to several natural hazards, and effective risk reduction is only possible if all relevant threats are considered and analyzed. However, in contrast to single-hazard analyses, the examination of multiple hazards poses a range of additional challenges due to the differing characteristics of processes. This refers to the assessment of the hazard level, as well as to the vulnerability toward distinct processes, and to the arising risk level. As comparability of the single-hazard results is strongly needed, an equivalent approach has to be chosen that allows to estimate the overall hazard and consequent risk level as well as to rank threats. In addition, the visualization of a range of natural hazards or risks is a challenging task since the high quantity of information has to be depicted in a way that allows for easy and clear interpretation. The aim of this contribution is to give an outline of the challenges each step of a multi-hazard (risk) analysis poses and to present current studies and approaches that face these difficulties.  相似文献   

7.
Land-use planners have a critical role to play in building vibrant, sustainable and hazard resilient communities in New Zealand. The policy and legal setting for natural hazards planning provides a solid foundation for good practice. But there are many examples of ‘bad practice’ that result in unnecessary risks and, in some cases, exposure to repeat events and potentially devastating impacts. Much, therefore, remains to be done to improve hazards planning policy and practice in New Zealand. This article explores the questions: What role does land-use planning play in managing hazard risks in New Zealand; and what needs to be done to reduce hazard risks and build community resilience? The article starts by describing the milieu within which natural hazards planning takes place. It goes onto outline the stakeholders and institutional and legal setting for natural hazards planning in New Zealand, including barriers to realising the potential of natural hazards planning. This synthesis reveals a number of ‘burning issues’, including the need to: (a) Improve understanding about the nature of hazards; (b) Prioritise risk avoidance (reduction) measures; (c) Provide national guidance for communities exposed to repeat events and address the relocation issue and (d) Mainstream climate change adaptation. Each ‘burning issue’ is discussed, and priority actions are recommended to realise the potential of land-use planning to reduce natural hazard risks and build community resilience in New Zealand. Ultimately, the challenge is to develop a cooperative hazards governance approach that is founded on coordinated policies, laws and institutions, cooperative professional practice and collaborative communities.  相似文献   

8.
Hazard research has made significant strides over the last several decades, answering critical questions surrounding vulnerability and recovery. Recently, resilience has come to the forefront of scholarly debates and practitioner strategies, yet there remain challenges implementing resilience in practice, the result of a complex web of research that spread across numerous fields of study. As a result, there is a need to analyze and reflect on the current state of resilience literature. We reviewed 241 journal articles from the Web of Science and Engineering Village databases from 1990 to 2015 to analyze research trends in geographic location of studies, methods employed, units of analysis, and resilience dimensions studied, as well as correlations between each of these categories. The majority of the studies analyzed were conducted in North America, used quantitative methods, focused on infrastructure and community units of analysis, and studied governance, infrastructure, and economic dimensions of resilience. This analysis points to the need to: (1) conduct studies in developing country contexts, where resilience is particularly important; (2) employ mixed-methods for additional depth to quantitative studies; (3) connect units of analysis, such as infrastructure and community; and (4) expand on the measurement and study of environmental and social dimensions of resilience.  相似文献   

9.
Recent natural hazards have exposed the dire consequence of damage and impact upon the built environment. It appears that one of the biggest challenges to the natural hazard mitigation community is how to improve the performance of older building and infrastructure to enhance their ability to withstand natural hazards. By improving their performance, the risk associated with buildings and infrastructure against natural hazards can be mitigated. Within the context of risk management of buildings against earthquakes, the general practice is to follow a three-step process, namely screening, evaluation and mitigation. Screening constitutes a preliminary evaluation process and sets priority for detailed evaluation. Evaluation compares a built environment with code requirements for new construction and sets priority for mitigation. Mitigation can be achieved by means of retrofit or replacement. Retrofit is intended to improve the performance of built environment as required. Replacement may be the only viable solution when economical, technical and environmental considerations are account for.  相似文献   

10.
Mountain hazards such as landslides, floods and avalanches pose a serious threat to human lives and development and can cause considerable damage to lifelines, critical infrastructure, agricultural lands, housing, public and private infrastructure and assets. The assessment of the vulnerability of the built environment to these hazards is a topic that is growing in importance due to climate change impacts. A proper understanding of vulnerability will lead to more effective risk assessment, emergency management and to the development of mitigation and preparedness activities all of which are designed to reduce the loss of life and economic costs. In this study, we are reviewing existing methods for vulnerability assessment related to mountain hazards. By analysing the existing approaches, we identify difficulties in their implementation (data availability, time consumption) and differences between them regarding their scale, the consideration of the hazardous phenomenon and its properties, the consideration of important vulnerability indicators and the use of technology such as GIS and remote sensing. Finally, based on these observations, we identify the future needs in the field of vulnerability assessment that include the user-friendliness of the method, the selection of all the relevant indicators, the transferability of the method, the inclusion of information concerning the hazard itself, the use of technology (GIS) and the provision of products such as vulnerability maps and the consideration of the temporal pattern of vulnerability.  相似文献   

11.
The old potable water network in Byblos city is provided mainly from Ibrahim River nearby. Located in a seismic region, the aging network needs to tolerate seismic threats; thus, damage to the potable water network needs to be assessed. Therefore, first, enhancing infrastructure resilience is briefly discussed, noting briefly the need to bridge specifically between heritage risk management and engineering. Second, Byblos potable water network, seismicity, and geology are detailed. Third, the potable water network damage assessment methodology is presented. It encompasses hazard assessment, network inventory, damage functions, and model development. Data and maps are prepared using the Geographic Information System and then modeled in Ergo platform to obtain the damage to buried pipelines in the event of likely earthquake scenarios. Ergo is updated to consider recommended ground motion prediction equations (GMPEs) for the Middle East region, to consider amplification of the peak ground velocity in hazard maps due to different soil types, and to consider adequate fragility functions. Moreover, different Byblos geotechnical maps, landslide hazard, and liquefaction are investigated and embedded. Damage results to pipelines are dependent on the hazard maps obtained using different GMPEs and geotechnical maps. Asbestos cement pipelines will be most damaged, followed by polyethylene and then by ductile iron. Finally, recommendations are offered to consider an improved sustainable rehabilitation solution. The study provides a better understanding of Byblos potable water network and allows the establishment of a sustainable and resilience-to-earthquake preparedness strategy and recovery plan.  相似文献   

12.
《地学前缘(英文版)》2020,11(4):1203-1217
Natural hazards are often studied in isolation.However,there is a great need to examine hazards holistically to better manage the complex of threats found in any region.Many regions of the world have complex hazard landscapes wherein risk from individual and/or multiple extreme events is omnipresent.Extensive parts of Iran experience a complex array of natural hazards-floods,earthquakes,landslides,forest fires,subsidence,and drought.The effectiveness of risk mitigation is in part a function of whether the complex of hazards can be collectively considered,visualized,and evaluated.This study develops and tests individual and collective multihazard risk maps for floods,landslides,and forest fires to visualize the spatial distribution of risk in Fars Province,southern Iran.To do this,two well-known machine-learning algorithms-SVM and MARS-are used to predict the distribution of these events.Past floods,landslides,and forest fires were surveyed and mapped.The locations of occurrence of these events(individually and collectively) were randomly separated into training(70%) and testing(30%) data sets.The conditioning factors(for floods,landslides,and forest fires) employed to model the risk distributions are aspect,elevation,drainage density,distance from faults,geology,LULC,profile curvature,annual mean rainfall,plan curvature,distance from man-made residential structures,distance from nearest river,distance from nearest road,slope gradient,soil types,mean annual temperature,and TWI.The outputs of the two models were assessed using receiver-operating-characteristic(ROC) curves,true-skill statistics(TSS),and the correlation and deviance values from each models for each hazard.The areas-under-the-curves(AUC) for the MARS model prediction were 76.0%,91.2%,and 90.1% for floods,landslides,and forest fires,respectively.Similarly,the AUCs for the SVM model were 75.5%,89.0%,and 91.5%.The TSS reveals that the MARS model was better able to predict landslide risk,but was less able to predict flood-risk patterns and forest-fire risk.Finally,the combination of flood,forest fire,and landslide risk maps yielded a multi-hazard susceptibility map for the province.The better predictive model indicated that 52.3% of the province was at-risk for at least one of these hazards.This multi-hazard map may yield valuable insight for land-use planning,sustainable development of infrastructure,and also integrated watershed management in Fars Province.  相似文献   

13.
Coseismic landsliding presents a major hazard to infrastructure in mountains during large earthquakes. This is particularly true for road networks, as historically coseismic landsliding has resulted in road losses larger than those due to ground shaking. Assessing the exposure of current and planned highway links to coseismic landsliding for future earthquake scenarios is therefore vital for disaster risk reduction. This study presents a method to evaluate the exposure of critical infrastructure to landsliding from scenario earthquakes from an underlying quantitative landslide hazard assessment. The method is applied to a proposed new highway link in South Island, New Zealand, for a scenario Alpine Fault earthquake and compared to the current network. Exposure (the likelihood of a network being affected by one or more landslides) is evaluated from a regional-scale coseismic landslide hazard model and assessed on a relative basis from 0 to 1. The results show that the proposed Haast-Hollyford Highway (HHH) would be highly exposed to coseismic landsliding with at least 30–40?km likely to be badly affected (the Simonin Pass route being the worse affected of the two routes). In the current South Island State Highway network, the HHH would be the link most exposed to landsliding and would increase the total network exposure by 50–70% despite increasing the total road length by just 3%. The present work is intended to provide an effective method to assess coseismic landslide hazard of infrastructure in mountains with seismic hazard, and potentially identify mitigation options and critical network segments.  相似文献   

14.
Promper  C.  Glade  T. 《Natural Hazards》2016,82(1):111-127
Assessments of natural hazards and risks are beneficial for sustainable planning and natural hazard risk management. On a regional scale, quantitative hazard and risk assessments are data intensive and methods developed are difficult to transfer to other regions and to analyse different periods in a given region. Such transfers could be beneficial regarding factors of global change influencing the patterns of natural hazard and risk. The aim of this study was to show the landslide exposure of different elements at risk in one map, e.g. residential buildings and critical infrastructure, as a solid basis for an in-depth analysis of vulnerability and consequent risk. This enables to overcome the data intensive assessments on a regional scale and highlights the potential hotspots for risk analysis. The study area is located in the alpine foreland in Lower Austria and comprises around 112 km2. The results show the different levels of exposure, as well as how many layers of elements at risk are affected. Several exposure hotspots can be delineated throughout the study area. This allows a decision on in-depth analysis of hotspots not only by indicated locations but also by a rank resulting from the different layers of incorporated elements at risk.  相似文献   

15.
Methodology for preliminary assessment of Natech risk in urban areas   总被引:1,自引:0,他引:1  
Concern for natural hazard-triggered technological disasters (Natech disasters) in densely populated and industrialized areas is growing. Residents living in urban areas subject to high natural hazard risk are often unaware of the potential for secondary disasters such as hazardous materials releases from neighboring industrial facilities, chemical storage warehouses or other establishments housing hazardous materials. Lessons from previous disasters, such as the Natech disaster during the Kocaeli earthquake in Turkey in 1999 call for the need to manage low frequency/high consequence events, particularly in today’s densely populated areas. However, there is little guidance available on how local governments and communities can assess Natech risk. To add to the problem, local governments often do not have the human or economic resources or expertise to carry out detailed risk assessments. In this article, we propose a methodology for preliminary assessment of Natech risk in urban areas. The proposed methodology is intended for use by local government officials in consultation with the public. The methodology considers possible interactions between the various systems in the urban environment: the physical infrastructure (e.g., industrial plants, lifeline systems, critical facilities), the community (e.g., population exposed), the natural environment (e.g., delicate ecosystems, river basins), and the risk and emergency management systems (e.g., structural and nonstructural measures). Factors related to vulnerability and hazard are analyzed and qualitative measures are recommended. Data from hazardous materials releases during the Kocaeli, Turkey earthquake of August 17, 1999 are used as a case study to demonstrate the applicability of the methodology. Limitations of the proposed methodology are discussed as well as future research needs.
Norio OkadaEmail:
  相似文献   

16.
Makkah city, Saudi Arabia, is periodically exposed to flash floods that result in major human and economical damages. That is due to several factors including its rugged topography and geological structures. Hence, precise assessment of floods becomes a more vital demand in development planning. A GIS-based methodology has been developed for quantifying and spatially mapping the flood characteristics. The core of this new approach is integrating several topographic, metrological, geological, and land use data sets in a geographic information system (GIS) environment that utilizes the curve number method of flood modelling for ungauged arid catchments. Based on the estimated flood volume of sub-basins, a hazard factor has been developed to quantify the expected hazard level for each road. Applying this proposed approach reveals that 21?% of the road network in Makkah city is subjected to low flood hazards, 29?% is facing medium hazards, and 50?% of roads are exposed to harsh flood impacts. The developed approach may be considered a digital precise method that can be easily re-run, in other situations or regions, to estimate flood hazards on roads.  相似文献   

17.
Natural Hazards - Estimating the resilience of a road network (one of the essential critical infrastructures in times of crisis) to natural hazards is crucial in achieving the goals of disaster...  相似文献   

18.
Renewed volcanic activity near Mammoth Lakes, California, in the form of dome-collapse pyroclastic density currents (PDCs) from either a new eruption at Mammoth Mountain or the Inyo craters would pose a significant hazard to critical infrastructure there. This paper compares the risk from PDC impact hazards upon selected critical infrastructure from: (1) a 100 m tall dacite dome on Mammoth Mountain and (2) three 200 m tall rhyolite domes at the southern end of the Inyo craters. For each scenario, maximum estimated dynamic pressure and velocity from two PDC volumes (106 and 107 m3) are modeled with the EXPLORIS PDC software (Toyos et al. Nat Hazards 41(1):99–112, 2007). Risk to critical infrastructure from Mammoth Mountain PDCs would be much greater than the Inyo PDCs because of both location and the greater kinetic energy of the Mammoth PDC material, providing comparative insight to planners should a real eruption at one location or the other be forthcoming.  相似文献   

19.
Iuliana Arma? 《Natural Hazards》2012,63(2):1129-1156
The expansive infrastructure, along with the high population density, makes cities highly vulnerable to the severe impacts of natural hazards. In the context of an explosive increase in value of the damage caused by natural disasters, the need for evaluating and visualizing the vulnerability of urban areas becomes a necessity in helping practitioners and stakeholders in their decision-making processes. The paper presented is a piece of exploratory research. The overall aim is to develop a spatial vulnerability approach to address earthquake risk, using a semi-quantitative model. The model uses the analytical framework of a spatial GIS-based multi-criteria analysis. For this approach, we have chosen Bucharest, the capital city of Romania, based on its high vulnerability to earthquakes due to a rapid urban growth and the advanced state of decay of the buildings (most of the building stock were built between 1940 and 1977). The spatial result reveals a circular pattern, pinpointing as hot spots the Bucharest historic centre (located on a meadow and river terrace, and with aged building stock) and peripheral areas (isolated from the emergency centers and defined by precarious social and economic conditions). In a sustainable development perspective, the example of Bucharest shows how spatial patterns shape the ??vulnerability profile?? of the city, based on which decision makers could develop proper prediction and mitigation strategies and enhance the resilience of cities against the risks resulting from the earthquake hazard.  相似文献   

20.
Natural hazards are natural processes of the complex Earth system and may interact and affect each other. Often a single hazard can trigger a subsequent, different hazard, such as earthquakes triggering landslides. The effect of such cascading hazards has received relatively little attention in the literature. The majority of previous research has focused on single hazards in isolation, and even multi-hazard risk assessment currently does not account for the interaction between hazards, therefore ignoring potential amplification effects. Global earthquake-and-landslide fatality data were used to model cascading events to explore relationships between the number of fatalities during single and cascading events and covariates. A multivariate statistical approach was used to model the relationship between earthquake fatalities and several covariates. The covariates included earthquake magnitude, gross domestic product, slope, poverty, health, access to cities, exposed population to earthquake shaking, building strength and whether a landslide was triggered or not. Multivariate regression analysis showed the numbers of earthquake fatalities are significantly affected by whether a subsequent landslide is triggered or not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号