首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Astroparticle Physics》2010,32(6):417-420
We revisit calculations of the cosmogenic production rates for several long-lived isotopes that are potential sources of background in searching for rare physics processes such as the detection of dark matter and neutrinoless double-beta decay. Using updated cosmic-ray neutron flux measurements, we use TALYS 1.0 to investigate the cosmogenic activation of stable isotopes of several detector targets and find that the cosmogenic isotopes produced inside the target materials and cryostat can result in large backgrounds for dark matter searches and neutrinoless double-beta decay. We use previously published low-background HPGe data to constrain the production of 3H on the surface and the upper limit is consistent with our calculation. We note that cosmogenic production of several isotopes in various targets can generate potential backgrounds for dark matter detection and neutrinoless double-beta decay with a massive detector, thus great care should be taken to limit and/or deal with the cosmogenic activation of the targets.  相似文献   

2.
《Astroparticle Physics》2011,34(5-6):316-329
Experiments looking for rare events like the direct detection of dark matter particles or the nuclear Double Beta Decay are operated in deep underground locations, to suppress or very effectively reduce the effect of cosmic rays; but cosmogenic activation produced at sea level in detectors and other materials can become a serious hazard for them. Copper and germanium are very frequently used in this kind of experiments requiring an ultra-low radioactive background and therefore have been chosen as activation targets in this work. First, the excitation functions for relevant induced long-lived radioactive isotopes have been estimated; special care has been taken in using those calculations giving the best agreement with measured production cross-sections and in distinguishing production by neutrons or by protons when relevant and possible. Then, the corresponding rates of production of the nuclides in natural and enriched (86% 76Ge and 14% 74Ge) germanium and copper have been evaluated considering two different cosmic ray spectra. Comparison of the obtained activation yields at surface with all the known previous results (based either on calculations or experiments) has allowed to draw conclusions on the general methodology for evaluating cosmogenic activation.  相似文献   

3.
130Te is one of the candidates for the search for neutrinoless double beta decay. It is currently planned to be used in two experiments: CUORE and SNO+. In the CUORE experiment TeO2 crystals cooled at cryogenic temperatures will be used. In the SNO+ experiment natTe will be deployed up to 0.3% loading in the liquid scintillator volume. A possible background for the signal searched for, are the high Q-value, long-lived isotopes, produced by cosmogenic neutron and proton spallation reaction on the target material. A total of 18 isotopes with Q-value larger than 2 MeV and T1/2 > 20 days have been identified as potential backgrounds. In addition low Q-value, high rate isotopes can be problematic due to pile-up effects, specially in liquid scintillator based detectors. Production rates have been calculated using the ACTIVIA program, the TENDL library, and the cosmogenic neutron and proton flux parametrization at sea level from Armstrong and Gehrels for both long and short lived isotopes. The obtained values for the cross sections are compared with the existing experimental data and calculations. Good agreement has been generally found. The results have been applied to the SNO+ experiment for one year of exposure at sea level. Two possible cases have been considered: a two years of cooling down period deep underground, or a first purification on surface and 6 months of cooling down deep underground. Deep underground activation at the SNOLAB location has been considered.  相似文献   

4.
A search for the neutrinoless double-beta decay of 124Sn was carried out using the tin-loaded liquid scintillator for an active source-detector technique. Tin (32.6%) in weight was successfully loaded into the liquid scintillator, and light output was as high as 57% of the unloaded liquid scintillator. A tin-loaded liquid scintillator with 1.1  volume was installed at the 700 m underground laboratory in YangYang, and data were taken for 5285 h. No evidence for the 0νββ decay was found and a lower limit on the 124Sn half-life was obtained to be 2.0×1019 year with 90% C.L. The new limit represents a significant improvement with respect to those previously available for 124Sn.  相似文献   

5.
Lunar basalt 15016 (~3.3 Ga) is among the most vesicular (50% by volume) basalts recovered by the Apollo missions. We investigated the possible occurrence of indigenous lunar nitrogen and noble gases trapped in vesicles within basalt 15016, by crushing several cm-sized chips. Matrix/mineral gases were also extracted from crush residues by fusion with a CO2 laser. No magmatic/primordial component could be identified; all isotope compositions, including those of vesicles, pointed to a cosmogenic origin. We found that vesicles contained ~0.2%, ~0.02%, ~0.002%, and ~0.02% of the total amount of cosmogenic 21Ne, 38Ar, 83Kr, and 126Xe, respectively, produced over the basalt's 300 Myr of exposure. Diffusion/recoil of cosmogenic isotopes from the basaltic matrix/minerals to intergrain joints and vesicles is discussed. The enhanced proportion of cosmogenic Xe isotopes relative to Kr detected in vesicles could be the result of kinetic fractionation, through which preferential retention of Xe isotopes over Kr within vesicles might have occurred during diffusion from the vesicle volume to the outer space through microleaks. This study suggests that cosmogenic loss, known to be significant for 3He and 21Ne, and to a lesser extent for 36Ar (Signer et al. 1977 ), also occurs to a negligible extent for the heaviest noble gases Kr and Xe.  相似文献   

6.
Abstract— Previous studies have shown that the Kapoeta howardite, as well as several other meteorites, contains excess concentrations of cosmogenic Ne in the darkened, solar-irradiated phase compared to the light, non-irradiated phase. The two explanations offered for the nuclear production of these Ne excesses in the parent body regolith are either from galactic cosmic-ray proton (GCR) irradiation or from a greatly enhanced flux of energetic solar “cosmic-ray” protons (SCR), as compared to the recent solar flux. Combining new isotopic data we obtained on acid-etched, separated feldspar from Kapoeta light and dark phases with literature data, we show that the cosmogenic 21Ne/22Ne ratio of light phase feldspar (0.80) is consistent with only GCR irradiation in space for ~3 Ma. However, the 21Ne/22Ne ratio (0.68) derived for irradiation of dark phase feldspar in the Kapoeta regolith indicates that cosmogenic Ne was produced in roughly equal proportions from galactic and solar protons. Considering a simple model of an immature Kapoeta parent body regolith, the duration of this early galactic exposure was only ~3–6 Ma, which would be an upper limit to the solar exposure time of individual grains. Concentrations of cosmogenic 21Ne in pyroxene separates and of cosmogenic 126Xe in both feldspar and pyroxene are consistent with this interpretation. The near-surface irradiation time of individual grains in the Kapoeta regolith probably varied considerably due to regolith mixing to an average GCR irradiation depth of ~10 cm. Because of the very different depth scales for production of solar ~Fe tracks, SCR Ne, and GCR Ne, the actual regolith exposure times for average grains probably differed correspondingly. However, both the SCR 21Ne and solar track ages appear to be longer because of enhanced production by early solar activity. The SCR/GCR production ratio of 21Ne inferred from the Kapoeta data is larger by a at least a factor of 10 and possibly as much as a factor of ~50 compared to recent solar particle fluxes. Thus, this study indicates that our early Sun was much more active and emitted a substantially higher flux of energetic (>10 MeV/nucleon) protons.  相似文献   

7.
Knowledge of the long-term variability of solar activity is of both astrophysical and geoscientific interest. Reconstructions of solar activity over multiple millennia are traditionally based on cosmogenic isotopes 14C or 10Be measured in natural terrestrial archives, but the two isotopes exhibit significant differences on millennial time scales, so that our knowledge of solar activity at this time scale remains somewhat uncertain. Here we present a new potential proxy of solar activity on the centennial-millennial time scale, based on a chemical tracer, viz. nitrate content in an ice core drilled at Talos Dome (Antarctica). We argue that this location is optimal for preserving the solar signal in the nitrate content during the Holocene. By using the firn core from the same location we show that the 11-year and Gleissberg cycles are present with the variability of 10??C?25?% in nitrate content in the pre-industrial epoch. This is consistent with the results of independent efforts of modeling HNO3 and NO y in Antarctic near surface air. However, meteorological noise on the interannual scale makes it impossible to resolve individual solar cycles. Based on different processes of formation and transport compared to cosmogenic isotopes, it provides new, independent insight into long-term solar activity and helps resolve the uncertainties related to cosmogenic isotopes as diagnostics of solar activity.  相似文献   

8.
We estimate the time-scales for orbital decay of wide binaries embedded within dark matter haloes, due to dynamical friction against the dark matter particles. We derive analytical scalings for this decay and calibrate and test them through the extensive use of N -body simulations, which accurately confirm the predicted temporal evolution. For density and velocity dispersion parameters as inferred for the dark matter haloes of local dSph galaxies, we show that the decay time-scales become shorter than the ages of the dSph stellar populations for binary stars composed of  1 M  stars, for initial separations larger than 0.1 pc. Such wide binaries are conspicuous and have been well measured in the solar neighbourhood. The prediction of the dark matter hypothesis is that they should now be absent from stellar populations embedded within low velocity dispersion, high-density dark mater haloes, as currently inferred for the local dSph galaxies, having since evolved into tighter binaries. Relevant empirical determinations of this will become technically feasible in the near future, and could provide evidence to discriminate between dark matter particle haloes or modified gravitational theories, to account for the high dispersion velocities measured for stars in local dSph galaxies.  相似文献   

9.
The CTA will mean a significant increase of the potential for dark matter detection, compared to present-day detectors like MAGIC, HESS and VERITAS. In particular, if – as it might be indicated from early LHC results – the dark matter sector is heavy, perhaps in the TeV mass range, imaging air Cherenkov arrays have a good opportunity to detect γ-rays from dark matter annihilation in the galactic halo, the galactic center, dwarf galaxies, or galaxy clusters. A review of the present situation is given and a few of the “miracles” that may enhance chances for detection in CTA are discussed, such as Sommerfeld enhancement and internal bremsstrahlung radiation. A few templates for dark matter are studied, and the importance of the acceptance of the detector at low energies is pointed out. Finally, the idea of a complement to CTA in the form of a high-altitude, low energy threshold dedicated dark matter array, DMA, is discussed.  相似文献   

10.
Abstract— We analyzed the noble gas isotopes in the Fe‐Ni metal and inclusions of the Saint‐Aubin iron meteorite, utilizing the stepwise heating technique to separate the various components of noble gases. The light noble gases in all samples are mostly cosmogenic, with some admixture from the terrestrial atmosphere. Total abundances of noble gases in metal are one of the lowest found so far in iron meteorites and the 4He/21Ne ratio is as high as 503, suggesting that the Saint‐Aubin iron meteorite was derived from a very large meteoroid in space. The exposure ages obtained from cosmogenic 3He were 9–16 Ma. Saint‐Aubin is very peculiar because it contains very large chromite crystals, which—like the metal—contain only cosmogenic and atmospheric noble gases. The noble gases in all the samples do not reveal any primordial components. The only exception is the 1000 °C fraction of schreibersite which contained about 5% of the Xe‐HL component. The Xe‐Q and the El Taco Xe components were not found and only the Xe‐HL is present in this fraction. Some presolar diamond, the only carrier for the HL component known today, must have been available during growth of the schreibersite. However, it is also possible that this excess is due to the addition of cosmogenic and fission components. In this case, all the primordial components are masked (or lost) by the later events such as cosmic‐ray irradiation, heating, and radioactive decay.  相似文献   

11.
Abstract— Two spherical targets made of gabbro with a radius of 25 cm and of steel with a radius of 10 cm were irradiated isotropically with 1600 MeV protons at the SATURNE synchrotron at Laboratoire National Saturne (LNS)/CEN Saclay, in order to simulate the production of nuclides in meteorites induced by galactic cosmic‐ray protons in space. These experiments supply depth‐dependent production rate data for a wide range of radioactive and stable isotopes in up to 28 target elements. In this paper, we report results for 78Kr, 80–86Kr isotopes in Rb, Sr, Y and Zr and for 124Xe, 126Xe, 128–132Xe, 134Xe, 136Xe isotopes in Ba and La. Krypton and xenon concentrations have been measured at different depths in the spheres by using conventional mass spectrometry. Based on Monte‐Carlo techniques, theoretical production rates are calculated by folding depth‐dependent spectra of primary and secondary protons and secondary neutrons with the excitation functions of the relevant nuclear reactions. The comparison of the model calculation results with experimental data in the thick target experiments performed at LNS and previously at CERN have allowed adjustments of the poorly known excitation functions of neutron‐induced reactions. Thus, for the two experiments at SATURNE, excellent agreement is obtained between experimental and calculated production rates for most Kr and Xe isotopes in all investigated target elements. Only Xe production in Ba in the gabbro is underestimated by the calculations by ?25%. This work validates the approach of the thin‐target model calculations of cosmogenic nuclide production rates in the attempt of modeling the interaction of galactic cosmic‐ray protons with stony and iron meteorites in space as well as with lunar samples.  相似文献   

12.
While data on the cosmogenic isotopes 14C and 10Be made it possible to evaluate extreme solar proton events (SPEs) in the past, their relation to standard parameters quantifying the SPE strengths, viz. the integrated fluence of protons with energy above 30 MeV, F 30, is ambiguous and strongly depends on the assumed shape of the energy spectrum. Here we propose a new index, the integral fluence of an SPE above 200 MeV, F 200, which is related to the production of the cosmogenic isotopes 14C and 10Be in the Earth atmosphere, independently of the assumptions on the energy spectrum of the event. The F 200 fluence is reconstructed from past cosmogenic isotope data, which provides an assessment of the occurrence probability density function for extreme SPEs. In particular, we evaluate that extreme SPEs with F 200>1010 cm?2 occur no more frequently than once per 10?–?15 kyr.  相似文献   

13.
Abstract— Cosmic‐ray‐produced (cosmogenic) nuclides were studied in fragments of the Brenham pallasite, a large stony iron meteorite. The contents of light noble gases (He, Ne, and Ar) and long‐lived radionuclides (10Be, 26Al, 36Cl, and 53Mn), produced by nuclear reactions with cosmic rays, were measured in the separated metal and olivine phases from numerous samples representing a wide range of shielding conditions in the meteoroid. The distribution of cosmogenic nuclide concentrations in the metal follows patterns similar to that observed in large iron meteorites. Shielding effects were estimated from the relative proportions of low‐ and high‐energy reaction products. The production rates varied, from surface to interior, by a factor of more than several hundred. The 36Cl‐36Ar cosmic‐ray exposure age of Brenham is 156 ± 8 Myr. This determination is based on a multiple nuclide approach that utilizes cosmogenic nuclide pairs. This approach not only yields a “shielding independent” exposure age but also demonstrates that the production of cosmogenic nuclides occurred in a single stage. The depth profiles of 10Be in the stone phase and 53Mn in the metal phase are shown superimposed on corresponding profiles from the Apollo 15 long drill core. Surprisingly low abundances of lithophile elements, such as K, U, and Th, provided a unique opportunity to examine the production systematics of those nuclides whose inventories typically have significant contributions from non‐cosmogenic sources, particularly radiogenic contributions. The U and Th contents of the olivine samples are extremely low, allowing detection of cosmogenic 4He production from oxygen, magnesium, silicon, and iron.  相似文献   

14.
The solar modulation potential has been reconstructed from data on the 10Be concentration in south and central Greenland ice over more than 500 last years. These two reconstructions, along with fourteen others obtained by various authors from data on the cosmogenic isotopes 14C and 10Be, have been investigated in the time interval 1630–1840 encompassing the Maunder and Dalton minima. The information contained in these sixteen paleoreconstructions has been generalized. The available data on the concentration of cosmogenic isotopes in terrestrial archives suggest that the solar activity in the first part of theMaunder minimum (1645–1680) was lower than that at the Dalton minimum (1792–1827), while in the second part (1680–1715) it was considerably lower. At the same time, at the beginning of theMaunder minimum (1645–1660) the solar activity could reach levels exceeding noticeably the estimates based on telescopic observations. Possible causes of these discrepancies and the directions of further research are discussed.  相似文献   

15.
Simulations of the neutron background for future large-scale particle dark matter detectors are presented. Neutrons were generated in rock and detector elements via spontaneous fission and (α,n) reactions, and by cosmic-ray muons. The simulation techniques and results are discussed in the context of the expected sensitivity of a generic liquid xenon dark matter detector. Methods of neutron background suppression are investigated. A sensitivity of 10−9–10−10 pb to WIMP-nucleon interactions can be achieved by a tonne-scale detector.  相似文献   

16.
Abstract— The cosmogenic radionuclides, 10Be, 26Al, 36Cl, and 53Mn were measured in selected clasts and matrix samples from the howardite Kapoeta. Previous measurements of cosmogenic 21Ne indicate higher cosmic‐ray exposure ages for bulk samples than for some separated clasts or mineral separates. A possible interpretation for this difference in apparent exposure ages is a complex recent exposure history for Kapoeta. In this scenario some constituents are exposed to cosmic rays in a 2π geometry as part of a larger body immediately preceding its 4π exposure in a smaller body. To test this scenario we measured cosmogenic radionuclides in several clasts from Kapoeta. These measurements are consistent with a simple single‐stage 4π exposure history during which the entire inventory of cosmogenic radionuclides was produced. Taken together, these data are most consistent with a single‐stage 4π exposure lasting ~3 Ma. This scenario is nevertheless consistent with models in which the exposure of some constituents of Kapoeta to energetic particles occurred at an earlier time, as is indicated by 21Ne measurements. However, from our data we conclude that insubstantial quantities of cosmogenic radionuclides were inherited from this earlier irradiation; this earlier exposure to energetic particles must have predated the recent exposure by at least ~10 Ma to allow for the decay of the long half‐life cosmogenic radionuclides.  相似文献   

17.
Renazzo‐type carbonaceous (CR) chondrites are accretionary breccias that formed last. As such they are ideal samples to study precompaction exposures to cosmic rays. Here, we present noble gas data for 24 chondrules and 3 dark inclusion samples (DIs) from Shi?r 033 (CR2). The meteorite was selected based on the absence of implanted solar wind noble gases and an anomalous oxygen isotopic composition of the DIs; the oxygen isotopes match those in CV3 and CO3 chondrites. Our samples contain variable mixtures of galactic cosmic ray (GCR)‐produced cosmogenic noble gases and trapped noble gases of presolar origin. Remarkably, all chondrules have cosmogenic 3He and 21Ne concentrations up to 4.3 and 7.1 times higher than the DIs, respectively. We derived an average 3He‐21Ne cosmic ray exposure (CRE) age for Shi?r 033 of 2.03 ± 0.20 Ma (2 SD) and excesses in cosmogenic 3He and 21Ne in chondrules (relative to the DIs) in the range (in 10?8 cm3STP/g) 3.99–7.76 and 0.94–1.71, respectively. Assuming present‐day GCR flux density, the excesses translate into average precompaction 3He‐21Ne CRE ages of 3.1–27.3 Ma depending on the exposure geometry. The data can be interpreted assuming a protracted storage of a single chondrule generation prior to the final assembly of the Shi?r 033 parent body in a region of the disk transparent to GCRs.  相似文献   

18.
The possibility of using a trap with ultracold neutrons as a detector of dark matter particles with long-range forces is considered. The main advantage of the proposed method lies in the possibility of detecting a recoil energy of ∼10−7 eV. Constraints on the parameters of an interaction potential of the form φ (r) = ae r/b /r between dark matter particles and a neutron are presented at various dark matter densities on Earth. The assumption about the long-range interaction of dark matter particles and ordinary matter is shown to lead to a significant increase in the elastic scattering cross section at low energies. As a consequence, it becomes possible to capture and accumulate dark matter in the Earth’s gravitational field. The accumulated dark matter in the Earth’s gravitational field is roughly estimated. The first experimental constraints on the existence of dark matter with long-range forces on Earth are presented.  相似文献   

19.
We start from the hypothesis that the dark matter of the Galactic disc contains Planckian particles carrying a negative electric charge of up to Z =10, which we call dark electric matter objects (daemons). Daemons are capable of catalysing proton-fusion reactions, which may account for the observed solar neutrino deficiency. The inevitable poisoning of the catalytic property of daemons as they capture heavy nuclei ( A 20) in the interior of the Sun is used to estimate the decay time of a daemon-containing nucleus (nucleon) in quantum-relativistic processes, which remain largely unknown. This time is τ ex∼10−7 s. This may mean that the lower limit on the mass of an intranucleonic particle interacting with a daemon is ∼108–1010 GeV and, possibly, even ∼1014–1015 GeV. The desirability of a search for multiple events occurring with an interval ∼ τ ex along the 'slow' daemon trajectories on operating installations dedicated to detection of the proton decay is pointed out.  相似文献   

20.
Abstract— Measurements of particle tracks, cosmogenic radionuclides, and rare gas isotopes in Mbale indicate that the meteoroid had a simple, one-stage exposure for 30.2 Ma in interplanetary space. On the basis of the measured track production rates and 60Co and 26Al activities, the meteoroid is estimated to be a sphere with a radius of ~36 cm. The activities of several cosmogenic radionuclides (i.e., 57Co, 54Mn, 22Na, 44Ti, and 26Al) in two fragments having different shielding, as estimated by their track density and 60Co activity, provide the depth variation in their production rates. Cobalt-57, 54Mn and 22Na activities agree with the production that is expected around the maximum of the solar cycle 22 as calculated from the Sunspot numbers. The U, Th-4He and K-40Ar ages are measured to be 0.54 Ga indicating a late thermal event which is in agreement with the thermal history of some other L group chondrites. The trapped N has δ15N of ?57 ± 4%o, which is much lighter than the average L-group chondrite value; this indicates the presence of an isotopically anomalous light N component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号