首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Faint, Doppler shifted, emission features are detected in high resolution spectra of limb prominences. Their average line-of-sight velocity is about 3 × 106 cm s-1, their average life time is 300 s, and their angular sizes are 108 cm in our spectrograms. The emission line width of the spectral features increases with increasing line shift.Some implications on the stability of prominences by these structures are discussed briefly.Visiting Astronomer, on leave from the Department of Astro-Geophysics, University of Colorado, Boulder, Colorado.  相似文献   

2.
High spatial resolution spectral observations of five hedgerow prominences were made in H, He i D3 and Ca ii H and K.The observed relations between the lines were not the same in all prominences. The Ca ii H and K lines were 2–4 times brighter relative to H and D3 than predicted theoretically. The optical thickness of H was less than for the H and K lines, the H was optically thin in medium faint prominence structures. Faint structures appeared slightly hotter than bright structures.On leave from Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, Oslo 3, Norway.  相似文献   

3.
Ions falling in vertically aligned magnetic structures of quiescent prominences may experience a vertical Lorentz force as flux ropes are distorted from the force-free condition. The terminal velocity of such ions may be sub-Alfvénic and may correspond to the 5–15 km s–1 velocity of down falling material observed in many quiescent prominences. The higher velocities of down falling material found in active prominences and coronal rain may occur because of higher terminal velocities occurring in stronger magnetic fields.Visiting Astronomer, on leave from the Department of Astro-Geophysics, University of Colorado, Boulder, Colorado 80309.  相似文献   

4.
O. Engvold 《Solar physics》1980,67(2):351-355
Observed H brightness versus size of emission substructures of quiescent prominences are compared with values predicted from thermodynamical models. The measured size of an emission element of a given brightness is substantially less than the theoretical value.Two possible causes for the discrepancy are suggested: (1) The partial filling of a recording aperture, due to the prominence fine structure, may affect the measurements seriously. Caution is therefore urged against using face values of observed brightness vs ratios in model calculations in cases of partly optically thick lines. (2) Changes of individual fine structure elements on a time scale of a few minutes implies that the prominence plasma may be in a non-stationary radiative state.  相似文献   

5.
In this paper we present several magneto-hydrostatic equilibrium models for prominences with fibril-like fine structure. For all the models ad hoc temperature profiles are used without discussing the energetics. For our models we assume fine structure to occur either across the prominence axis or along it. This approach is intended as a first step towards more realistic models based upon a series of vertical fibril structures.  相似文献   

6.
We suggest that the fibril structure of prominences may be caused by filamentation during its formation by radiative instability. We also discuss the effects of other types of instability and give a mechanism for the formation of vertical threads. The models indicate that highly inhomogeneous density structures can exist in the presence of smooth profiles for the plasma pressure and magnetic field. In our particular models the plasma pressure of a fibril prominence is higher and the vertical magnetical field is weaker than in a uniform prominence model, while the mass is substantially smaller.  相似文献   

7.
The temperature and density are obtained for coronal plasma in thermal and hydrostatic equilibrium and located in a force-free magnetic arcade. The isotherms are found to be inclined to the magnetic field lines and so care should be taken in inferring the magnetic structure from observed emission.When the coronal pressure becomes too great, the equilibrium ceases to exist and the material cools to form a quiescent prominence. The same process can be initiated at low heating rates when the width or shear of the arcade exceeds a critical value.We suggest that the prominence should be modelled as a dynamic structure with plasma always draining downwards. Material is continually sucked up along field lines of the ambient arcade and into the region lacking a hot equilibrium, where it cools to form new prominence material.  相似文献   

8.
M. Waldmeier 《Solar physics》1970,15(1):167-175
It is well known that in the immediate surroundings of stationary filaments the white light of the corona is strongly reduced. The same effect is observed in the monochromatic emissions of the lines 5303 and 6374 Å, for which in Figures 1–3 some examples are given. This diminuation of light can only be explained by a corresponding diminuation of the density. As the density in the vicinity of the prominence may be as small as one tenth of that of the undisturbed corona, or even smaller in some cases, these features are called cavities. The intensity distribution of the line 5303 Å in the region of a stable prominence observed on October 6, 1969 has been analysed (Figure 4). The cavity turns out to be of the shape of a half-ellipsoid. Its length (in heliographic longitude) was found to be 0.68, its width (in heliographic latitude) 0.20 and its height 0.16 R (Figure 5). The corresponding dimensions of the enclosed filament are 0.56 (length), 0.10 (width) and 0.08 (height) R .  相似文献   

9.
Observations of internal structure and development of four helical prominences are presented. We assume that the helically twisted fine structure threads are outlining magnetic field lines and we found that it is possible to describe the magnetic fields by the uniform twist configuration, with the twists ranging between 2 and 7. The estimated lower limits for the magnetic fields were about 20 G which give lower limits for the currents flowing along the prominences in the range between 2 × 1010 A and 2 × 1011 A and current densities at the axis of the prominences about 10-4 A m-2. The upper limit of electron drift velocity could be estimated as 1 m s-1, which is far below the critical velocities for the onset of plasma microinstabilities.The stability of the studied prominences is discussed and the criteria for the onset of eruptive instability are established for a prominence modelled as a twisted and elliptically curved magnetic flux tube which is anchored in the photosphere and affected by its mirror-current. The eruption starts when the prominence attains a critical height which must be larger than half of the footpoint separation and depends on the values of twist, radius, and footpoint distance of the magnetic flux tube. The observed examples of eruptive prominences agree very well with the predictions. Possible applications to the two-ribbon flare process are outlined.Properties of stable cylindrical prominences in equilibrium are analyzed and a criterion for the distinction between the Kuperus-Raadu and Kippenhahn-Schlüter types of prominences is proposed. According to established criteria, two of the studied prominences were of the Kuperus-Raadu type, while the other two were of the Kippenhahn-Schlüter type.  相似文献   

10.
Observations concerning the structure of sunspots, obtained during the fourth flight of the Soviet Stratospheric Observatory (SSO), are discussed. Objects brighter than the mean photospheric background inside the sunspot penumbra retaining the stable position sometimes vary within time intervals of a few minutes. The brightness change in pores can be explained by their different location at highest levels of the photosphere. The same mechanism can cause the brightness difference of the penumbra filaments. The gradient of the brightness variation inside the pores is determined. The value of this gradient was found to be practically the same for all dark objects. Most penumbral filaments show no magnetic expansion with growing distance from the spot center.  相似文献   

11.
We present a model for quiescent prominences with helical structure. The model is described by two magnetic fields, one produced by photospheric or subphotospheric currents, the other due to currents along the cylindrical model prominence.On leave from Max-Planck Institut für Physik und Astrophysik, München.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

12.
A normal-polarity prominence is modelled as a series of cool fibrils set in the hotter corona. Equations of magnetostatic equilibrium are solved and each fibril corresponds to a dip in the mgnetic field. The ratio of fibril width to interfibril spacing is dependent on the prominence-coronal temperature ratio and the ratio of plasma to magnetic pressure. The prominence mass is found to depend on the square of the magnetic field strength. When variations along the prominence are allowed in addition to those across the prominence, an apparently random pattern of fibrils results.  相似文献   

13.
Implications of the conjecture that the solar corona is heated by small-scale events (nanoflares) are examined. It is shown that even if these nanoflares are small-scale (heating areas much smaller than 1 arc sec2) and impulsive, the corona may still be rather homogeneous. In particular, the filling factor (defined as the ratio of the coronal volume radiating in X-rays and EUV to the total volume) can easily be of order unity. Future experimental determination of the filling factor could prove useful in estimating the volume of coronal material that is heated during nanoflares.Work performed at Beam Physics Branch, Plasma Physics Division, Naval Research Laboratory, Washington, D.C., U.S.A.Mailing Address: Code 6790, NRL, Washington, D.C. 20375, U.S.A.  相似文献   

14.
R. Muller 《Solar physics》1985,100(1-2):237-255
The observed properties of the small-scale features visible in the quiet photosphere — the granulation, of convective origin, and the network bright points, associated with kG magnetic fields — are described. The known properties of the magnetic flux tubes associated with network bright points are also presented. Empirical models derived from the observations are discussed, as well as a few theoretical models of particular importance for the understanding of the origin of the small-scale features of the quiet photosphere. Finally, the observational evidences showing that the structure of the granulation and of the photospheric network are varying over the solar cycle are reported.  相似文献   

15.
Quiescent prominences occur as long-lasting cool sheets of matter in the surrounding hot corona at the base of coronal streamers. Seen on the disk they appear as dark filaments dividing regions of opposite magnetic polarity.In this paper a theoretical model is presented, which describes the general appearance of quiescent prominences.It is shown that the neutral sheet between two regions of oppositely directed magnetic fields is thermally unstable. This gives rise to compression and cooling of coronal material to prominence material in a characteristic time of the order of one day for a field strength of 0.5 gauss in the lower corona.It is assumed that due to the finite electrical resistivity of the plasma, filamentary structures are formed by the tearing-mode resistive plasma instability. These structures are thermally insulated from the hot surroundings by the newly formed closed azimuthal magnetic field configuration.It has been shown that for fine structures with a diameter of 300 km the growth rate of the tearing-mode instability is of the same order as the cooling time. The occurrence of fine structures within the prominence is of vital importance for their origin.On leave from the Observatory Sonnenborgh at Utrecht, The Netherlands.  相似文献   

16.
R. Muller 《Solar physics》1979,61(2):297-300
High resolution photographs obtained at the Pic du Midi Observatory show that there are three types of sunspot light bridges according to their morphological structures: the photospheric ones, the penumbral ones and the umbral ones. Consequently there are no specific structures in light bridges; it results that they should not be due to specific physical properties. Properties of the fine structure of a penumbral light bridge are described.  相似文献   

17.
It is shown that the emission of quiescent and loop prominences in the helium D3 line and in the 4686 Å line of He+ respectively, occurs at low temperatures, of the order of 7000 K.The ionization of neutral helium is produced by short-wave solar radiation, which is absorbed in the outer layers of filaments composing a prominence. The population of helium triplet levels in prominences is determined by recombinations and subsequent resonance scattering of photospheric radiation. Transitions from triplet to singlet levels caused by electron collisions considerably reduce the line brightness.Emission of ionized helium in the 4686 Å line arises in prominence surface layers as well. In quiescent prominences the emission is very faint and is due to recombination; the second ionization is caused by the far ultraviolet radiation.In flare-like events ionized helium emits due to charge-exchange collisions. The symmetrical resonance charge-exchange of -particles is caused by helium ions in corpuscular streams which are probably generated in photospheric layers. Due to increased radiation losses the temperature of the prominence under the action of the stream is negligibly increased. With a stream density equal to 5 × 108 cm-3 and velocity 300 km/s the theoretical intensity of the 4686 He+ line is some hundreds of microängströms and agrees with observations of Goldberg-Rogozinskaya (1962, 1965) and others.  相似文献   

18.
A study has been made of fine structure wavelength shift in the K line spectra from quiescent prominences. A persistent small scale motion is found in the prominence main body. In places where we see the characteristic thread like fine structure in the accompanying H filtergrams the average line-of-sight velocity amplitude is about 1 km s–1. A higher velocity ( 4 km s–1) is associated with a slightly coarser, mottled prominence fine structure. In the low lying regions, connecting the prominence body and the chromosphere, we do not detect any fine structure line shift (v 1/2 km s–1).  相似文献   

19.
J. B. Zirker 《Solar physics》1989,119(2):341-356
This review surveys recent research on quiescent solar prominences. The main topics considered are magnetic structure, thermal structure, and formation. Sub-arc sec fine-structures undoubtedly play a crucial role in all three topics. Current attempts to model the magnetic and thermal structure are hampered, in part, by the lack of observations with sufficient spatial resolution. The process of formation is quite complicated, but is yielding slowly to detailed numerical simulations. Unfortunately, observations of prominence condensation from the corona (the favored hypothesis) are lacking. Some suggestions for future work are offered.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

20.
The vertical fine structure in a quiescent prominence was modelled as an assembly of very narrow, optically thin threads. Random clusterings of the threads can account for the observed contrast and H line profiles of the fine structures. In this picture, each structure consists of a cluster of 7–20 elementary threads.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.NAS/NRC Research Associate, on leave from Institut d'Astrophysique, CNRS, Paris, France.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号