首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The occurrence of spread-F at Trivandrum (8.5^N, 77^E, dip 0.5^N) has been investigated on a seasonal basis in sunspot maximum and minimum years in terms of the growth rate of irregularities by the generalized collisional Rayleigh-Taylor (GRT) instability mechanism which includes the gravitational and cross-field instability terms. The occurrence statistics of spread-F at Trivandrum have been obtained using quarter hourly ionograms. The nocturnal variations of the growth rate of irregularities by the GRT mechanism have been estimated for different seasons in sunspot maximum and minimum years at Trivandrum using h’F values and vertical drift velocities obtained from ionograms. It is found that the seasonal variation of spread-F occurrence at Trivandrum can, in general, be accounted for on the basis of the GRT mechanism.  相似文献   

2.
New experimental data depicting equatorial spread-F were taken during an HF radar sounding campaign in Korhogo (Ivory Coast, 9°24N, 5°37W, dip 4°S). Range-time-intensity maps of the radar echoes have been analyzed to identify the signatures of density depletions and bottomside spread-F. Density depletions are well known features of equatorial spread-F, and are believed to emerge after the development of a Rayleigh-Taylor instability on the bottomside F-layer. A simple model is developed and used to simulate the flow of density depletions over the radar field of view. The simulation permits an interpretation of the data that yields the zonal flow velocity as a function of local time. Comparisons with previous measurements are undertaken to assess the consistency of the computational results, and qualitative arguments are presented to identify bottomside spread-F. Using the computational results as reference, a morphological study of ionograms showing spread-F is undertaken which reveals the specific signature of bottomside spread-F on ionograms recorded just after sunset.  相似文献   

3.
A meridional scanning OI 630.0-nm dayglow photometer was operated from Ahmedabad (17.2°N dip lat.) scanning a region towards the south in the upper atmosphere extending over \sim5° in latitude from 10.2°N to 15.2°N dip latitude. From the spatial and temporal variabilities of the dayglow intensity in the scanning region we show for the first time, evidence for the passage of the crest of the equatorial ionization anomaly (EIA) in the daytime by means of a ground-based optical technique. The relationship between the daytime eastward electric field over the dip equator in the same longitude zone as inferred from the equatorial electrojet strength and the evolutionary pattern of EIA is clearly demonstrated. The latter as inferred from the dayglow measurements is shown to be consistent with our present understanding of the electrodynamical processes in the equatorial region. The present results reveal the potential of this ground-based optical technique for the investigation of ionospheric/thermospheric phenomena with unprecedented spatial and temporal resolution.  相似文献   

4.
Measurements from ground-based receiver chains of the global positioning system (GPS) and magnetometers of the Circum-pan Pacific Magnetometer Network (CPMN) in the west Pacific region during 1999–2003 are examined. The ionospheric total electron content (TEC) derived from the GPS receivers is used to observe the strength, location, and occurrence time of the equatorial ionization anomaly (EIA) crests, which resulted from the equatorial plasma E×B drift fountain. The magnetic field strength of CPMN is employed to monitor the equatorial electrojet (EEJ), and to further estimate the effectiveness of the E×B drift to the EIA crests. Results show that the strength and location of the EIA crests are proportional to the EEJ strength.  相似文献   

5.
本文利用2011年富克、厦门、南宁、克州、格尔木、西安、北京和漠河等电离层垂测站的电离层扩展F数据,统计了中国区域电离层扩展F发生率的日变化、季节变化和区域变化特征.除了漠河外,中国区域电离层扩展F发生率的日变化、季节变化特征比较一致,扩展F出现在夜间(18~08 LT),且午夜后多于午夜前,以6月为中心的夏季月份扩展F发生率高.电离层扩展F发生率的最大值随着纬度的增加而减少,发生率最大值出现的时间也随着纬度增加而延迟,具有明显的"纬度效应".漠河电离层扩展F与中国区域中其他地方相比较,在发生时间段、发生率数值和季节变化特征方面都具有明显的不同特征,这些情况表明漠河电离层扩展F的产生机制和影响因素可能是不同的.  相似文献   

6.
The aim of this paper is to report some periodicities observed in the ionospheric parameter foF2 measured at Tucuman (26.9°S; 65.4°W), station placed near the southern crest of the equatorial anomaly. For that, monthly medians of foF2 at several hours of LT for the period 1958–1987 are used. The data are run with Fast Fourier Transform (FFT). Data gaps (4–5 months) are filled by means of linear interpolation. Several periodicities are present. Besides the solar cycle dominant dependence (11 years), semi-annual, annual, five years and quasi-biennial periodicities are also observed. A marked quasi-biennial periodicity is observed at daytime and nighttime hours being their greater amplitude at local noon and midnight. Different mechanisms or combined effects possibly cause them. It is suggested that the solar activity by means of extreme ultraviolet radiation (EUV), which present a quasi-biennial oscillation (QBO) and it is responsible for the ionization, could be the dominant mechanism for the diurnal quasi-biennial periodicity of foF2. At night, since the photoionization by extreme ultraviolet radiation is not significant and the F2 layer is lower than during daytime (100 km) other mechanism may be operative for the quasi-biennial periodicity observed. Possibly the stratospheric QBO contributes to the modulation of the observed behaviour in foF2 at night. This result is preliminary because it needs to be extended to other stations so as to extract definite conclusions. Moreover, we cannot dismiss the possibility of a combined effect of both these mechanisms mainly at daytime and/or QBO influence of geomagnetic parameters.  相似文献   

7.
The characteristics of ionospheric scintillations at Rajkot in the equatorial anomaly crest region in India are described for the years 1987–1991 by monitoring the 244-MHz transmission from the satellite FLEETSAT. This period covers the ascending phase of solar cycle 22. Scintillations occur predominantly in the pre-midnight period during equinoxes and winter seasons and in the post-midnight period during summer season. During equinoxes and winter, scintillation occurrence increases with solar activity, whilst in summer it is found to decrease with solar activity. Statistically, scintillation occurrence is suppressed by magnetic activity. The characteristics observed during winter and equinoxes are similar to those seen at the equatorial station, Trivandrum. This, coupled with the nature of the post-sunset equatorial F-region drift and hF variations, supports the view that at the anomaly crest station, scintillations are of equatorial origin during equinox and winter, whilst in summer they may be of mid-latitude type. The variations in scintillation intensity (in dB) with season and solar activity are also reported.  相似文献   

8.

Using the improved CCM1 dynamic climate model, the impact of abnormal heat source and sink over the Tibetan Plateau in winter on the abnormal zonal wind over the Pacific Ocean is studied in this paper. The following new-findings are obtained: (1) When the at mospheric cold source during January—March on the Tibetan Plateau gets intensified, an abnormal anticyclone around the Tibetan Plateau will appear in lower troposphere. Abnormal northerly wind at the coastal area of the mainland of China and an abnormal cyclone will appear on the West Pacific in the following months. Then, abnormal west wind will appear over the equator of the West Pacific and extends to the East Pacific. (2) When the atmospheric cold source during January—March over the Tibetan Plateau is unusually weak, an abnormal cyclone around the Tibetan Plateau will appear at lower levels first, then abnormal anticyclone will appear on the West Pacific and move to the south and result in abnormal easterly wind over the equator of the West Pacific, which will extend to the east. Furthermore, abnormal changes of zonal wind on equatorial Indian Ocean can be caused by the intensity change of atmospheric cold source in winter and early spring over the Tibetan Plateau.

  相似文献   

9.
Neutral gas composition and ionospheric measurements taken by the Dynamic Explorer 2 satellite at F2-region heights during two geomagnetic storms are used to analyze the role of some possible physical mechanisms responsible for the changes of electron density at equatorial and low geomagnetic latitudes. The storms considered occurred on October 2, 1981 (storm 1) and July 13, 1982 (storm 2). During storm 1 (weak), vertical plasma drifts and equatorward storm-time winds operated increasing of the electron density at the trough of equatorial anomaly and the decreases at the crest region. During storm 2 (intense) changes of composition (increase of molecular nitrogen and atomic oxygen) played a fundamental role for the changes of electron density observed at low latitudes in summer hemisphere. It is concluded that different physical processes seem to have varying degrees of importance depending on the intensity of the storm.  相似文献   

10.
为构建赤道-低纬电离层不规则结构和闪烁活动出现率的理论模型,本文根据分析赤道-低纬电离层的广义Rayleigh-Taylor(R-T)不稳定性得到的三维线性增长率的表达式,计算分析了线性增长率随地方时的变化特征.并选取计算得到的每日增长率的极大值表征每日的线性增长率,分析增长率随季节、太阳活动和地理经度的变化特征以及逐日变化特征,建立三维广义R-T不稳定性线性增长率的理论统计特征模型,发现增长率表现出显著的随地方时、季节、太阳活动和地理经度以及逐日变化特征.通过比较分析增长率的变化特征与不规则结构和闪烁活动的变化特征,发现三维广义R-T不稳定性的线性增长率能较好地反映不规则结构和闪烁活动随季节、太阳活动、地理经度以及逐日变化规律.本文建立的R-T不稳定性的三维线性增长率的统计特征模型可用于构建赤道-低纬电离层不规则结构和闪烁出现率的理论形态特征模型.  相似文献   

11.
The paper presents a study of solar and magnetic activity effects on VHF ionospheric scintillations recorded during three and half years at Bhopal, a station near the northern crest of the equatorial anomaly in India. During E- (equinox) and D- (winter) months, scintillations occur mainly in the pre-midnight period whereas during J- (summer) months their occurrence is larger in the post-midnight period. Very intense scintillations (>20 dB) mainly occur in the pre-midnight period, and in the post-midnight period, the scintillations are generally moderate (5–10 dB) or weak (<5 dB). The nocturnal scintillation occurrence decreases with the decrease in solar activity from 1989 to 1992. Monthly mean scintillation occurrence changes according to solar activity during E- and D-months but not so during J-months. The effects of magnetic activity on scintillations vary with season and, in general, inhibit the scintillation occurrence in the pre-midnight period and enhance it a little in the post-midnight period, especially after 0300 hours IST (Indian Standard Time). For most of the severe magnetic storms in which Dst goes below −125 nT and the recovery phase starts in the post-midnight to dawn local time sector, strong post-midnight scintillations, which sometimes extend for several hours beyond the local sunrise, are observed.  相似文献   

12.
The ionospheric responses to a large number (116) of moderate (?50≥Dst>?100 nT) geomagnetic storms distributed over the period (1980–1990) are investigated using total electron content (TEC) data recorded at Calcutta (88.38°E, 22.58°N geographic, dip: 32°N). TEC perturbations exhibit a prominent dependence on the local times of main phase occurrence (MPO). The storms with MPO during daytime hours are more effective in producing larger deviations and smaller time delays for maximum positive deviations compared to those with nighttime MPO. Though the perturbations in the equinoctial and winter solstitial months more or less follow the reported climatology, remarkable deviations are detected for the summer solstitial storms. Depending on the local times of MPO, the sunrise enhancement in TEC is greatly perturbed. The TEC variability patterns are interpreted in terms of the storm time modifications of equatorial electric field, wind system and neutral composition.  相似文献   

13.
The GPS-derived total electron content (TEC) and NmF2 are measured at the Chung-Li ionosonde station (24.9°N, 121°E) in order to study the variations in slab thickness (τ) of the ionosphere at low-latitudes ionosphere during 1996–1999, corresponding to half of the 23rd solar cycle. This study presents the diurnal, seasonal, and solar flux variations in τ for different solar phases. The seasonal variations show that the average daily value is greater during summer and the reverse is true during equinox in the equatorial ionization anomaly (EIA) region. Moreover, the τ values are greater during the daytime (0800–1600 LT) and nighttime (2000–0400 LT) for summer and winter, respectively. The diurnal variation shows two abnormal peaks that appear during the pre-sunrise and post-sunset hours. The peak values decrease as the sunspot number increases particularly for the pre-sunrise peak. Furthermore, the variation in the F-peak height (hpF2) indicates that a thermospheric wind toward the equator leads to an increase in hpF2 and an enhancement in τ during the pre-sunrise period. Furthermore, the study shows the variations of τ values for different geophysical conditions such as the geomagnetic storm and earthquake. A comprehensive discussion about the relation between τ and the geophysical events is provided in the paper.  相似文献   

14.
15.
本文通过观测实例探讨并论证了电离层高频多普勒观测在扩展-F研究中的应用.实例和相应分析表明:首先,由于高频多普勒记录的时间连续性,有利于从观测角度了解扩展-F的时间演化过程;其次,高频多普勒偏移对不规则结构造成的回波弥散、对不同尺度行进电离层扰动(TID)以及耀斑引起的突然频率偏移(SFD)效应都很敏感,这些现象在记录上出现的时间关系有利于了解扩展-F的触发因素或扩展-F与其他电离层背景扰动之间的联系或相互作用;最后,高频多普勒记录对于持续时间较长(几小时以上)或很短(小于1小时)的扩展-F都能够完整地反映,不会产生因为观测间歇形成的缺失,也可以有效区分究竟是连续一次还是一段时间内断续的扩展-F现象.高频多普勒观测有其自身的优点同时也具有一定的局限性,本文对其局限性诸如缺乏空间分辨率等也做了分析.指出发挥高频多普勒观测的优势,综合应用多种资料,通过不同手段的数据分析和比较,可以更好地为电离层扰动的物理机制和预报研究提供正确的观测依据.  相似文献   

16.
It has been indicated how a complex ionogram of topside sounding near the outer slope of the winter southern crest of the equatorial anomaly, where a large NmF2, gradient and a deep hmF2, minimum are observed, is formed. The model latitudinal cross-sectio n of the ionosphere, used to perform trajectory calculations, has been constructed based on the corrected Intercosmos-19 data. The ray trajectories have been modeled using the method of characteristics. It has been indicated that a complex Intercosmos-19 ionogram is formed by an oblique reflection from the equatorial anomaly crest slope (the main trace) and by a strongly oblique reflection from the crest bottom as a result of the wave capture by a large-scale inhomogeneity (the additional trace).  相似文献   

17.
Measurements of the electron density at 600 km altitude (N600) were obtained with the Hinotori satellite launched by the Institute of Space and Astronautical Science of Japan. These measurements were used to check the validity of the International Reference Ionosphere (IRI) model in predicting the electron density at that altitude in the South American peak of the equatorial anomaly. The measurements correspond to the longitude zone from 285 to 369° and −15° geomagnetic latitude. To model the electron density at 600 km altitude, two cases were considered, namely (i) N600 was calculated with the IRI model at 10° intervals within the corresponding longitudinal zone and mean values were obtained, and (ii) N600 was calculated with the IRI using ionosonde data as input coefficients in the model. The data used for this study were measured almost simultaneously with the total electron content data used in a previous work. The results show good predictions at hours of minimum ionisation for the equinox and the December solstice. For the June solstice, the best agreement was obtained around noon. However, strong disagreements were observed in some cases such as the equinox at 15:00 LT, suggesting that there is a need to improve the modeled topside profile.  相似文献   

18.
电离层高频多普勒记录在扩展-F研究中的应用   总被引:2,自引:2,他引:2       下载免费PDF全文
本文通过观测实例探讨并论证了电离层高频多普勒观测在扩展-F研究中的应用.实例和相应分析表明:首先,由于高频多普勒记录的时间连续性,有利于从观测角度了解扩展-F的时间演化过程;其次,高频多普勒偏移对不规则结构造成的回波弥散、对不同尺度行进电离层扰动(TID)以及耀斑引起的突然频率偏移(SFD)效应都很敏感,这些现象在记录上出现的时间关系有利于了解扩展-F的触发因素或扩展-F与其他电离层背景扰动之间的联系或相互作用;最后,高频多普勒记录对于持续时间较长(几小时以上)或很短(小于1小时)的扩展-F都能够完整地反映,不会产生因为观测间歇形成的缺失,也可以有效区分究竟是连续一次还是一段时间内断续的扩展-F现象.高频多普勒观测有其自身的优点同时也具有一定的局限性,本文对其局限性诸如缺乏空间分辨率等也做了分析.指出发挥高频多普勒观测的优势,综合应用多种资料,通过不同手段的数据分析和比较,可以更好地为电离层扰动的物理机制和预报研究提供正确的观测依据.  相似文献   

19.

当喷泉效应较弱而双峰结构发展不充分的时候,可能在赤道异常区仅能够观测到一个电子密度的峰值,称之为单峰现象.本文利用CHAllenging Minisatellite Payload卫星在2001-2010年的电子密度数据给出了单峰的发生规律,单峰在地方时早上08:00-10:00和下午16:00-19:00发生率高,发生位置在经度上呈现多波数分布,尤其在10:00-18:00明显:在分季时多呈现四波,而在冬至季时以三波为主.单峰发生多的经度,正好对应着双峰的结构特征较弱之处.究其原因,是非迁移潮的DE2和DE3分量调制了背景风场和大气发电机电场,在电场和喷泉效应减弱的经度,双峰结构难以形成时,就会表现为单峰结构.本文扩展了对单峰现象的地方时、季节和经度分布等规律的了解,明确了非迁移潮在其中施加的影响,由此,单峰同双峰现象一样可以用于研究非迁移潮对热层-电离层的作用.

  相似文献   

20.

重力波、中性风场、电场是激发电离层扩展F的主要影响因子,本文基于中低纬电离层扩展F发展的物理模型,通过电场强度、背景风场对扩展F影响作用的分析和经验对比,首先验证了模型的有效性,后借助该模型数值模拟了给定背景环境下三种尺度初始电子密度扰动条件下扩展F的发展情况,同时研究了利用化学物质释放实现一定尺度扰动,进而激发扩展F的过程.结果表明,较强的背景电场、东向风场有利于扩展F的形成和抬升,与经验结论相吻合;电离层从被作用初始扰动到激发扩展F的过程中存在拐点效应,拐点之后扩展F被激发形成并且抬升迅速,同时短波长扰动相对于长波长扰动更有利于扩展F的激发和发展;化学物质H2O释放通过耗散电子密度,形成了一定尺度扰动并诱发了扩展F的形成,该方法可作为一种人工激发扩展F的探索手段.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号