首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Surface pressure distributions and 500 millibar flow patterns are identified for summer season days with a moisture stress gradient across the western Great Lakes region that may be related to the location of the prairie-forest ecotone. Results indicate that days with moisture stress gradients are a characteristic feature of the summer climate in the area and that these days are associated with unique, nonrandom groupings of mid-tropospheric flow patterns. SW-NE and W-E stress gradients, those that appear to contribute most to defining and reinforcing the location of the ecotone, occur most frequently, and the modal 500-mb flow direction for these transect groups, an azimuth of 290°, is the same as the mode for the entire population of summer season flow directions. We conclude that the modal mid-tropospheric circulation of the summer season plays a significant role in determining the surface weather conditions that regulate the most common moisture stress patterns within the western Great Lakes region.  相似文献   

2.
The climatology of winter cyclones crossing the western Great Lakes was investigated. Data concerning storm strength, place of origin, and surface and 500 mb level synoptic characteristics were obtained from the months of October through February, 1955–1976, for 469 cyclones. November cyclones had the lowest mean pressure and strongest pressure gradient of the 5 months examined, but cyclonic frequencies were greatest in December and January. In all months, cyclones originating in the southwestern United States were significantly deeper than storms of northern origins, and these cyclones crossed the western Lakes most frequently in November. In November, cyclogenesis in the southwest was related to departures of the observed flow from the mean monthly mid-tropospheric circulation with trough development over the west. Yearly variations in the number of severe November cyclones were related to differences of mean monthly 500 mb flow.  相似文献   

3.
Simulations (216) were undertaken to evaluate the impact of typical Lake Agassiz outbursts on the upper Great Lakes under plausible variations in lake surface areas and sill widths. Flows over sills out of lakes are modelled using the equation for a broad-crested weir, with the model time increment set to one day. The model was evaluated for Lake Agassiz outlet sill widths of 1, 4, and 10 km and with outbursts ranging from 100 000 m3 s–1 to 600 000 m3 s–1. The surface area of Lake Agassiz was evaluated for 182 000 km2 ±20%. The surface area of the upper Great Lakes were modelled as either Lake Algonquin (Superior, Huron and Michigan basins =200 000 km2) or Lake Minong (Superior basin 87 000 km2) with sill widths of 0.5, 1.5, and 3 km.Downstream peak discharge modelled at the outlet sill of the upper Great Lakes, was normally between 20 and 60% of the initial outburst, with a lagtime to peak usually between 80 and 280 days. Upper Great Lakes water level rises of between 2 and 20 m are calculated with rises to 36 m for some configurations. Rise magnitude is inversely related to the width of the outlet sills at both lake systems and to the surface area of the receiving lake.The modeling implies that measuring outflow from the upper Great Lakes, or water level rises, does not in itself determine peak or total outflow from Lake Agassiz unless the dimensions of the Lake Agassiz and upper Great Lakes outflow sills are also known.Lake level rises probably coincided on the upper Great Lakes with meltout from the winter freeze-up. Lake levels re-attain equilibrium values with respect to through flow within three years of an outburst. Substantial episodic lake level rises in the upper Great Lakes may have had severe impacts on the lake biota, for example via the affect on spawning grounds.  相似文献   

4.
Two distinct episodes of increased water flux imposed on the Great Lakes system by discharge from upstream proglacial lakes during the period from about 11.5 to 8 ka resulted in expanded outflows, raised lake levels and associated climate changes. The interpretation of these major hydrological and climatic effects, previously unrecognized, is mainly based on the evidence of former shorelines, radiocarbon-dated shallow-water sediment sequences, paleohydraulic estimates of discharge, and pollen diagrams of vegetation change within the basins of the present Lakes Superior, Michigan, Huron, Erie and Nipissing. The concept of inflow from glacial Lake Agassiz adjacent to the retreating Laurentide Ice Sheet about 11–10 and 9.5–8.5 ka is generally supported, with inflow possibly augmented during the second period by backflooding of discharge from glacial Lake Barlow-Ojibway.Although greater dating control is needed, six distinct phases can be recognized which characterize the hydrological history of the Upper Great Lakes from about 12 to 5 ka; 1) an early ice-dammed Kirkfield phase until 11.0 ka which drained directly to Ontario basin; 2) an ice-dammed Main Algonquin phase (11.0–10.5 ka) of relatively colder surface temperature with an associated climate reversal caused by greater water flux from glacial Lake Agassiz; 3) a short Post Algonquin phase (about 10.5–10.1 ka) encompassing ice retreat and drawdown of Lake Algonquin; 4) an Ottawa-Marquette low phase (about 10.1–9.6 ka) characterized by drainage via the then isostatically depressed Mattawa-Ottawa Valley and by reduction in Agassiz inflow by the Marquette glacial advance in Superior basin; 5) a Mattawa phase of high and variable levels (about 9.6–8.3 ka) which induced a second climatic cooling in the Upper Great Lakes area. Lakes of the Mattawa phase were supported by large inflows from both Lakes Agassiz and Barlow-Ojibway and were controlled by hydraulic resistance at a common outlet — the Rankin Constriction in Ottawa Valley — with an estimated base-flow discharge in the order of 200000 m3s–1. 6) Lakes of the Nipissing phase (about 8.3–4.7 ka) existed below the base elevation of the previous Lake Mattawa, were nourished by local precipitation and runoff only, and drained by the classic North Bay outlet to Ottawa Valley.Geological Survey of Canada Contribution 42488.This is the twelfth of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Dr. Davis is serving as guest editor of this series.  相似文献   

5.
Temporal variation in the absolute value of interdiurnal variability (AIDV) of January maximum temperatures is examined for the period 1945–1985 in the central United States (90°–105°W). AIDV indicates the magnitude of day-to-day changes in the maximum temperature. Five-year running-mean AIDV values decreased significantly throughout the period. This trend was apparent for the region overall and for the 10 of the 20 study sites analyzed individually. Temporal variation in AIDV values was significantly related to mid-tropospheric flow patterns over the central United States. Meridional circulation was associated with smaller AIDV values in all sites except those in the northwestern and southeastern corners of the study area, whereas zonal flow was linked to larger interdiurnal temperature change. The analysis of selected individual years indicated that mid-tropospheric circulation patterns were more persistent with meridional flow, and surface cyclones and their associated surface fronts tracked through the study area less frequently than in years with zonal flow. Analysis at a daily temporal resolution revealed an added dimension of trends in temperature variability beyond those apparent with a coarser monthly resolution. These results emphasize the importance of finer temporal resolution in the analysis of both past and projected climate change; regionally summarized monthly temperature values mask important variation in temperature trends apparent at shorter temporal and more local spatial scales.  相似文献   

6.
The suspected impact of climate warming on precipitation distribution is examined in the Yangtze River Basin. Daily precipitation data for 147 meteorological stations from 1961–2000 and monthly discharge data for three stations in the basin have been analyzed for temporal and spatial trends. The methods used include the Mann–Kendall test and simple regression analysis. The results show (1) a significant positive trend in summer precipitation at many stations especially for June and July, with the summer precipitation maxima in the middle and lower Yangtze River basin in the 1990s; (2) a positive trend in rainstorm frequency that is the main contributor to increased summer precipitation in the basin; and (3) a significant positive trend in flood discharges in the middle and lower basin related to the spatial patterns and temporal trends of both precipitation and individual rainstorms in the last 40 years. The rainstorms have aggravated floods in the middle and lower Yangtze River Basin in recent decades. The observed trends in precipitation and rainstorms are possibly caused by variations of atmospheric circulation (weakened summer monsoon) under climate warming.  相似文献   

7.
New England and Atlantic Canada are characterized by mixed flood regimes that reflect different storm types, antecedent land surface conditions, and flood seasonality. Mixed flood regimes are known to complicate flood risk analyses, yet the synoptic climatology and precipitation mechanisms that generate annual floods in this region have not been described in detail. We analyzed a set of long-term annual flood records at climate-sensitive stream gauges across the region and classified the synoptic climatology of each annual flood, quantitatively describing the precipitation mechanisms, and characterize flood seasonality. We find that annual floods here are dominantly generated by Great Lakes-sourced storms and Coastal lows, known locally as ‘nor’easters.’ Great Lakes storms tend to be associated with lower magnitude annual floods (<75th percentile) and Coastal lows are more clearly associated with higher magnitude events (>75th percentile). Tropical cyclones account for few of all annual floods, including extreme events, despite causing some of the region’s largest and most destructive floods. Late winter/early spring is when the greatest number of annual floods occur region wide, and rainfall is the dominant flood-producing mechanism. Rainfall in combination with snowmelt is also important. Both mechanisms are expected to be impacted by projected regional climate change. We find little evidence for associations between flood-producing synoptic storm types or precipitation mechanisms and large-scale atmospheric circulation indices or time periods, despite upward trends in New England annual flood magnitudes. To more completely investigate such associations, partial duration flood series that include more floods than just the largest of each year, and their associated synoptic climatologies and precipitation mechanisms, should be analyzed.  相似文献   

8.
Michigan's Southern Peninsula is by far the largest drift repository in the Great Lakes Area. Thickness of the glacial sediments averages 85 m and volume, previously unknown, exceeds 9300 km3. The distribution, however, is very uneven, as is the underlying bedrock surface. These variations and known surface characteristics provide a basis for the first qualitative and quantitative identification of distinct drift realms. Even the smallest of the eight realms contains about 35% more drift than the better known Kettle Moraine tract of Wisconsin, which encompasses 50% more area. Comparative analysis within the peninsula shows that Pleistocene glaciation completely transformed the topography to the north, whereas the southern half has palimpsest relationships with subcropping formations. [Key words: drift, drift volume, Michigan, Great Lakes, Pleistocene.]  相似文献   

9.
This study focuses on the upper part of the Muskegon River system in north-central Lower Michigan and is the first to reconstruct the post-glacial history of fluvial landform development in the core of North America's Great Lakes region. Results indicate that the upper Muskegon River valley contains four alluvial terraces and numerous paleomeanders. Radiocarbon dating of peats within these old channels provides a good chronology for stream behavior and landform development. The T-4 terrace is a paired Pleistocene outwash/lacustrine surface that probably formed about 12,500 years ago. The T-3 terrace is a fill-strath surface that was cut between about 12,000 and perhaps 9500 years ago. The geometry of macromeanders on this surface suggests that stream discharge was  8 times greater than during the Holocene.The Pleistocene/Holocene transition is marked by a major period of downcutting that likely began as the climate warmed/dried and sediment yield diminished. This period of downcutting potentially lasted through the drier middle Holocene, creating a 6-m-high escarpment in the valley. The Muskegon River then began to aggrade when the climate became wetter. Subsequently the river again incised, creating the paired T-2 terrace, about 3400 years ago when the climate became still wetter. T-2 paleomeanders indicate that stream discharge at this time was consistent with the modern river. In the past 2500 years, the stream has constructed a poorly defined complex of T-1 terraces. These surfaces likely formed due to complex response associated with more variable climate. This study demonstrates that the upper Muskegon River has a similar post-glacial history as streams on deglacial and periglacial landscapes elsewhere in the world.  相似文献   

10.
北半球春季植被NDVI对温度变化响应的区域差异   总被引:47,自引:0,他引:47  
利用1982年到2000年的探路者NDVI资料,采用奇异值分解分析方法,研究北半球春季NDVI对温度变化响应的空间差异,前7对模态对总的协方差平方的解释率高达91%以上,反映出NDVI和气温的相关性非常高,第一对模态解释率达42.6%,显示北半球最显著的NDVI响应中心在西西伯利亚,其次是北美大陆,中心在其中东部,第三对及以后的模态反映的是次一次的空间特征,分析表明这些NDVI一温度的耦合模态受大尺度的大气环流系统的显著影响,9个重要的大气环流指标能解释整个北半球NDVI方差的55.6%,其中对欧洲、北美东南部,北美西北部,亚洲高纬以及东亚地区的影响最突出,因此,研究未来植被生态系统对全球变化响应的区域特征时,必须要考虑到这些环流系统的可能变化及其影响。  相似文献   

11.
基于长城站气象观测数据和NCEP再分析资料,分析研究了长城站海雾的发生背景和天气形势。认为长城站海雾的季节性变化是大气环流、地面气压场变化的结果;长城站海雾形成的天气形势基本可分为低压锋前型、鞍型场型和弱气旋过境型3类,其中低压锋前型是长城站海雾形成的主要天气形势。长城站以平流冷却雾为主,也存在其它类型的雾。本文从天气学角度分析了长城站海雾发生的原因,为该地区的海雾预报提供了依据。  相似文献   

12.
The climatic causes of the major forest/grassland ecotone in the south central United States (Kansas, Missouri, Oklahoma, Texas) are still poorly understood. Grassland and forest vegetation types differ markedly in their ability to withstand water stress induced by vapor pressure deficit (VPD), the difference between saturation vapor pressure and actual vapor pressure in the atmosphere. VPD is an airmass characteristic induced by ambient temperatures higher than dewpoint temperature. Mean summer airmass movement is from the Gulf of Mexico onto the continent in the central states area, but mean VPD displays a strong gradient approximately parallel to the ecotone. A subset of days having the strongest VPD gradients across the ecotone also had a 500 mb pressure height pattern identical to the long-term mean (modal) pattern. This 500 mb pattern, with a ridge over the Rocky Mountains and a trough over the Great Lakes, induces subsidence, stability, warming, and high VPD in Great Plains airmasses. Farther east, away from the zone of maximum subsidence, VPD is much lower. The grassland region coincides with the area of highest VPD. Because of the importance of the daily configuration of mid-tropospheric windflow patterns in controlling the distribution of VPD, moisture, and precipitation, more frequent occurrence of the modal 500 mb pattern is one mechanism for the occurrence of drought.  相似文献   

13.
The post-glacial history of the Great Lakes has involved several changes in lake levels throughout the latest Pleistocene and Holocene, resulting from the changing position of the retreating Laurentide ice sheet, outlet incision and isostatic rebound. The final lowering of lake levels occurred at approximately 7600 14C yr BP, after which lake levels began to rise again to the Nipissing highstand at approximately 4700 14C yr BP. During this time of rising lake levels, black bands of iron sulfide were being formed in the sediments of all five of the Great Lakes. These bands signify suboxic to anoxic conditions, at least within the sediments and possibly at the sediment-water interface, during the middle Holocene warm interval. During this interval, the climate was warmer and drier than present, possibly resulting in the occasional absence of seasonal turnover in the lakes. We examined a series of piston cores from northern Lakes Michigan and Huron and found that the black bands are correlatable among cores taken from within the same basin. The observation that the banding can be correlated suggests a basin-wide cause, near-bottom or sub-bottom anoxia in the northern Michigan and northern Huron sediments during the mid-Holocene warm period. The sedimentary and geochemical processes in the Great Lakes during the middle Holocene warm interval are good indicators of possible future scenarios for the lakes as a result of global warming, as 21st-century temperatures are predicted to reach similar levels due to increased concentrations of greenhouse gases.  相似文献   

14.
量化湖泊与邻近陆地的表面温度差异,拆分生物物理因子对其贡献是明确湖泊气候效应的基础。本文基于耦合CLM4.5的CESM模式模拟的1991—2010年全球气候数据,分析了全球湖泊表面温度效应(湖泊与邻近陆地的表面温度差异)的时空格局,利用IBPM因子拆分理论量化了生物物理因子对其贡献。结果表明:① 湖泊表面温度效应的季节变化明显,但年际变化不显著,北半球湖泊最强增温(4.37 K)和降温效应(-0.99 K)分别出现在9月和4月。② 除干旱区湖泊呈降温效应外,其他气候区的湖泊以增温效应为主,热带湖泊增温效应最强。③ 湖泊表面温度效应的生物物理主控因子随气候区改变,湖陆之间的蒸发差异是干旱区湖泊呈降温效应的主控因子,较低的对流散热效率是热带和温带湖泊呈增温效应的主控因子,反照率差异和冰雪融化潜热分别对寒带、极地湖泊表面温度效应的正贡献和负贡献最大。全球尺度上,湖陆之间的对流效率差异(3.77±0.13 K)和蒸发差异(-2.01±0.1 K)对湖泊表面温度效应的正、负贡献最大。  相似文献   

15.
This paper documents the main features of climate and climate variability across the Monte Desert for the Last Glacial Maximum, the Glacial–Interglacial transition, and the Holocene on the basis of proxy records and for the 20th century using instrumental observations. The climate in the Monte is determined by interactions between regional physiography and atmospheric circulation in the 25–45°S sectors of South America. Although arid and semi-arid conditions prevail across the Monte, its large latitudinal extent and complex topography introduce many particularities at local scales. Paleoclimatic records and model simulations of past climates suggest significant variations in the atmospheric circulation, temperature and rainfall patterns since the Last Glacial Maximum. High-resolution proxy records east of the Andes support the existence of complex climatic patterns with similar temperature changes across the whole region but opposite precipitation variations between subtropical and mid-latitude sectors in the Monte during the past millennium.The present-day climate is depicted in terms of the space and time variability of the near-surface temperature, rainfall and tropospheric wind patterns. Uneven temperature trends over the Monte were recorded for two separate (1920–44 and 1977–2001) global warming periods in the 20th century. Additional warming evidence in the region is provided by extreme temperature records. The non-homogeneous regional pattern of precipitation shows a positive long-term increase between 30 and 40°S during the interval 1985–2001. Ensemble of climate experiments accomplished with general circulation models provide the most likely changes in temperature and rainfall to occur by the end of this century in relation to present climate. Temperature increases, larger in summer than in winter, will be concurrent with more abundant precipitations in summer, but almost no changes or even small reductions in winter across the Monte.  相似文献   

16.
Glacial landscapes of the Land of Great Masurian Lakes and Suwa?ki Lakelands in northeast Poland are characterized by very high abundance of lakes. These two areas were surveyed for lakes containing laminated sediments. Using bathymetry as a criterion, 60 small, deep lakes, representing preferred conditions for formation and preservation of lacustrine non-glacial varves, were selected for gravity coring. We found laminated sediments in 24 of the lakes, 15 in the Land of Great Masurian Lakes and 9 in the Suwa?ki Lakeland. Seven of these 24 sediment records were laminated in the topmost part only. Analysis of lake morphometric variables showed that the relation between surface area and maximum water depth can be used to identify lakes with laminated sediments. Most of the newly discovered lakes with laminated deposits have surface areas ≤0.3 km2 and maximum depths of 15–35 m. Multivariate statistical analysis (Linear Discriminant Analysis) of the lake dataset identified the morphological features of lake basins and their catchments that largely control preservation of laminated sediments. Microscopic and geochemical analyses revealed a biogenic (carbonaceous) type of lamination typical for lakes in northeast Poland. Such lakes are characterized by a spring-summer lamina that is rich in calcium carbonate and an autumn-winter lamina composed of organic and minerogenic detritus. This pattern may be modified by multiple periods of calcite deposition during a single year or substantial contribution of clastic material. Laminations and high sedimentation rates offer the possibility of high-resolution investigation of past climate and environmental changes through application of myriad biological, isotopic and geochemical proxies.  相似文献   

17.
J.L. Hough in 1962 recognized an erosional unconformity in the upper section of early postglacial lake sediments in northwestern Lake Huron. Low-level Lake Stanley was defined at 70 m below present water surface on the basis of this observation, and was inferred to follow the Main Algonquin highstand and Post-Algonquin lake phases about 10 14C ka, a seminal contribution to the understanding of Great Lakes history. Lake Stanley was thought to have overflowed from the Huron basin through the Georgian Bay basin and the glacio-isostatically depressed North Bay outlet to Ottawa and St. Lawrence rivers. For this overflow to have occurred, Hough assumed that post-Algonquin glacial rebound was delayed until after the Lake Stanley phase. A re-examination of sediment stratigraphy in northwestern Lake Huron using seismic reflection and new core data corroborates the sedimentological evidence of Hough’s Stanley unconformity, but not its inferred chronology or the level of the associated lowstand. Erosion of previously deposited sediment, causing the gap in the sediment sequence down to 70 m present depth, is attributed to wave erosion in the shoreface of the Lake Stanley lowstand. Allowing for non-deposition of muddy sediment in the upper 20 m approximately of water depth as occurs in the present Great Lakes, the inferred water level of the Stanley lowstand is repositioned at 50 m below present in northwestern Lake Huron. The age of this lowstand is about 7.9 ± 0.314C ka, determined from the inferred 14C age of the unconformity by radiocarbon-dated geomagnetic secular variation in six new cores. This relatively young age shows that the lowstand defined by Hough’s Stanley unconformity is the late Lake Stanley phase of the northern Huron basin, youngest of three lowstands following the Algonquin lake phases. Reconstruction of uplift histories for lake level and outlets shows that late Lake Stanley was about 25–30 m below the North Bay outlet, and about 10 m below the sill of the Huron basin. The late Stanley lowstand was hydrologically closed, consistent with independent evidence for dry regional climate at this time. A similar analysis of the Chippewa unconformity shows that the Lake Michigan basin also hosted a hydrologically closed lowstand, late Lake Chippewa. This phase of closed lowstands is new to the geological history of the Great Lakes. This is the ninth in a series of ten papers published in this special issue of Journal of Paleolimnology. These papers were presented at the 47th Annual Meeting of the International Association for Great Lakes Research (2004), held at the University of Waterloo, Waterloo, Ontario, Canada. P.F. Karrow and C.F.M Lewis were guest editors of this special issue.  相似文献   

18.
This study documents the spatial and temporal characteristics of northeast United States tornadoes and the synoptic patterns associated with their development. Daily 1200 UTC surface pressure, 500 mb height and 850 mb temperature data are used in a compositing analysis to indicate the general conditions on tornado-producing days during four quasi-seasonal periods. Temporally, two-thirds of all northeast tornadoes occur between the hours of 1800 UTC and 0000 UTC. Annually, greater than 75% occur during the four-month period from May through August. During the period of study (1950 through 1986) the region had an average of 30 tornado occurrences per year. Spatially, three preferred areas of tornadic development are identified across the northeast region. These areas include western and southeastern Pennsylvania and north-central Massachusetts. The general synoptic patterns associated with tornadic events in the northeast United States remain consistent throughout the year. The composite analyses indicate that the presence of a strong surface low pressure system moving through the Great Lakes, coupled with significant upper-level divergence associated with a vigorous shortwave feature and a cold frontal boundary, are the synoptic features most common during the initiation of tornadic storms in this region. [Key words: synoptic climatology, tornadoes, northeastern United States.]  相似文献   

19.
Quantitative analysis of siliceous microfossils in a 210Pb dated core from Green Bay of Lake Michigan shows clear evidence of eutrophication, but a different pattern of population succession than observed in the main deposition basins of the Great Lakes. Sediments deposited prior to extensive European settlement (ca A.D. 1850) contain high relative abundance of chrysophyte cysts and benthic diatoms. Quantity and composition of microfossils deposited during the pre-settlement period represented in our core is quite uniform, except for the 30–32 cm interval which contains elevated microfossil abundance and particularly high levels of attached benthic species. Total microfossil abundance and the proportion of planktonic diatoms begins to increase ca 1860 and rises very rapidly beginning ca 1915. Maximum abundance occurs in sediments deposited during the 1970's, with a secondary peak in the late 1940's — early 1950's. Increased total abundance is accompanied by increased dominance of taxa tolerant of eutrophic conditions, however indigenous oligotrophic taxa, particularly those which are most abundant during the summer, are not eliminated from the flora, as in the lower Great Lakes. It appears that a combination of silica resupply from high riverine loadings and replacement of indigenous populations by periodic intrusions of Lake Michigan water allow sequential co-existence of species usually exclusively associated with either eutrophic or oligotrophic conditions.  相似文献   

20.
Succession of diatom communities in the Laurentian Great Lakes has several unusual aspects related to physical and chemical characteristics peculiar to these large systems and the constraints these conditions impose upon species which inhabit the Great Lakes. In such systems, paleolimnological reconstructions based on strict analogy to succession patterns in smaller lakes may be incomplete and, in some cases, positively misleading. In the Great Lakes, diatom accumulation rates appear to be regulated by interaction between concentration and supply rates of phosphorus and dissolved silicate. As phosphorus loadings increased historically, storage of diatom frustules in sediments was first increased, then limited, as concentrations of dissolved silica were reduced to levels limiting to diatom growth. Qualitative aspects of the diatom flora are also affected. Indigenous species adapted to growth in winter persist, while those with abundance maxima in summer are extirpated, presumably due to silica limitation in the summer epilimnion. Severe silica limitation also results in shifts to dominance by species whose growth strategies are particularly well adapted to sequestering dissolved silica. Because it is necessary to know the historical context in order to correctly interpret current changes in the Great Lakes diatom flora, paleolimnological studies have proven particularly valuable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号