首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The saturation surface of pseudobrookite (Fe2TiO5) was determined for melts in the system SiO2-Al2O3-K2O-FeO-Fe2O3-TiO2 at 1400° C and 1 atm. The variation in concentrations of Fe2O3, TiO2 and Fe2TiO5 in liquids can be used to infer relative changes in activity coefficients of these components with changing K2O/(K2O+Al2O3) of the melts. Saturation concentrations of these components are low and relatively constant in the peraluminous melts and increase with increasing K2O/(K2O+Al2O3) in peralkaline liquids. The activity coefficients of Fe2O3 and TiO2 and Fe2TiO5, therefore, are higher in peraluminous liquids than in peralkaline liquids in this system. In addition, the iron redox ratio was measured as a function of K2O/(K2O+Al2O3) for liquids just below the saturation surface; was fixed so all variations in redox ratio are entirely due to changes in melt composition. The redox ratio from unsaturated liquids was applied to saturated liquids where redox analysis of the glass is impossible. The homogeneous equilibrium experiments indicate that the activity coefficient of Fe2O3 relative to that of FeO is significantly greater in peraluminous melts than peralkaline melts. Both the heterogeneous and homogeneous equilibria suggest that in peralkaline liquids K+in excess of that required to charge balance tetrahedral Al+3 is used to stabilize both Fe+3 and Ti+4. Calculations show that ferric iron and titanium compete equally effectively for charge-balancing potassium but neither can outcompete aluminum. The observed changes in solution properties of Fe2O3 and TiO2 in the synthetic melts are used to explain variations in Fe-Ti oxide stabilities in natural peraluminous and peralkaline rhyolites and granites. Since the activity coefficients of both ferric iron and titanium are significantly higher in peraluminous liquids than in peralkaline liquids, Fe-Ti oxides should occur earlier in the crystallization sequence in peraluminous rhyolites than in peralkaline rhyolites. In addition, iron will be reduced in peraluminous granites and rhyolites relative to peralkaline ones under comparable P, T, and . Finally, observed crystallization patterns for minerals containing highly charged cations other than ferric iron and titanium are evaluated in the context of this and other experimental studies.  相似文献   

2.
黑云母是花岗质岩石中常见的造岩矿物,其成分可以有效指示花岗岩形成的物理化学条件和岩石成因。巴斯铁列克矿床是近年来在新疆阿尔泰造山带南缘发现的首例二叠纪矽卡岩型钨多金属矿床。矿区出露多种类型二叠纪含钨花岗岩。为理清花岗质岩体之间、岩体与钨多金属矿化之间的关系,文章采用电子探针测定了黑云母花岗岩、二长花岗岩、二云母花岗岩和钾长花岗岩中的黑云母成分。结果表明,所有黑云母具有富铁、高铝、贫镁特征,含铁指数(Fe2+/(Mg+Fe2+))为0.66~0.80,二云母花岗岩属铁质黑云母而黑云母花岗岩、二长花岗岩和钾长花岗岩属铁叶黑云母。所有岩石是具有A型特征的I型花岗岩。不同类型岩石中黑云母的成分差异与岩浆来源、分异演化程度有关。二云母花岗岩中黑云母的w(MgO)与结晶温度最高,与黑云母平衡流体的log(fHF/fHCl)值(-1.13~-1.25)最低,log(fH2O/fHF)值(4.64~4.96)最高,母岩浆相对富Cl;黑云母花岗岩中log(fHF/fHCl)值最高,log(fH2O/fHF)最低,与二长花岗岩是同一岩浆房不同演化阶段的产物,与二云母花岗岩和钾长花岗岩属不同的岩浆体系,母岩浆相对富F元素。黑云母花岗岩与W矿化关系更密切。  相似文献   

3.
A revised regular solution-type thermodynamic model for twelve-component silicate liquids in the system SiO2-TiO2-Al2O3-Fe2O3-Cr2O3-FeO-MgO-CaO-Na2O-K2O-P2O5-H2O is calibrated. The model is referenced to previously published standard state thermodynamic properties and is derived from a set of internally consistent thermodynamic models for solid solutions of the igneous rock forming minerals, including: (Mg,Fe2+,Ca)-olivines, (Na,Mg,Fe2+,Ca)M2 (Mg,Fe2+, Ti, Fe3+, Al)M1 (Fe3+, Al,Si)2 TETO6-pyroxenes, (Na,Ca,K)-feldspars, (Mg,Fe2+) (Fe3+, Al, Cr)2O4-(Mg,Fe2+)2 TiO4 spinels and (Fe2+, Mg, Mn2+)TiO3-Fe2O3 rhombohedral oxides. The calibration utilizes over 2,500 experimentally determined compositions of silicate liquids coexisting at known temperatures, pressures and oxygen fugacities with apatite ±feldspar ±leucite ±olivine ±pyroxene ±quartz ±rhombohedral oxides ±spinel ±whitlockite ±water. The model is applicable to natural magmatic compositions (both hydrous and anhydrous), ranging from potash ankaratrites to rhyolites, over the temperature (T) range 900°–1700°C and pressures (P) up to 4 GPa. The model is implemented as a software package (MELTS) which may be used to simulate igneous processes such as (1) equilibrium or fractional crystallization, (2) isothermal, isenthalpic or isochoric assimilation, and (3) degassing of volatiles. Phase equilibria are predicted using the MELTS package by specifying bulk composition of the system and either (1) T and P, (2) enthalpy (H) and P, (3) entropy (S) and P, or (4) T and volume (V). Phase relations in systems open to oxygen are determined by directly specifying the f o 2 or the T-P-f o 2 (or equivalently H-P-f o 2, S-P-f o 2, T-V-f o 2) evolution path. Calculations are performed by constrained minimization of the appropriate thermodynamic potential. Compositions and proportions of solids and liquids in the equilibrium assemblage are computed.  相似文献   

4.
Sector zoned aegirine crystals occur in the interstices of peralkaline nepheline syenites in Ilímaussaq. The crystals have grass-green [001] sectors enriched in Ca and Fe2+ (as CaFeSi2O6), Mn and Zr; pale green {010} sectors enriched in Al (as NaAlSi2O6); blue-green {110} sectors enriched in Ti (as NaTi0.5Fe 0.5 2+ Si2O6); and light green {100} sectors enriched in Fe3+ (as NaFe3+ Si2O6).The crystals grew in the liquid with a rate that did not exceed the diffusion rate of most elements in the liquid. However. Fe3+ seems to have had diffusion rates lower than the crystal growth rate, and this probably caused the development of some sectors enriched in acmite and others enriched in the hedenbergite component. For Al, Ti and Zr a crystal structural control is envisaged although a recent structure-based model for sector zoning fails to explain the efficient separation of these elements into different sectors.Three more occurrences of sector zoned aegirine are noted, all from peralkaline nepheline syenites. The phenomenon is probably more widespread than hitherto realised.Contribution to the mineralogy of Ilímaussaq no. 62  相似文献   

5.
A new thermodynamic formulation of the Fe–Ti oxide geothermometer/oxygen barometer is developed. The method is based upon recently calibrated models for spinel solid solutions in the quinary system (Fe2+, Mg)(Al,Fe3+,Cr)2O4–(Fe2+, Mg)2TiO4 by Sack and Ghiorso, and rhombohedral oxides in the quaternary system (Fe2+,Mg,Mn)TiO3–Fe2O3 (this paper). The formulation is internally consistent with thermodynamic models for (Fe2+,Mg)-olivine and -orthopyroxene solid solutions and end-member thermodynamic properties tabulated by Berman. The constituent expressions account for compositional and temperature dependent cation ordering and reproduce miscibility gap features in all of the component binaries. The calibration does not account for the excess Gibbs energy resulting from compositional and temperature dependent magnetic ordering in either phase. This limits application of the method to assemblages that equilibrated at temperatures above 600° C. Practical implementation of the proposed geothermometer/oxygen barometer requires minimal use of projection algorthms in accommodating compositions of naturally occurring phases. The new formulation is applied to the estimation of temperature and oxygen fugacity in a wide variety of intermediate to silicic volcanic rocks. In combination with previous work on olivine and orthopyroxene thermodynamics, equilibration pressures are computed for a subset of these volcanics that contain the assemblage quartz, oxides and either ferromagnesian silicate. The calculated log10 f O 2-T relations are reflected in coexisting ferromagnesian mineral assemblages. Volcanics with the lowest relative oxygen fugacity (log10 f O 2) are characterized by the assemblage olivine-quartz, those with slightly higher log10 f O 2 s, by the assemblage orthopyroxene-quartz. The sequence proceeds with the necessary phases biotite-feldspar, then hornblende-quartz-clinopyroxene, and finally at the highest log10 f O 2 s, sphene-quartz-clinopyroxene. Quantitative analysis of these trends, utilizing thermodynamic data for the constituent phases, establishes that, in most cases, the T-log10 f O 2value computed from the oxides is consistent with the compositions of coexisting silicate phases, indicating that phenocryst equilibrium was achieved prior to eruption. There is, however, considerable evidence of oxide-silicate disequilibrium in samples collected from more slowly cooled domes and obsidians. In addition, T-log10 f O 2trends from volcanic rocks that contain biotite and orthopyroxene are interpreted to imply a condition of Fe2+–Mg exchange disequilibrium between orthopyroxene and coexisting ferromagnesian silicates and melt. It is suspected that many biotite-feldspar-quartz-orthopyroxene bearing low temperature volcanic rocks inherit orthopyroxene xenocrysts which crystallized earlier in the cooling history of the magma body.The problem is probably at least as complex as that of the feldspars... A.F. Buddington (1956)  相似文献   

6.
The compositional dependence of the redox ratio (FeO/FeO1.5) has been experimentally determined in K2O-Al2O3-SiO2-Fe2O3-FeO (KASFF) and K2O-CaO-Al2O3-SiO2-Fe2O3-FeO (KCASFF) silicate melts. Compositions were equilibrated at 1,450° C in air, with 78 mol % SiO2. KASFF melts have from 1 to 5 mol % Fe2O3 and include both peraluminous (K2O2O3) and peralkaline (K2O>Al2O3) compositions. KCASFF melts have 1 mol % Fe2O3 encompassing peraluminous, metaluminous (CaO+K2O>Al2O3) and peralkaline compositions. Peralkaline KASFF melts with 1 mol % Fe2O3 have low and constant values for the redox ratio, whereas in peraluminous melts the redox ratio increases with increasing (K2O/Al2O3). Increasing total iron concentration increases the redox ratio in peraluminous melts and slightly decreases the redox ratio in peralkaline melts. Substituting CaO for K2O at fixed total iron (1 mol %) increases the redox ratio in both peraluminous and metaluminous KCASFF melts; however, the redox ratio in peralkaline KCASFF melts is not affected by this exchange. These data indicate that Fe3+ is in four-fold coordination, with K+ or Ca2+ providing local charge balance. The tetrahedral ferric species is most stable in peralkaline melts and least stable in peraluminous melts, due to the competition between Al3+ and Fe3+ for charge balancing cations in the latter melt. Tetrahedral Fe3+ is also less stable when Ca2+ provides local charge balance. The data are consistent with a network modifying role for Fe2+ in the melt.The data are interpreted to reflect the effects of melt composition on the partitioning of K+ and Ca2+ and Fe3+ and Al3+ between various species in the melt. These relationships are discussed in terms of homogeneous equilibria between various iron-bearing and iron-free melt species. The results also reflect the effect of liquid composition on the exchange potentials Fe3+ Al–1 and Ca0.5K–1. The exchange potentials are relatively constant in peralkaline melts, but decrease in metaluminous and peraluminous melts as both (CaO+K2O)/(CaO+K2O+Al2O3) and K2O/CaO decrease. These qualitative observations imply that minerals exhibiting these exchanges will also be similarly affected as liquid composition changes. Present address: Department of Geological Sciences, Virginia Tech, Blacksburg, VA 24061, USA  相似文献   

7.
A mica whose structural formula: (K1.76Na0.31)(Fe2.22Mn1.29Mg0.99Ti0.28Al0.240.98) ·(Si7.33Al0.67)O20.26(F2.16OH1.58) closely approximates that of tetrasilicic potassium mica K2(M 5 2+ )Si8O20(OH,F)4 where M2+ represents Mg2+, Fe2+, Mn2+, ..., has been discovered in the matrix of a peralkaline rhyolite (comendite) of the Mont-Dore massif (France). These micas had been obtained previously by synthesis only. In the groundmass of the rock, the micaceous phase is accompanied by a manganoan arfvedsonite, pyrophanite, magnetite, apatite, sphene, zircon and fluorite. The crystallographic properties of the mica are typically that of a tetrasilicic mica, with d 060 = 1.533Å and space group C2/m. There is a regular decrease of d 060 (parameter b) with the ionic radius of the octahedral cation in synthetic micas containing Fe2+, Co2+, Mg2+, Ni2+. The purely Mn2+ end-member could not be synthesised; its instability is discussed on the basis of structural considerations. The conditions of crystallization of the micaceous phase are estimated to be 760 ° C, 800 bars with a f o 2=10–14.7 bar. This mica has crystallized from a residual liquid, with high activity of silica and low activity of alumina, whose origin is discussed. The name MONT-DORITE is proposed for this natural tetrasilicic mica having Fe/Fe+Mg >1/2 and Fe/Fe+Mn >1/2. This name is from the stratovolcano Mont-Dore.  相似文献   

8.
Twenty-two hornblendes separated from amphibolites and granulites of the Grenville Orogen of Ontario have been quantitatively analyzed for major and minor elements by electron microprobe, for FeO/Fe2O3 by wet chemistry, and for H2O by manometric measurement as H2. Hornblende formulae were calculated on the basis of 24O+OH+Cl+F. Most samples are magnesio-hornblendes, ferroan pargasitic hornblendes and ferroan hastingsitic hornblendes, with weight fractions of Fe3+/(Fe2++Fe3+) ranging from 0.15 to 0.50. An oxy-amphibole component of 0–25 mol%, with an average value of 17 mol%, is obtained for these complete analyses. When compared with structural formulae determined solely from microprobe data, normalization based on 13=Si+Ti+Al+Fe+Mn+Mg cations provides the best approximation to hornblende formulae calculated from the complete analyses. Less satisfactory agreement is obtained from a normalization scheme based on 15=Si+Ti+Al+Fe+Mn+Mg+Ca, while worst agreement is obtained from normalization to 23 oxygens assuming all Fe is Fe2+. No normalization scheme based on microprobe data alone consistently replicates the measured FeO, Fe2O3, and H2O; accurate determination of these values requires complete chemical analysies. Ionic solution models previously have been proposed to evaluate the activity of Ca2Mg5Si8 O22(OH)2(a Trem) in hornblende for use in equilibria that constrain the activity of H2O (a H 2O) in igneous and metamorphic rocks. Application of ionic models to typical hornblendes produces low a Trem (usually<0.01), consequetly yielding extremely low a H 2O. If an oxy-amphibole component is present, the calculated a Trem and H2O is further reduced. An oxy-amphibole component of 25% reduces the calculated H2O activity and that of any hydroxyl-amphibole component by 50% below that calculated with simplified assumptions regarding X OH in the hydroxyl site (i.e., X OH=1, or X OH=1–X ClX f). Thus, methods of amphibole normalizations appear to have a substantial effect on calculated amphibole and H2O activites. Before quantitative hornblende thermobarometry can be calibrated and applied, the amounts of FeO, Fe2O3 and H2O must be measured in order to fully characterize hornblende solid solutions.Contribution No. 478 from the Mineralogical Laboratory, University of Michigan  相似文献   

9.
Thirty spodumene samples of distinct paragenetic types (primary magmatic, secondary after petalite and hydrothermal) from variety of granitic pegmatites were characterized by electron microprobe, polarized FTIR spectroscopy and Mössbauer spectroscopy. The FTIR spectra of OH (weak sharp pleochroic bands at 3,425, 3,410, 3,395 cm−1 and in the 3,500–3,470 spectral region) are strongly polarized with maximum absorption parallel to nγ. The majority of OH dipoles are presumably generated by a partial replacement of O2 oxygen atoms with an orientation pointing above the Li vacancy site. The separation of the bands probably resulted from a replacement of the coordinating Al by Fe and Si by Al. Homogeneous spodumene mostly close to its ideal formula LiAlSi2O6 shows Fe (0.00–0.10 apfu as Fe3+; Fe3+ >> Fe2+) and Na (0.00–0.04 apfu) as the only minor cations and Fe3+Al−1 substitution up to 10 mol% of the LiFe3+Si2O6 component. Hydrogen concentrations (from 0.1 up to <5 ppm H2O by weight) vary as a function of genetic type with the highest amounts in high-temperature magmatic spodumene. Differences among particular genetic types of spodumene are related to maximum solubility of OH in spodumene structure at given PT conditions and at actual chemical composition of spodumene. OH defect concentrations in spodumene follow a trend, LT/LP pyroxenes containing lower hydrogen contents compared to HT/HP ones. The hydrogen contents in particular genetic types of spodumene and their decrease with decreasing T and P are consistent with petrologic models of the pegmatite (sub)types formations.  相似文献   

10.
 In order to develop a model for simulating naturally occurring chromian spinel compositions, we have processed published experimental data on chromian spinel-melt equilibrium. Out of 259 co-existing spinel-melt experiments reported in the literature, we have selected 118 compositions on the basis of run time, melt composition and experimental technique. These data cover a range of temperatures 1150–1500° C, oxygen fugacities of −13<log f O2< −0.7, and bulk compositions ranging from basalt and norite, to komatiite. Six major spinel components with Cr3+, Al3+, Ti4+, Mg2+, Fe3+ and Fe2+-bearing end-members were considered for the purpose of describing chromite saturation as a function of melt composition, temperature and oxygen fugacity at 1 atmosphere pressure (0.101 MPa). The empirically calibrated mineral-melt expression based on multiple linear regressions is: K Sp i =A/T(K)+B log f O2+C ln (Fe3+/Fe2+)L+D ln R L +E, where K Sp i is an equilibrium constant and R L is a melt structure-chemical parameter (MSCP). Twenty-eight forms of equilibrium constants were considered, including single distribution coefficients, exchange equilibrium constants, formation constants for AB2O4 components, as well as simple “spinel cation ratios”. For each form of the equilibrium constants, a set of 16 combinations of the MSCPs have been investigated. The MSCP is present in the form of composite ratios [e.g., Si/O, NBO/T,(Al+Si)/Si, or (Na+K)/Al] or as simple cation ratios (e.g., Mg/Fe2+). For the calculation of Fe3+ and Fe2+ species in silicate melts, we used existing equations, whereas the Fe3+/Fe2+ ratio of spinels was calculated from the spinel stoichiometry. The regression parameters that best repoduce the experimental data were for the following constants: (Fe3+/Fe2+) Sp , (Mg/Fe2+) Sp /(Mg/Fe2+) L , (Cr/Al) Sp / (Cr/Al) L , K FeCr2O4, and Ti Sp /Ti L . These expressions have been combined into a single program called SPINMELT, which calculates chromite crystallization temperature and composition at a given f O2 with an average accuracy of ∼10° C and 1–2 mol%. An example of the use of SPINMELT is presented for a magma parental to the Bushveld Complex. Received: 30 May 1995/Accepted: 1 November 1995  相似文献   

11.
Lithian ferrian enstatite with Li2O = 1.39 wt% and Fe2O3 7.54 wt% was synthesised in the (MgO–Li2O–FeO–SiO2–H2O) system at P = 0.3 GPa, T = 1,000°C, fO2 = +2 Pbca, and a = 18.2113(7), b = 8.8172(3), c = 5.2050(2) Å, V = 835.79(9) Å3. The composition of the orthopyroxene was determined combining EMP, LA-ICP-MS and single-crystal XRD analysis, yielding the unit formula M2(Mg0.59Fe 0.21 2+ Li0.20) M1(Mg0.74Fe 0.20 3+ Fe 0.06 2+ ) Si2O6. Structure refinements done on crystals obtained from synthesis runs with variable Mg-content show that the orthopyroxene is virtually constant in composition and hence in structure, whereas coexisting clinopyroxenes occurring both as individual grains or thin rims around the orthopyroxene crystals have variable amounts of Li, Fe3+ and Mg contents. Structure refinement shows that Li is ordered at the M2 site and Fe3+ is ordered at the M1 site of the orthopyroxene, whereas Mg (and Fe2+) distributes over both octahedral sites. The main geometrical variations observed for Li-rich samples are actually due to the presence of Fe3+, which affects significantly the geometry of the M1 site; changes in the geometry of the M2 site due to the lower coordination of Li are likely to affect both the degree and the kinetics of the non-convergent Fe2+-Mg ordering process in octahedral sites.  相似文献   

12.
The effect of TiO2 and P2O5 on the ferric/ferrous ratio in silicate melts was investigated in model silicate melts at air conditions in the temperature range 1,400–1,550 °C at 1-atm total pressure. The base composition of the anorthite–diopside eutectic composition was modified with 10 wt % Fe2O3 and variable amounts of TiO2 (up to 30 wt %) or P2O5 (up to 20 wt %). Some compositions also contained higher SiO2 concentrations to compare the role of SiO2, TiO2, and P2O5 on the Fe3+/Fe2+ ratio. The ferric/ferrous ratio in experimental glasses was analyzed using a wet chemical technique with colorimetric detection of ferrous iron. It is shown that at constant temperature, an increase in SiO2, TiO2, and P2O5 content results in a decrease in the ferric/ferrous ratio. The effects of TiO2 and SiO2 on the Fe3+/Fe2+ ratio was found to be almost identical. In contrast, adding P2O5 was found to decrease ferric/ferrous ratio much more effectively than adding silica. The results were compared with the predictions from the published empirical equations forecasting Fe3+/Fe2+ ratio. It was demonstrated that the effects of TiO2 are minor but that the effects of P2O5 should be included in models to better describe ferric/ferrous ratio in phosphorus-bearing silicate melts. Based on our observations, the determination of the prevailing fO2 in magmas from the Fe3+/Fe2+ ratio in natural glasses using empirical equations published so far is discussed critically.  相似文献   

13.
Phase equilibria in the join CaMgSi2O6-CaFeAlSiO6-CaTiAl2O6 have been determined in air at 1 atm by the ordinary quenching method. Clinopyroxeness, forsterite, perovskite, magnetitess, spinelss, hibonite and an unknown phase X are present at liquidus temperatures (ss: solid solution). At subsolidus temperatures the following phase assemblages were encountered; clinopyroxeness+perovskite, clinopyroxeness +perovskite+spinelss, clinopyroxeness +perovskite+melilite (+anorthite), clinopyroxeness +perovskite+melilite+spinelss+anorthite, clinopyroxeness +perovskite+anorthite+spinelss, and clinopyroxeness +perovskite+anorthite+hibonite. At subsolidus temperatures the single phase field of clinopyroxeness extends up to 19 wt.% CaTiAl2O6. Even in the field of clinopyroxeness+perovskite, the TiO2 content in clinopyroxeness continues to increase and attains 9.2 wt.% TiO2 with 24.8 wt.% Al2O3. An interesting fact is that unusual clinopyroxenes which contain more AlIV than SiIV are present in the CaFe-AlSiO6-rich region. The liquid coexisting with pyroxene is richer in Ti, Al, and Fe3+ than the coexisting pyroxene. The clinopyroxenesss coexisting with liquid contain less TiO2, Al2O3 and Fe2O3 than those crystallized at subsolidus temperatures. The petrological significance of the join and the crystallization of Ti- and Al-rich clinopyroxenes are discussed on the basis of the experimental results of the join.  相似文献   

14.
Geometrical changes induced by cation substitutions {Si4+/Al3+}[Mg2+/Al3+], {2Si4+/2Al3+} [2Mg2+/2Al3+], {Si4+/Fe3+} [Mg2+/Al3+] or [Mg2+/Fe3+], where {} and [] indicate tetrahedral and octahedral sheet in lizardite 1T, are studied by ab-initio quantum chemistry calculations. The majority of the models are based on the chemical compositions reported for various lizardite polytypes with the amount of Al in the tetrahedral sheets reported to vary from 3.5% to 8% in the 1T and 2H 1, up to ~30% in the 2H 2 polytype. Si4+ by Fe3+ substitution in the tetrahedral sheet with an Al3+ (Fe3+) in the role of a charge compensating cation in the octahedral sheet is also examined. The cation substitutions result in the geometrical changes in the tetrahedral sheets, while the octahedral sheets remain almost untouched. Substituted tetrahedra are tilted and their basal oxygens pushed down from the plane of basal oxygens. Ditrigonal deformation of tetrahedral sheets depends on the substituting cation and the degree of substitution.  相似文献   

15.
To get deeper insight into the phase relations in the end-member system Fe2SiO4 and in the system (Fe, Mg)2SiO4 experiments were performed in a multi-anvil apparatus at 7 and 13 GPa and 1,000–1,200°C as a function of oxygen fugacity. The oxygen fugacity was varied using the solid oxygen buffer systems Fe/FeO, quartz–fayalite–magnetite, MtW and Ni/NiO. The run products were characterized by electron microprobe, Raman- and FTIR-spectroscopy, X-ray powder diffraction and transmission electron microscopy. At fO2 corresponding to Ni/NiO Fe-ringwoodite transforms to ferrosilite and spinelloid according to the reaction: 9 Fe2SiO4 + O2 = 6 FeSiO3 + 5 Fe2.40Si0.60O4. Refinement of site occupancies in combination with stoichiometric Fe3+ calculations show that 32% of the total Fe is incorporated as Fe3+ according to From the Rietveld refinement we identified spl as spinelloid III (isostructural with wadsleyite) and/or spinelloid V. As we used water in excess in the experiments the run products were also analyzed for structural water incorporation. Adding Mg to the system increases the stability field of ringwoodite to higher oxygen fugacity and the spinel structure seems to accept higher Fe3+ but also water concentrations that may be linked. At oxygen fugacity corresponding to MtW conditions similar phase relations in respect to the breakdown reaction in the Fe-end-member system were observed but with a strong fractionation of Fe into spl and Mg into coexisting cpx. Thus, through this strong fractionation it is possible to stabilize very Fe-rich wadsleyite with considerable Fe3+ concentrations even at an intermediate Fe–Mg bulk composition: assuming constant K D independent on composition and a bulk composition of x Fe = 0.44 this fractionation would stabilize spl with x Fe = 0.72. Thus, spl could be a potential Fe3+ bearing phase at P–T conditions of the transition zone but because of the oxidizing conditions and the Fe-rich bulk composition needed one would expect it more in subduction zone environments than in the transition zone in senso stricto.
M. Koch-MüllerEmail:
  相似文献   

16.
Plagioclase-melt partition coefficients (D) for 34 trace elements at natural concentration levels were determined experimentally in a natural MORB composition at atmospheric pressure using thin Pt-wire loops. Experiments were carried out at three temperatures (1,220, 1,200, and 1,180°C), and at three different oxygen fugacities (fO2 = IW, QFM, air) in order to assess the effect of fO2 on the partitioning of elements with multiple valence (Fe, Eu, Cr). Run products were analyzed by laser-ablation ICP-MS. Most trace element Ds increase slightly as temperature decreases, except for D Zr, D Fe, D Eu and D Cr that vary systematically with fO2. Applying the Lattice Strain Model to our data suggests the presence of Fe2+ entirely in the octahedral site at highly to moderate reducing conditions, while Fe3+ was assigned wholly to the tetrahedral site of the plagioclase structure. Furthermore, we provide a new quantitative framework for understanding the partitioning behaviour of Eu, which occurs as both 2+ and 3+ cations, depending on fO2and confirm the greater compatibility of Eu2+, which has an ionic radius similar to Sr, relative to Eu3+ in plagioclase and the higher Eu2+/ Eu3+ under reducing conditions. For petrogenetic basaltic processes, a combined fractionation of Eu2+–Sr and Fe–Mg by plagioclase has considerable potential as an oxybarometer for natural magmatic rocks.  相似文献   

17.
 The spinel solid solution was found to exist in the whole range between Fe3O4 and γ-Fe2SiO4 at over 10 GPa. The resistivity of Fe3− x Si x O4 (0.0<x<0.288) was measured in the temperature range of 80∼300 K by the AC impedance method. Electron hopping between Fe3+ and Fe2+ in the octahedral site of iron-rich phases gives a large electric conductivity at room temperature. The activation energy of the electron hopping becomes larger with increasing γ-Fe2SiO4 component. A nonlinear change in electric conductivity is not simply caused by the statistical probability of Fe3+–Fe2+ electron hopping with increasing the total Si content. This is probably because a large number of Si4+ ions occupies the octahedral site and the adjacent Fe2+ keeping the local electric neutrality around Si4+ makes a cluster, which generates a local deformation by Si substitution. The temperature dependence of the conductivity of solid solutions indicates the Verwey transition temperature, which decreases from 124(±2) K at x=0 (Fe3O4) to 102(±5) K at x=0.288, and the electric conductivity gap at the transition temperature decreases with Si4+ substitution. Received: 15 March 2000 / Accepted: 4 September 2000  相似文献   

18.
《Chemical Geology》1992,94(3):215-227
Tourmaline is a ubiquitous mineral in the Mid-Proterozoic, peraluminous, syn- to post-tectonic granites and aplites and the related hydrothermal rocks of the Karagwe-Ankolean belt in northwest Tanzania. Electron microprobe analysis indicates that tourmalines from all of the intrusive and hydrothermal lithologies: (1) belong to the schorl-dravite solid-solution series; and (2) plot within the field occupied by tourmaline from Li-poor granitoids on the Fe-Al-Mg classification diagram. Oxygen isotope compositions range from +12.2 to +11.6‰ (SMOW) for magmatic tourmalines and from +10.8 to +9.8‰ for those of hydrothermal origin. Hydrogen isotope compositions vary from −79 to − 65‰ (SMOW) for magmatic tourmalines and from −99 to −84‰ for hydrothermal tourmalines. Water contents measured by manometry are constant at 3.0–3.2 wt.%. Within the broad grouping there arc systematic variations in both chemical [particularly Fetot/(Fetot + Mg ratio)] and isotopic composition that relate to evolving magmatic and hydrothermal conditions. Igneous differentiation [increasing Fetot/(Fetot + Mg) in magmatic tourmaline] has produced trends with higher δ18O in quartz, lower δ18O in tourmaline, and larger ΔQTZ.−TOUR.-values, that reflect a combination of a reduction of crystallization temperature and an increase of Fetot/ (Fetot + Mg) in the residual melt. Subsequent cooling and interaction of an exsolved, B-rich magmatic fluid with the pelitic country rocks, resulted in the deposition of hydrothermal tourmaline with increasing Fetot/(Fetot + Mg) ratios, and progressively lower δ18O and δD -values.  相似文献   

19.
Ti-andradite (melanite) has been found in a metapyroxenite layer in the upper part of the Malenco ultramafics(Italy), coexisting with clinochlore, diopside and magnetite. Field observations, as well as major and trace elementbulk-rock composition, strongly suggest a cumulate origin for the layer. Textural relationships indicate thatTi-andradite formed during two different metamorphic stages. Under peak metamorphic conditions (400–450°C, 5±2 kbar)Ti-andradite grew in an assemblage of diopside, clinochlore, magnetite and rare ilmenite and perovskite. Later, retrograde brittle deformationinduced formation of veins containing the paragenesis Ti-andradite, vesuvianite, diopside, chlinochlore, magnetite and accessory perovskite.The Ti-andradite varies considerably in TiO2 (0.11–9.62 wt%), Fe2O3(14.3–30.5 wt%), Al2O3 (0.65–3.90 wt%), Cr2O3(>0.18–0.98 wt%) and SiO2 (32.1–36.1 wt%); this is mostly, but not entirely, due to distinct zoning.Ti-andradite contains 0.32 to 0.66 wt% H2O as determined by infrared spectroscopy and 0.83 to 1.76 wt% FeO. The CaO shows almost no variation (34.1±0.7 wt%) and Ca completely fills the dodecahedral site. Single crystal site refinements indicate that no tetrahedral Ti or Fe replaces Si. Titanium incorporation is attributed to similar degrees of substitution along the exchange vectors Ti3+ Fe3+, Ti4+ AlIV Al -1 VI Si-1 and (Fe2+, Mn2+, Mg2+)Ti4+ 2Fe -1 3+ . The presence of mixed valence states of both Fe and Ti suggests a low oxygen fugacity during crystallization of Ti-andradite. Mass balance calculations indicate an isochemical origin of the first generation of Ti-andradite in the clinopyroxenite layer. Its occurrence is restricted to antigorite-free mineral assemblages containing clinochlore of 0.95X Al>1.1. The hydrothermal crystallization of Ti-rich andradite in veins demonstrates Ti mobility in aqueous fluids under moderate P-T conditions. The zonation patterns indicate disequilibrium conditions during vein crystallization. As no fluorine-, carbonate- and phosphate-bearing minerals were found, OH- is most probably the ligand complexing Ti.  相似文献   

20.
The reaction chloritoid (ctd)=almandine (alm)+diaspore+H2O (CAD) has been reversed using Fe3+-free synthetic chloritoid and almandine, under fO2 conditions of the solid oxygen buffer Fe/FeO (CADWI), and using partially oxidized synthetic minerals under fO2 conditions of the solid oxygen buffer Ni/NiO (CADNNO). Experiments have been conducted between 550 and 700°C, 25 and 45 kbar. The equilibrium pressure and temperature conditions are strongly dependent on the fO2 conditions (CADNNO lies some-what 50°C higher than CADWI). This can be explained by a decrease in aH2O for experiments conducted on the Fe/FeO buffer, and a decrease in actd and aalm (through incorporation of ferric iron preferentially in chloritoid) for experiments conducted on the Ni/NiO buffer. The H2O activity has been calculated using the MRK equation of state, and the values obtained checked against the shift of the equilibrium diaspore=corundum+H2O bracketed on the Fe/FeO buffer and under unbuffered fO2 conditions. For fO2 buffered by the assemblage Fe/FeO, aH2O increases with pressure from about 0.85 at 600°C, 12 kbar to about 0.9 at 605°C, 25 kbar and 1 above 28 kbar. For fO2 buffered by the assemblage Ni/NiO, aH2O=1. The aH2O decrease from Ni/NiO to Fe/FeO is, however, too small to be entirely responsible for the temperature shift between CADNNO and CADWI. In consequence, the amount of ferric iron in almandine and chloritoid growing in the CADNNO experiments must be significant and change along the CADNNO, precluding calculation of the thermodynamic properties of chloritoid from this reaction. Our experimental data obtained on the Fe/FeO buffer are combined, using a thermodynamic analysis, with Ganguly's (1969) reversal of the reaction chloritoid=almandine+corundum +H2O (CAC) on the same oxygen buffer. Experimental brackets are mutually consistent and allow extraction of the thermodynamic parameters H o f,ctd and S octd. Our thermodynamic data are compared with others, generally calculated using Ganguly's bracketing of CACNNO. The agreement between the different data sets is relatively good at low pressure, but becomes rapidly very poor toward high pressure conditions. Using our thermodynamic data for chloritoid and KD=(Fe3+/Al)ctd/(Fe3+/Al)alm estimated from natural assemblages, we have calculated the composition of chloritoid and almandine growing from CADNNO and CACNNO. The Fe3+ content in chloritoid and almandine increases with pressure, from less than 0.038 per FeAl2SiO5(OH)2 formula unit at 10 kbar to at least 0.2 per formula unit above 30 kbar. This implies that chloritoid and almandine do contain Fe3+ in most natural assemblages. The reliability of our results compared to natural systems and thermodynamic data for Mg-chloritoid is tested by comparing the equilibrium conditions for the reaction chloritoid+quartz=garnet (gt)+kyanite+H2O (CQGK), calculated for intermediate Fe–Mg chloritoid and garnet compositions, from the system FASH and from the system MASH. For 0.65<(XFe)gt<0.8, CQKG calculated from FASH and MASH overlap for KD=(Mg/Fe)ctd/(Mg/Fe)gt=2. This is in good agreement with the KD values reported from chloritoid+garnet+quartz+kyanite natural assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号