首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
The characterization of a stream's low-flow regime is required for ecological purposes, water quality studies and various other water projects. If observed stream flow records are insufficient, low-flow characteristics may need to be estimated from simulated daily stream flow time-series. The model employed should conceptualize low-flow generation mechanisms and surface–subsurface interactions adequately. The ability of the model to simulate low-flow regimes may be assessed by means of various low-flow analysis techniques. This paper illustrates the approach using the example of the physically based, semi-distributed VTI daily rainfall–runoff model. The model has been applied to five perennial headwater catchments in South Africa, which are located in different parts of the country, represent different physiographical environments and are characterized by different baseflow responses. The model simulations are evaluated in terms of both conventional goodness-of-fit criteria and several low-flow measures such as recession characteristics, baseflow volumes, flow duration curves and continuous low-flow events below specified threshold discharges. For all the catchments considered the model has been found to perform successfully in terms of conventional fit statistics and flow duration curves. However, its ability to reproduce recession characteristics and continuous low-flow spells appears to be less satisfactory. This suggests that daily model simulations should be evaluated by low-flow criteria, which are frequently ignored in water resource assessment practices. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
F. Viola  D. Pumo  L. V. Noto 《水文研究》2014,28(9):3361-3372
  相似文献   

3.
F. Ashkar 《水文科学杂志》2013,58(6):1092-1106
Abstract

The potential is investigated of the generalized regression neural networks (GRNN) technique in modelling of reference evapotranspiration (ET0) obtained using the FAO Penman-Monteith (PM) equation. Various combinations of daily climatic data, namely solar radiation, air temperature, relative humidity and wind speed, are used as inputs to the ANN so as to evaluate the degree of effect of each of these variables on ET0. In the first part of the study, a comparison is made between the estimates provided by the GRNN and those obtained by the Penman, Hargreaves and Ritchie methods as implemented by the California Irrigation Management System (CIMIS). The empirical models were calibrated using the standard FAO PM ET0 values. The GRNN estimates are also compared with those of the calibrated models. Mean square error, mean absolute error and determination coefficient statistics are used as comparison criteria for the evaluation of the model performances. The GRNN technique (GRNN 1) whose inputs are solar radiation, air temperature, relative humidity and wind speed, gave mean square errors of 0.058 and 0.032 mm2 day?2, mean absolute errors of 0.184 and 0.127 mm day?1, and determination coefficients of 0.985 and 0.986 for the Pomona and Santa Monica stations (Los Angeles, USA), respectively. Based on the comparisons, it was found that the GRNN 1 model could be employed successfully in modelling the ET0 process. The second part of the study investigates the potential of the GRNN and the empirical methods in ET0 estimation using the nearby station data. Among the models, the calibrated Hargreaves was found to perform better than the others.  相似文献   

4.
The Itajaí River basin is one of the areas most affected by flood-related disasters in Brazil. Flood hazard maps based on digital elevation models (DEM) are an important alternative in the absence of detailed hydrological data and for application in large areas. We developed a flood hazard mapping methodology by combining flow frequency analysis with the Height Above the Nearest Drainage (HAND) model – f2HAND – and applied it in three municipalities in the Itajaí River basin. The f2HAND performance was evaluated through comparison with observed 2011 flood extent maps. Model performance and sensitivity were tested for different DEM resolutions, return periods and streamflow data from stations located upstream and downstream on the main river. The flood hazard mapping with our combined approach matched 92% of the 2011 flood event. We found that the f2HAND model has low sensitivity to DEM resolution and high sensitivity to area threshold of channel initiation.  相似文献   

5.
Soil pipes are important subsurface flow pathways in many soil erosion phenomena. However, limited research has been performed on quantifying and characterizing their flow and transport characteristics. The objectives of this research were to determine the applicability of a streamflow model with transient storage in deriving flow and transport characteristics of soil pipes. Tracer data from pulse inputs were collected in four different soil pipes after a fluorescein dye was injected in the upstream end of each soil pipe network in three branches (west, middle, and east) of a main catchment and a back catchment in Goodwin Creek Experimental Watershed in Mississippi. Multiple sampling stations were positioned along each soil pipe network. The transient storage zone model OTIS‐P was executed inversely to estimate transport parameters by soil pipe reach such as the soil pipe cross‐sectional area (A), soil storage zone cross‐sectional area (As), and exchange rate between the soil pipe and the soil storage zone (αs). Model convergence was achieved, and simulated breakthrough curves of the reaches were in good agreement with actual tracer data for eight of the nine reaches of the three branches of the Main Catchment and five of the seven reaches of the Back Catchment soil pipe. Simulation parameters for the soil pipe networks were similar to the range of values reported for flow and transport characteristics commonly observed in streams. Inversely, estimated soil pipe flow velocities were higher with increased tortuosity, which led to a smaller cross‐sectional areas predicted for the soil pipe flowpaths, while other parameters were not sensitive to tortuosity. In general, application of One‐Dimensional Transport with Inflow and Storage‐P to this unique soil pipe condition suggested larger transient storage (As and αs) compared with most stream systems. This was hypothesized to be because of relatively higher ratio of the wetted perimeter to flow area in the soil pipe, the hydraulic roughness of the soil pipe, potential retention in collapsed portions of the pipe, and interaction with smaller preferential flow systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
ABSTRACT

The objective of this study was to evaluate, based on a data-scarce basin in southern Brazil, the potential of the Lavras Simulation of Hydrology (LASH) model for estimating daily streamflows, annual streamflow indicators and the flow–duration curve. It was also used to simulate the different runoff components and their consistency with the basin physiographical characteristics. The statistical measures indicated that LASH can be considered suitable according to widely used classifications and when compared with other studies involving hydrological models. LASH also showed satisfactory results for annual indicators, especially for maximum and average annual streamflows, as well as for the flow–duration curve. It was found that the model was consistent with the basin characteristics when simulating runoff components. The results obtained in this study allowed us to conclude that the LASH model has the potential to aid practitioners in water resources management of basins with scarce data and similar soil and land-use conditions.
Editor A. Castellarin; Associate editor Y. Gyasi-Agyei  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号