首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a method to design freezing damage policy-based agricultural insurance contracts for tea trees (an economic crop) in the Zhejiang Province of China, using a weather index. Data of economic losses caused by freezing damage, and the beginning dates of tea plucking (BDTP) from the Agricultural Bureau of each county in Zhejiang Province and tea planters, and meteorological observations were collected to establish the prediction model for BDTP, and to determine the relationship between economic loss rates caused by freezing damage at or before BDTP, and the minimum temperatures for “Wuniuzao,” “Longjing-43,” and “Jiukeng” teas. Based on the information diffusion theoretical model, occurrence probabilities of BDTP from 1 February to 20 April and lower temperatures at different levels are calculated. Then, the insurance premium rates of the three tea tree species can be estimated. Lastly, the tea tree freezing damage insurance contracts are designed, combining the advantages of regional yield-based index insurance and weather-based index insurance.  相似文献   

2.
春季龙井茶叶气候品质认证   总被引:13,自引:0,他引:13  
通过设计春季龙井茶叶气候品质认证指标,为开展生产于春季的龙井茶叶气候品质认证提供技术支撑。针对茶叶质量指标形成与气象条件关系密切,运用农业气象技术确定茶叶原材料茶树芽叶生长期的气象条件与茶树芽叶质量、颜色、滋味的关系,设计乌牛早茶树、龙井43茶树、鸠坑茶树在春季生产的龙井茶叶气候品质认证指标,将龙井茶叶的原材料茶树芽叶生长期的气候品质分为特优、优、良好和一般4级,开展龙井茶叶气候品质认证工作。气象部门作为与茶叶生产者、经销商和消费者无关的第三者,开展的茶叶气候品质认证容易为茶叶生产者、经销商和消费者认可和接受,提高茶叶生产企业信誉度和产品知名度,有助于引导消费者选购其满意的茶叶产品。  相似文献   

3.
Spring frosts are feared by farmers, fruit growers, and wine growers as they can cause significant damage to crops when they occur during the development of the plants. In the second half of April 2017, following a very warm period that had caused premature vegetation growth, a cold air mass from the Arctic penetrated central and western Europe, causing severe damage to natural and cultivated vegetation over broad areas. Here, we analyze how exceptional this event was in Switzerland and Germany in relation to the accumulated growing degree days (GDD), used as a proxy for plant phenology advancement. Although this damaging frost was not the latest on record in terms of calendar days, our results show that it was, in some regions, unprecedented in relation to the accumulated warmth during the preceding period, at least since the beginning of instrumental temperature records (1864). Our results also highlight how global warming has considerably increased the number of days with mean temperature above 5 °C in late winter and early spring, especially since 1970 (+?16.8?±?4.7 °C days decade?1). However, in spite of earlier spring phenology due to climate warming, our results suggest that the risk of damaging frost events to vegetation has remained unchanged over the last 150 years in lowlands of Switzerland and Germany, due to the concurring earlier occurrence of the last potentially damaging frosts (about ??20 days since 1864). Our analyses reveal therefore that the April 2017 damaging frost was a true outlier in terms of risk of frost damage to plants.  相似文献   

4.
Changes in daily climate extremes in the arid area of northwestern China   总被引:3,自引:0,他引:3  
There has been a paucity of information on trends in daily climate and climate extremes, especially for the arid region. We analyzed the changes in the indices of climate extremes, on the basis of daily maximum and minimum air temperature and precipitation at 59 meteorological stations in the arid region of northwest China over the period 1960–2003. Twelve indices of extreme temperature and six indices of extreme precipitation are examined. Temperature extremes show a warming trend with a large proportion of stations having statistically significant trends for all temperature indices. The regional occurrence of extreme cool days and nights has decreased by ?0.93 and ?2.36 days/decade, respectively. Over the same period, the occurrence of extreme warm days and nights has increased by 1.25 and 2.10 days/decade, respectively. The number of frost days and ice days shows a statistically significant decrease at the rate of ?3.24 and ?2.75 days/decade, respectively. The extreme temperature indices also show the increasing trend, with larger values for the index describing variations in the lowest minimum temperature. The trends of Min Tmin (Tmax) and Max Tmin (Tmax) are 0.85 (0.61) and 0.32 (0.17)?°C/decade. Most precipitation indices exhibit increasing trends across the region. On average, regional maximum 1-day precipitation, annual total wet-day precipitation, and number of heavy precipitation days and very wet days show insignificant increases. Insignificant decreasing trends are also found for consecutive dry days. The rank-sum statistic value of most temperature indices exhibits consistent or statistically significant trends across the region. The regional medians after 1986 of Min Tmin (Tmax), Max Tmin (Tmax), warm days (nights), and warm spell duration indicator show statistically more larger than medians before 1986, but the frost days, ice days, cool days (nights), and diurnal temperature range reversed. The medians of precipitation indices show insignificant change except for consecutive dry days before and after 1986.  相似文献   

5.
基于自然灾害风险理论,利用1971—2020年宁波市127个气象站气象观测资料和茶叶生产相关资料,分析了宁波市茶叶早春霜冻空间分布规律,并通过层次分析(Analytic Hierarchy Process,AHP)和专家经验相结合的方法,构建了宁波市茶叶早春霜冻风险因子集,通过加权指数求和的方法建立了宁波市茶叶早春霜冻风险模型,对早春霜冻灾害风险进行了综合和分年代的评估。结果表明,宁波市茶叶早春霜冻出现的年平均天数分布总体呈现西低东高的特征,霜冻年平均天数的范围在0.23~21.43 d;宁波市茶叶早春霜冻高风险区主要集中在余姚南部的四明山区域、宁海西部和宁海东北部的茶山区域,低风险区主要分布于宁波东部沿海地区;20世纪70—90年代宁波市茶叶早春霜冻低风险和较低风险区域基本呈增长趋势,中风险和较高风险区域呈减少趋势,高风险区域80年代最多、90年代次之、70年代最少,21世纪00—10年代,宁波市茶叶早春霜冻低风险和中风险区域呈减少趋势,较低风险、较高风险和高风险区域呈增长趋势。  相似文献   

6.
利用焉耆盆地3个气象站1961-2014年的初终霜冻日、无霜期资料,采用线性倾向估计法、多项式趋势、M-K检测等统计方法,分析焉耆盆地54a来霜冻气候变化特征。结果表明:(1)焉耆盆地平均初、终霜冻整体均呈显著线性后推趋势,平均分别后推了3d和21d,终霜冻推后速率大于初霜冻,无霜期呈缩短趋势,平均缩短了18d,具有明显的年代际特征。(2)平均初、终霜冻及无霜期分别于1987年、1985年、1967年发生了气候突变,初、终霜冻均表现为由提前转为明显推迟,无霜期表现为由延长转为缩短.(3)焉耆盆地特早、偏早初霜冻发生频率分别为7%和22%,发生在60年代到90年代,特晚、偏晚终霜冻发生频率分别为4%和11%,多发生在70年代和90年代,21世纪各出现一次。(4)终霜日显著推后,无霜期缩短,是今后焉耆盆地农业生产结构优化关注的重点。  相似文献   

7.
Long-term spatial and temporal trends in frost indices in Kansas, USA   总被引:2,自引:0,他引:2  
Frost indices such as number of frost days (nFDs), number of frost-free days (nFFDs), last spring freeze (LSF), first fall freeze (FFF), and growing-season length (GSL) were calculated using daily minimum air temperature (Tmin) from 23 centennial weather stations across Kansas during four time periods (through 1919, 1920–1949, 1950–1979, and 1980–2009). A frost day is defined as a day with Tmin?<?0 °C. The long- and short-term trends in frost indices were analyzed at monthly, seasonal, and annual timescales. Probability of occurrence of the indices was analyzed at 5 %, 25 %, 50 %, 75 %, and 95 %. Results indicated a general increase in Tmin from 1900 through 2009 causing a decrease in nFDs. LSF and FFF occurred earlier and later than normal in the year, respectively, thereby resulting in an increase in GSL. In general, northwest Kansas recorded the greatest nFD and lowest Tmin, whereas southeast Kansas had the lowest nFD and highest Tmin; however, the magnitude of the trends in these indices varied with location, time period, and time scales. Based on the long-term records in most stations, LSF occurred earlier by 0.1–1.9 days/decade, FFF occurred later by 0.2–0.9 day/decade, and GSL was longer by 0.1–2.5 day/decade. At the 50 % probability level, Independence in the south-eastern part of Kansas had the earliest LSF (6 April), latest FFF (29 October) and longest GSL (207 days). Oberlin (north-western Kansas) recorded the shortest GSL (156 days) and earliest FFF (7 October) had the latest LSF (2 May) at the 50 % probability level. A positive correlation was observed for combinations of indices (LSF and GSL) and elevation, whereas a negative correlation was found between FFF and elevation.  相似文献   

8.
基于华北地区90个气象站点1961-2018年地面0 cm日最低温度和平均气温资料,采用线性倾向估计、反距离加权、Mann-Kendall检验、累积距平法,研究了近58年华北地区初、终霜日和无霜期的变化特征.结果表明:(1)在年际和年代际尺度上,华北地区初、终霜日和无霜期均分别呈显著推迟、提前和延长的趋势,从20世纪8...  相似文献   

9.
Frost-free season was an important index for extreme temperature, which was widely discussed in agriculture and applied meteorology research. The frost-free season changed, which was associated with global warming in the past few decades. In this study, the changes in three indices (the last frost day in spring, the first frost day in autumn, and the frost-free season length) of the frost-free season were investigated at 73 meteorological stations in the Tibetan Plateau from 1960 to 2010. Results showed that the last frost day in spring occurred earlier, significantly in 39 % of the 73 stations. For the regional average, the last frost day in spring occurred earlier, significantly at the rate of 1.9 days/decade during the last 50 years. The first frost day in autumn occurred later, significantly in 31 % of the stations, and the regional average rate was 1.5 days/decade from 1960 to 2010. The changing rate of the first frost day in autumn below 3,000 m was 1.8 times larger than the changing rate above 3,000 m. In addition, the first frost day in autumn above 3,000 m fluctuated dramatically before the early 1990s and then it was later sharply after the early 1990s. The frost-free season length increased significantly at almost all stations in the Tibetan Plateau from 1960 to 2010. For the regional average, the frost-free season lengthened at the rate of 3.1 days/decade. The changing rate of the frost-free season length below 3,000 m was more significant than the changing rate above 3,000 m. Eight indices of large-scale atmospheric circulation were employed to investigate the potential cause of the frost-free season length change in the Tibetan Plateau during the past 50 years. There was a significant relationship between the frost-free season length and the Northern Hemisphere Polar Vortex indices. The weakening cold atmospheric circulation might be an essential factor to the Tibetan Plateau warming since 1960.  相似文献   

10.
A methodology has been applied to investigate the spatial variability and trends existent in a mid-twentieth century climatic time series (for the period 1943–1977) recorded by 58 climatic stations in the Albert–Victoria water management area in Uganda. Data were subjected to quality checks before further processing. In the present work, temporal trends were analyzed using Mann–Kendall and linear regression methods. Heterogeneity of monthly rainfall was investigated using the precipitation concentration index (PCI). Results revealed that 53 % of stations have positive trends where 25 % are statistically significant and 45 % of stations have negative trends with 23 % being statistically significant. Very strong trends at 99 % significance level were revealed at 12 stations. Positive trends in January, February, and November at 40 stations were observed. The highest rainfall was recorded in April, while January, June, and July had the lowest rainfall. Spatial analysis results showed that stations close to Lake Victoria recorded high amounts of rainfall. Average annual coefficient of variability was 19 %, signifying low variability. Rainfall distribution is bimodal with maximums experienced in March–April–May and September–October–November seasons of the year. Analysis also revealed that PCI values showed a moderate to seasonal rainfall distribution. Spectral analysis of the time components reveals the existence of a major period around 3, 6, and 10 years. The 6- and 10-year period is a characteristic of September–October–November, March–April–May, and annual time series.  相似文献   

11.
安徽省冬小麦春霜冻害气象指标的研究   总被引:2,自引:0,他引:2  
许莹  马晓群  王晓东  杜世州 《气象》2014,40(7):852-859
本文根据安徽省12个农业气象观测站冬小麦春霜冻害观测调查数据,针对不同品种(春性和半冬性)冬小麦,全面分析了拔节期前15 d至拔节后20 d的最低气温变化规律,以日最低气温为指标,将春霜冻害等级划分为轻度和重度2个级别,并分时段确定等级。验证结果表明,虽然春霜冻害的发生受地形、土壤等多种因素的影响,但最低气温指标基本能够反映出冬小麦拔节前后不同品种春霜冻害的发生规律,可以在霜冻监测预警业务中应用。用该指标进行霜冻发生风险分析的结果表明,安徽省冬小麦主产区为轻度霜冻频发区、重度霜冻基本不发区,冬小麦春性品种春霜冻高发区比半冬性品种明显偏南,可用于指导冬小麦品种合理布局,减轻春霜冻危害风险。  相似文献   

12.
The spatiotemporal trends of aridity index in the arid and semi-arid regions of Iran in 1966–2005 were investigated using the Mann–Kendall test and Theil–Sen’s slope estimator. The results of the analysis showed negative trends in annual aridity index at 55 % of the stations, while just one site had a statistically significant (α?=?0.1) negative trend. Furthermore, the positive trends in the annual aridity index series were significant at the 95 % confidence level at Bushehr and Isfahan stations. The significant negative trend in the annual aridity index was obtained over Mashhad at the rate of ?0.004. In the seasonal series, the negative trends in the spring and winter aridity index were larger compared with those in the other seasonal series. A noticeable decrease in the winter aridity index series was observed mostly in the southeast of the study area. In the summer and autumn aridity index, two significant positive trends were found.  相似文献   

13.
The impacts of climate change on agricultural production systems in China   总被引:7,自引:0,他引:7  
Climate change can bring positive and negative effects on Chinese agriculture, but negative impacts tend to dominate. The annual mean surface temperature has risen about 0.5–0.8 °C. The precipitation trends have not been identified during the past 100 years in China, although the frequency and intensity of extreme weather/climate events have increased, especially of drought. Water scarcity, more frequent and serious outbreaks of insects and diseases, and soil degradation caused by climate change have impacted agro-environmental conditions. However, temperature rise prolonged the crop growth seasons and cold damages have reduced in Northeast China. The projection of climate change indicates that the surface temperature will continue to increase with about 3.9 to 6.0 °C and precipitation is expected to increase by 9 to 11 % at the end of 21st century in China. Climate warming will provide more heat and as a consequence, the boundary of the triple-cropping system (TCS) will extend northwards by as much as 200 to 300 km, from the Yangtze River Valley to the Yellow River Basin, and the current double-cropping system (DCS) will move to the central part of China, into the current single cropping system (SCS) area which will decrease in SCS surface area of 23.1 % by 2050. Climate warming will also affect the optimum location for the cultivation of China’s main crop varieties. If no measures are taken to adapt to climate changes, compared with the potential yield in 1961–1990, yields of irrigated wheat, corn and rice are projected to decrease by 2.2–6.7 %, 0.4 %–11.9 % and 4.3–12.4 % respectively in the 2050s. Climate warming will enhance potential evaporation and reduce the availability of soil moisture, thus causing a greater need for agricultural irrigation, intensifying the conflict between water supply and demand, especially in arid and semi-arid areas of China. With adequate irrigation, the extent of the reduction in yield of China’s corn and wheat can be improved by 5 % to 15 %, and rice by 5 % or so than the potential yield in 1961–1990. Adaptive measures can reduce the agricultural loss under climate change. If effective measures are taken in a timely way, then climate change in the next 30–50 years will not have a significant influence on China’s food security.  相似文献   

14.
横断山脉地区霜冻时空分布变化特征分析   总被引:1,自引:0,他引:1  
以小于等于0℃的地面气温作为霜冻的指标,利用1961~2007年横断山脉27个气象监测站逐日温度资料分析了横断山脉初、终霜期和无霜期的变化特征.结果表明,该地区平均初霜期以1.09d/10a气候倾向率推迟,终霜期以4.02d/10a的气候倾向率提早,无霜期以4.08d/10a的气候倾向率延长,存在较明显的地域差异.从年代际变化来看,自20世纪90年代开始,初霜冻日期20世纪90年代明显推迟,终霜冻日期明显提早,无霜冻期明显延长。  相似文献   

15.
马彬  张勃  贾艳青  唐敏 《气象学报》2017,75(4):661-671
利用中国内陆1961年以来734个气象台站0 cm地表最低温度作为初、终霜日的参考指标,运用概率密度函数方法定义了不同等级的霜冻指数,重点分析了全球气候状态转变后中国农业区初、终霜日稳定性,异常初、终霜日时空变化特征,以及环流因子变化对初、终霜日的影响。结果显示:(1)青藏高原地区在20世纪90年代之后初霜日明显推后、终霜日明显提前,无霜期明显延长;四川盆地东部、华南地区南部部分站点在20世纪90年代之后霜期缩短明显,出现低频率无霜年份,无霜日站点相对有所增多,出现向北扩展趋势,20世纪90年代之后扩展趋势明显。(2)20世纪80年代初、终霜日相对于其他时段稳定性最强,20世纪90年代稳定性最低,气候状态转变之后青藏高原和新疆南部地区初、终霜日稳定性较强区域面积明显增大;空间上四川盆地东部和华南区初、终霜日稳定性最低,其他区域初、终霜日稳定性相对较低,华南区霜日不稳定区分布范围在21世纪最初10年之后有所减小,稳定区北移明显。(3)异常初、终霜日发生频率:偏早初霜日>偏晚终霜日>特早初霜日>特晚终霜日,气候状态转变前后异常初、终霜日发生频率较高,20世纪90年代偏早初霜日高频率覆盖地区范围最大,其次是20世纪70年代偏早初霜日,气候状态的转变对异常初、终霜日的发生影响较大。(4)各农业区初霜日的推迟、终霜日的提前与极涡缩小、副热带高压北移有直接关系;极涡与副热带高压的位置、强度、面积变化对中国农业区初、终霜日多年气候状态的转变有一定的驱动作用。   相似文献   

16.
基于2010—2022年浙江省建德市区域自动气象站的逐日数据和茶叶种植数据,将早春霜冻、夏季高温热害和冬季冻害作为评价指标,利用层次分析和加权综合评价方法,构建茶叶气象灾害综合风险评估模型。将建德市茶叶气象灾害风险划分为高、中、低3个风险等级。结果表明:建德市茶叶气象灾害综合高风险区主要集中在乾潭、杨村桥、下涯镇西北部和乾潭、三都镇东部区域。中风险区主要集中在莲花、乾潭大部、钦堂中南部、下涯、三都镇中部、大洋镇、梅城镇东部、李家西南部和大同镇北部。低风险区主要集中在杨村桥镇中南部、梅城镇中西部、乾潭镇中部和建德市中南部区域。  相似文献   

17.
茶树作为我国主要经济作物,在早春萌发时易遭受霜冻害.我国茶树春霜冻多发于长江中下游,霜冻灾害指标可按照获取方法、数据类别、气象数据的时间尺度进一步细分.在气候变化背景下,茶树春霜冻发生次数虽呈下降趋势,但其危害不可忽视;其中,江南茶区茶树春霜冻的发生频率由南向北逐渐增加,随海拔升高逐渐增大.茶树春霜冻影响评估目前多集中...  相似文献   

18.
浙南春茶早春霜冻的时空分布特征   总被引:1,自引:0,他引:1  
利用1971—2015年浙南7县(市、区)早春(2—4月)逐日气温观测资料,根据茶叶早春霜冻的气象灾害指标,采用多尺度趋势方法分别从空间、时间分析浙南茶叶早春霜冻的气候变化特征,并利用Mann-Kendall检验验证浙南茶叶早春霜冻的变化趋势和突变转折。结果表明:浙南茶叶早春霜冻发生次数较高,年均发生天数为16.8天,其中2月发生早春霜冻的可能性最高,且以轻度和重度霜冻为主。早春霜冻的空间分布结构由东南面向西北面递增,青田县发生早春霜冻的可能性最低,缙云县发生的可能性最高。茶叶早春霜冻日数的长期变化趋势表现为显著减少,且极端最低气温上升趋势明显,即浙南茶叶早春出现低温霜冻的可能性减小。浙南茶叶早春霜冻减少发生的突变点在20世纪80—90年代,且在21世纪初减少趋势最为显著。  相似文献   

19.
2018年春霜冻对江西省北部茶叶生产影响的定量评估   总被引:1,自引:0,他引:1       下载免费PDF全文
为探究江西省北部茶区春霜冻发生特点,深入开展茶叶春霜冻灾害定量评估工作,采用实地调查方式,获取江西省北部12个茶场2018年4月7—9日春霜冻的灾情资料和同期气象观测资料,采用加权求和法构建茶叶春霜冻灾害损失定量评估模型,对春霜冻灾害县进行灾害定量评估和检验。结果表明:婺源、浮梁等江西省北部茶叶主产县达到轻—重度春霜冻气象灾害等级,灾害指标等级计算结果与实地灾情调查结果较一致;轻度、中度、重度气象灾害等级的茶场减产率依次为10%—30%、30%—50%和50%以上;根据不同气象灾害等级的受灾面积及其减产率构建江西省北部茶叶春霜冻灾害损失定量评估模型,计算得到此次春霜冻灾害过程造成婺源县春茶直接经济损失为1.23亿元,模型评估结果和实际灾情相一致,模型能较为客观、准确的评估春霜冻灾害对茶叶生产造成的损失。  相似文献   

20.
江南茶区茶叶生产现状和气候资源特征分析   总被引:8,自引:0,他引:8  
开展气候资源分析对茶叶生产具有重要的指导意义。本文采用历史资料收集和实地调查等方式,对江南茶区的茶树品种、茶园面积、茶叶产量等现状,以及气候资源、主要农业气象灾害特征进行了调查和分析,并提出了茶叶生产中存在的问题和灾害应对措施。结果表明:江南茶区茶树主要品种有乌牛早、龙井43、福鼎大白茶、迎霜、鸠坑、黄山种、翠峰、安吉白茶等;江南茶区中,湖北省的茶园面积和茶叶产量位居第一,但单位面积经济效益江苏第一,其次是浙江,尔后依次是湖南、江西、安徽、湖北。全区年平均气温15~20℃,≥10℃活动积温4 500~6 500℃·d,年降水量1 000~1 600 mm,年平均相对湿度达70%~80%左右,年日照时数1 500~1 900 h。热量较优,空气湿润,光照充足,是绿茶生产的气候适宜区域。同时,江南茶区也是茶叶主要农业气象灾害高发区,应加强茶树资源监测和农业气象灾害风险评估等方面的研究,在充分利用3S技术基础上提高茶叶生产应对气候变化的能力,大力推进茶叶精细化气象服务。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号