首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
赵东杰  王学求 《地球学报》2020,41(3):407-419
为研究滇黔桂卡林型金矿区水系沉积物和岩石中金的地球化学时空分布及其与金矿规模的对应关系,系统收集了该区1:20万区域化探全国扫面计划水系沉积物和全国地球化学基准计划岩石金的地球化学数据,绘制了水系沉积物和岩石金的地球化学分布图。滇黔桂卡林型金矿区以水系沉积物金地球化学异常面积大于1000 km^2为准,共圈定5处金的地球化学省,这些金的地球化学省同时也是矿床大规模产出的部位。区内右江盆地水系沉积物金背景值(1.94×10^–9)高于扬子克拉通(1.68×10^9),其内以泥岩、页岩、砂岩、灰岩为代表的容矿岩石金背景值(0.51×10^–9)也高于扬子克拉通(0.39×10^–9)。研究区不同构造单元及沉积相中水系沉积物金背景值受岩石金背景值的制约。金的地球化学省是地壳演化过程中不均匀分布的高金背景岩石、金矿化作用及金矿床次生风化作用相互叠加的结果。该研究有助于有效判断异常成因、识别成矿作用存在,对研究金的区域成矿规律和聚焦找矿靶区具有重要意义。  相似文献   

2.
The soil geochemical baseline is an important index in environmental assessment. Detailed baseline studies are necessary in large areas with complex geological settings, landforms and soil types. The Jianghan plain, a major industrial and agricultural region located in central China, has a soil geochemical baseline that has yet to be fully defined. The objective of this paper is to study the baseline of Cd, Pb and Zn in the topsoil of the Jianghan plain in a subarea using principal component regression (PCR). A total of 9030 samples were collected from the surface layer, and 2 soil profiles and 2 sedimentary columns were sampled near the Yangtze and Han rivers. Fifty-two elements and two parameters were analyzed. Data processing and the creation of spatial distribution maps of the elements were performed using MapGIS, R and SPSS software. The results show that the distributions of Cd, Pb and Zn are mainly controlled by parent material, drainage system and soil type. The study area is divided into 3 subareas, with factors reflecting the physico-chemical characteristics of the soil using factor analysis (FA). The geochemical baseline model is established in every subarea to predict the Cd, Pb and Zn values using principal component regression analysis (PCR); the exceptional values (as a result of anthropogenic input or mineralization) are distinguished by residuals (γ); and the natural background values and anthropogenic contributions are clearly distinguished. Therefore, the PCR method in these subareas is objective and reasonable, and the conclusion provides effective evidence of exceptional high values for further environmental assessment.  相似文献   

3.
The Forum of European Geological Surveys (FOREGS) includes representatives from 33 European countries and is responsible for co-ordinating Geological Survey activities in Europe. The FOREGS Geochemistry Task Group was established in 1994 to develop a strategy for the preparation of European geochemical maps following the recommendations of the International Geological Correlation Programme (IGCP) Project 259 ‘International Geochemical Mapping’ (now the International Union of Geological Sciences (IUGS) /International Association of Geochemistry and Cosmochemistry (IAGC) Working Group on Global Geochemical Baselines).The FOREGS geochemistry programme is aimed at preparing a standardised European geochemical baseline to IGCP-259 standards. The principal aims of this dataset will be for environmental purposes, as a baseline for the assessment of the extent and distribution of contaminated land in the context of variations in the natural geochemical background, but it will also have applications in resource assessment and for the development of policy for the sustainable management of metalliferous mineral and other resources.The first phase of the programme was the compilation of an inventory of geochemical data based on the results of a questionnaire completed by Geological Surveys and related organisations throughout the FOREGS community. The results show that the sample types which have been used most extensively are stream sediment (26% coverage), surface water (19% coverage) and soil (11% coverage). Stream sediments have been collected using a narrow range of mesh sizes (< 150–< 200 μm), but soil samples have been collected according to two different conventions: some surveys used a similar mesh size range to that used for stream sediments while others employed the < 1000 or < 2000 μm fractions traditionally used by soil surveys. Sample densities range from 1 sample per 0.5 km2 to 1 per 3500 km2. Various analytical methods have been used, but most of the available data have been calibrated using international reference materials, and data for the most important of the potentially harmful elements (PHEs) are available for most datasets. Systematic radiometric data are available for only a small proportion of Europe, a situation which compares very unfavourably with that in Australia, North America, the former Soviet Union and many developing countries.Recommendations are made for increasing the compatibility of geochemical methods between national geochemical surveys as a basis for the preparation of a series of European geochemical maps. The next stage of the FOREGS Geochemistry Task Group will be the collection of the Global Reference Network of samples against which to standardise national datasets according to the methods recommended in the final report of the IGCP 259 programme.  相似文献   

4.
The Yunnan-Guizhou-Guangxi region is well known for its abundant mineral resources, and low-temperature hydrothermal mineralization represented by the elemental association of gold, arsenic, antimony and mercury is widely developed there. Many studies on the geological-geochemical characteristics of gold have been conducted, but a comprehensive understanding of the antimony geochemical pattern is still lacking. This paper studied the Sb distribution characteristics and the cause of geochemical anomalies based on the geochemical data of stream sediments and rocks in the study area. In addition, the geochemical data of Au, As, Sb and Hg were centered and log-ratio transformed to eliminate the closure effect, and then random forest regression (RFR) with Au, As and Hg as the characteristic variables was used to investigate the ore-related geochemical anomalies of Sb. Seven geochemical provinces were delineated from the original geochemical data, and they are not entirely consistent with the known deposits. Sb moves from the rocks to the stream sediments during weathering. The variation trend in the Sb background values in stream sediments in each tectonic unit is consistent with that in the rocks themselves, implying that Sb in the stream sediments is inherited from the background rocks. The distributions of Sb predicted by RFR are similar to the distribution pattern of Sb in stream sediments. Of the three elements considered, the influence of As on the variations in the Sb geochemical background is the greatest, followed by Au and then Hg. The geochemical anomalies extracted by the residuals produced in this algorithm are consistent with where the known Sb metallogenic district is located, indicating that this method of recognizing geochemical anomalies is feasible and effective and has theoretical and practical significance.  相似文献   

5.
6.
The statistical technique of discriminant analysis associated with the calculation of an information coefficient has been applied to the concentrations of 37 chemical elements for calculating the mixing of stream sediments of different origin in the Mignone river basin.Discriminant analysis has been based on sample catchment basins (SCBs), defined as the part of the drainage basin between two consecutive sampling points along the same stream branch, and on the identification of 4 different litho-geochemical groups. This approach, has been used to define the membership probability values for every sample by applying Bayes' rule and calculating posterior probability. The grade of uncertainty for each group assignment has been evaluated by using an information coefficient, based on a classification entropy index, and running a procedure analogue to that used for processing membership values in fuzzy analysis. The maximum theoretical concentration that can be expected in soils near the sampling point (enhanced concentration) has then been calculated from both the measured and the membership values by introducing a specific enhancement function. Theoretical background concentrations at every sampling point have been also calculated by weighting the average value of concentration in each group with the membership values for each sample. These have been successively compared with the measured and enhanced concentrations to identify anomalous areas.The distribution maps of Arsenic and Vanadium in the Mignone River basin (central Italy) have been drawn accordingly to this technique, leading to the identification of areas of potential risk for human health.  相似文献   

7.
《Applied Geochemistry》1996,11(5):621-IN1
The stream water hydrogeochemical database, produced by the Geochemical Baseline Survey (GBASE) of the British Geological Survey, has recently been enhanced in the light of experimental pilot studies in North Wales, to meet a wider range of economic and environmental objectives which require modern, integrated and strategic geochemical surveys for their implementation. Hydrogeochemical data are therefore now collected, in conjunction with geochemical data for stream sediments, soil samples and mineral concentrates. The density of sampling, based on the collection of stream water at near-baseflow conditions during the late summer period each year, has been increased to one site per 1.75 km2 and a broader spectrum of geochemical determinants introduced. Provisional regional datasets are being prepared for an extensive region covering Wales, the Welsh Borders, and part of the West Midlands representing over 17 000 sample sites. Bedrock geology and base metal sulphide mineralisation are particularly well reflected in the stream water chemistry at the regional scale. The influence of secondary factors, such as geomorphology, atmospheric controls, and anthropogenic contamination due to agriculture, urban, industrial and military developments, can also be readily distinguished.The data obtained by systematic high resolution sampling of first and second order streams, vary in concentration over three or four orders of magnitude for many of the analytes studied here. This compares with a range of only one or two orders of magnitude for many of the analytes in stream sediment samples. The extended range in values for stream water is an important factor in the gridding, plotting and production of relatively stable maps. They are relatively unaffected either by short temporal changes in stream water flow, which are attributable either to storm events noted during the sampling campaign, or by annual differences between wet and dry summers in different years. This has enabled a series of robust surface hydrogeochemical maps to be prepared for analytical data collected during the summer sampling campaigns conducted annually from 1989 to 1994. These maps provide a unique source of synoptic baseline information for a wide range of economic and environmental applications especially, when combined with other geoscience datasets in a GIS environment.  相似文献   

8.
Abstract: El Mueilha area consists of post-collision granitic rocks intruding Pan-African metasediments, metavolcanics and granodiorites. Tin mineralization in Gabal El Mueilha is either of vein type or disseminated in the greisenized and albitized parts of the granitic rocks. Cassiterite and wolframite-bearing quartz veins also characterize a small intrusion of muscovite granite at El Mueilha tin mine area. Detailed geochemical prospecting for the rare metals Sn, Nb, Be, Li, U, Th and some other trace elements was carried out at Gabal El Mueilha area using stream sediments survey. Sixty-seven stream sediment samples were collected from the main drainage patterns of the study area. Statistical parameters were calculated for the analyzed elements. The sought elements Sn, Nb, Be and Li have relatively high background values in the studied sediments. This may reflect the role of the pathfinder elements (Nb, Be and Li) during secondary dispersion survey for Sn mineralization.
Geochemical maps were constructed to delineate anomalous areas with abnormally high rare metal contents. The anomalous Sn, Nb and Be areas are mainly encountered in the main stream draining the mineralized zones of El Mueilha tin mine and near the SW albitized parts of the post-collision granite. Correlation coefficient matrices show significant positive relation between Sn and the rare metals group (Nb, Rb and Li) at 99 % significant level. R-mode factor analysis for the concerned elements yields five factor–model.  相似文献   

9.
Most conventional statistical methods aiming at defining geochemical concentration thresholds for separating anomalies from background have limited effectiveness in areas with complex geological settings. This paper uses multifractal analysis to combine the characteristics of geochemical frequency distribution and spatial dispersion in order to map geochemical singularities instead of using conventional statistically derived concentration thresholds. The model, termed radius–areal Productivity (rP) model, employs a stable measure and a scale-increasing method to estimate geochemical singularities spatially on geochemical landscape for delineating potential anomalies. The model is applied to geochemical data of regional stream sediments from the Funin Sheet, Yunnan, China.  相似文献   

10.
This research is based on the application of stream sediments to mineral exploration. Identifying the geochemical anomalies from background is a fundamental task in exploration geochemistry. This paper applied the element concentration–area (CA) model, to separating the geochemical anomalies from background based on a fractal approach and for the compilation of geochemical mapping from stream sediment samples (n = 620) of the Ahar region (Iran), where some Cu mineralization occurs. Comparisons of the known copper occurrences against the anomalous area created using thresholds from CA method illustrate these hits. All of known Cu mineralizations and moreover defines two extra Cu anomaly districts. Additional sampling (n = 186) around new Cu anomaly confirms this anomaly within the district.  相似文献   

11.
Separation of geochemical anomalies from background are one of the important steps in mineral exploration. The Khooni mineral district (Central Iran) has complex geochemical surface expression due to a complex geological background. This region was chosen as a study area for recognition of the spatial distribution of geochemical elements and separating anomalies from background using stream sediment geochemical data. In the past decades, geochemical anomalies have been identified by means of various methods. Some of these separation methods include: statistical analysis methods, spatial statistical methods and fractal and multi-fractal methods. In this article, two efficient methods, i.e. U-statistics and the fractal concentration-area for separation and detection of anomalous areas of the background were used. The U spatial statistic method is a weighted mean, which considers sampling point positions and their spatial relation in the estimation of anomaly location. Also, fractal and multi-fractal models have also been applied to separate anomalies from background values. In this paper, the concentration–area model (C–A) was suggested to separate the anomaly of background. For this purpose, about 256 stream sediment samples were collected and analyzed. Then anomaly maps of elements were generated based on U spatial statistics and the C-A fractal methods for Au, As and Sb elements. According to obtained results, the U-statistics method performed better than C-A method. Because the comparisons of the known deposits and occurrences against the anomalous area created using thresholds from U-statistics and C-A method show that the spatial U-statistics method hits all of 3 known deposits and occurrences, the C-A fractal method hits 1 and fails 2. In addition, the results showed that these methods with regard to spatial distribution and variability within neighboring samples, in addition to concentration value frequency distributions and correlation coefficients, have more accurate results than the traditional approaches.  相似文献   

12.
Conventional analyses of exploration geochemical data assume that the background is a constant or slowly changing value, equivalent to a plane or a smoothly curved surface. However, it is better to regard the geochemical background as a rugged surface, varying with changes in geology and environment. This rugged surface can be estimated from observed geological, geochemical and environmental properties by using multivariate statistics.A method of background adjustment was developed and applied to groundwater and stream sediment reconnaissance data collected from the Hot Springs Quadrangle, South Dakota, as part of the National Uranium Resource Evaluation (NURE) program. Source-rock lithology appears to be a dominant factor controlling the chemical composition of groundwater or stream sediments. The most efficacious adjustment procedure is to regress uranium concentration on selected geochemical and environmental variables for each lithologic unit, and then to delineate anomalies by a common threshold set as a multiple of the standard deviation of the combined residuals. Robust versions of regression and RQ-mode principal components analysis techniques were used rather than ordinary techniques to guard against distortion caused by outliers Anomalies delineated by this background adjustment procedure correspond with uranium prospects much better than do anomalies delineated by conventional procedures. The procedure should be applicable to geochemical exploration at different scales for other metals.  相似文献   

13.
水系沉积物地球化学测量表明,攀枝花-西昌地区存在一个与峨眉山玄武岩分布范围基本吻合的P t,Pd区域地球化学异常,玄武岩中铂族元素丰度值普遍较高是一种正常的高背景现象,而峨眉山玄武岩中P t,Pd严重亏损或正异常显著的局部地区则显示出一定程度的成矿潜力。研究根据水系沉积物下伏基岩性质的不同,确定了不同地层单元和侵入岩类的P t,Pd背景值和异常下限,在研究区圈出多处P t,Pd衬值异常。结合有关铂族矿床以及同源玄武岩地球化学特征的认识,通过对水系沉积物P t,Pd综合异常的筛选,初步优选出铂族元素找矿远景区10个。  相似文献   

14.
《Applied Geochemistry》2003,18(2):283-309
International agreements (e.g. OSPAR) on the release of hazardous substances into the marine environment and environmental assessments of shelf seas require that concentrations and bioavailability of metals from anthropogenic sources can be distinguished from those originating as a result of natural geological processes. The development of a methodology for distinguishing between anthropogenic and natural sources of metals entering the Irish Sea through river inputs is described. The geochemistry of stream, river and estuarine sediments has been used to identify background geochemical signatures, related to geology, and modifications to these signatures by anthropogenic activities. The British Geological Survey (BGS) geochemical database, based on stream sediments from 1 to 2 km2 catchments, was used to derive the background signatures. Where mining activity was present, the impact on the signature was estimated by comparison with the geochemistry of sediments from a geologically similar, but mining free, area. River sediment samples taken upstream and downstream of major towns were used respectively to test the validity of using stream sediments to estimate the chemistry of the major river sediment and to provide an indication of the anthropogenic impact related to urban and industrial development. The geochemistry of estuarine sediments from surface samples and cores was then compared with river and offshore sediment chemistry to assess the importance of riverine inputs to the Irish Sea. Studies were undertaken in the Solway, Ribble, Wyre and Mersey estuaries. The results verify that catchment averages of stream sediments and major river samples have comparable chemistry where anthropogenic influences are small. Major urban and industrial (including mining) development causes easily recognised departures from the natural multi-element geochemical signature in river sediment samples downstream of the development and enhanced metal levels are observed in sediments from estuaries with industrial catchments. Stream sediment chemistry coupled with limited river and estuarine sampling provides a cost-effective means of identifying anthropogenic metal inputs to the marine environment. Investigations of field and laboratory protocols to characterise biological impact (bioaccumulation) of metals in sediments of the Irish Sea and its estuaries show that useful assessments can be made by a combination of surveys with bioindicator species such as clams Scrobicularia plana, selective sediment measurements that mimic the ‘biologically available’ fractions, and laboratory (mesocosm) studies.  相似文献   

15.
Globally, aquatic ecosystems are highly polluted with heavy metals arising from anthropogenic and terrigenous sources. The objective of this study was to investigate the pollution of stream sediments and possible sources of pollutants in Nakivubo Channel Kampala, Uganda. Stream sediments were collected and analysed for heavy metal concentration using flame atomic absorption spectrophotometer. The degree of pollution in Nakivubo channelized stream sediments for lead, cadmium, copper, zinc, manganese and iron was assessed using enrichment factor, geo-accumulation index and pollution load index. The results indicated that (1) the sediments have been polluted with lead, cadmium and zinc and have high anthropogenic influences; (2) the calculation of geo-accumulation index suggest that Nakivubo stream sediments have background concentration for copper, manganese and Fe (I geo ≤ 0); (3) factor analysis results reveal three sources of pollutants as explained by three factors (75.0 %); (i) mixed origin or retention phenomena of industrial and vehicular emissions; (ii) terrigenous and (iii) dual origin of zinc (vehicular and industrial). In conclusion, the co-precipitation (inclusion, occlusion and adsorption) of lead, cadmium and zinc with manganese and iron hydroxides, scavenging ability of other metals, very low dissolved oxygen and slightly acidic to slightly alkaline pH in stream water could account for the active accumulation of heavy metals in Nakivubo stream sediments. These phenomena may pose a risk of secondary water pollution under sediment disturbance and/or changes in the geo-chemistry of sediments.  相似文献   

16.
This investigation revealed the presence of traffic-derived metals within road, stream and estuarine sediments collected from a coastal catchment, northern Australia. Studied road sediments displayed variable total metal concentrations (median Cd, Cu, Pb, Pd, Pt, Ni and Zn values: 0.19, 42.6, 67.5, 0.064, 0.104, 36.7 and 698 mg/kg, respectively). The distinctly elevated Zn values are due to abundant tyre rubber shreds (as verified by SEM-EDS and correlation analysis). By comparison to the road sediments, background stream sediments taken upstream from roads have relatively low median Pb, Pd, Pt and Zn concentrations (7.3 mg/kg Pb, 0.01 mg/kg Pd, 0.012 mg/kg Pt, 62 mg/kg Zn). Stream and estuarine sediment samples collected below roads have median values of 21.8 mg/kg Pb, 0.014 mg/kg Pd, 0.021 mg/kg Pt and 71 mg/kg Zn, and exhibit 207Pb/206Pb and 208Pb/206Pb ratios that appear on a mixing line between the isotopically distinct background stream sediments and the road sediments. Thus, mobilisation of dusts and sediments from road surfaces has resulted in relatively elevated Pb, Pd, Pt and Zn concentrations and non-radiogenic Pb isotope ratios in local coastal stream and estuarine sediments. The investigation demonstrates that traffic-derived metals enter coastal stream and estuary sediments at the fringe of the Great Barrier Reef lagoon.  相似文献   

17.
The objective of the present study is to assess the influence of iron ore mining on Fe concentrations in fluvial sediments of the Gualaxo do Norte River basin (Minas Gerais State, Brazil). Initially background values were determined for Fe by means of the boxplot representation, the iterative 2σ technique and the calculated distribution function, using geochemical data obtained for alluvial terraces. Geochronologic analyses in carbonaceous materials attested for the proposed background values. After that, chemical analyses of active drainage sediments collected along the entire basin were carried out and a geochemical map of the study area was prepared. The mean background value for Fe is relatively high (8.2 wt %), when compared to the Fe concentration in the Earth’s crust (5.6 wt %). Such background value is strongly associated with the geological characteristics of the region. It was observed that most of the high Fe concentrations were detected in active sediments collected in the main river of the basin and not in its tributaries. This suggests that Fe enrichment is not only linked to the local geology but also to possible increase resulting from accidental leakage of iron ore mining tailings from containment dams and lakes upstream. It is suggested that measures that help stop or minimize such impact be adopted. The large capacity of Fe to adsorb and form complexes with toxic metals implicates in environmental hazards that may not be restricted only to the Gualaxo do Norte river basin, but may affect the other basins downstream.  相似文献   

18.
In recent years environmental geochemical mapping has assumed an increasing relevance and separation of background values to evaluate pollution is, probably, even more critical than the separation between background and anomalies in mineral prospecting studies. The recognition of background values assumes particular relevance as a function of national environmental legislation, which fixes intervention limits for some elements, such as the harmful ones (e.g. As, Cd, Hg, Pb). In this paper a recently developed multifractal IDW interpolation method and a fractal filtering technique are applied to separate natural background and anthropogenic values for the compilation of environmental geochemical mapping from stream sediment samples of Campania region (Italy), where no mineralization occurs. To discuss the application of these recently developed techniques the elements Pb and U were selected because they show two completely different situations, the high Pb values being mostly of anthropogenic origin and high U values being mostly of geogenic origin. The new fractal filtering method works well in both extreme situations.  相似文献   

19.
A total of 49 elements have been identified in 338 coastal sea sediment samples collected from an area situated off the Ise-Tokai region of Japan for a nationwide marine geochemical mapping project. The spatial distribution patterns of the elemental concentrations in coastal seas along with the existing geochemical maps in terrestrial areas were used to define the natural geochemical background variation, mass transport, and contamination processes. The elemental concentrations of coastal sea sediments are determined primarily by particle size and regional differences. Most elemental concentrations increase with a decrease in particle size. Some elements such as Ca, Mn, and Yb are found to exist in large quantities in coarse particles containing calcareous shells, Fe–Mn oxides, and felsic volcanic sediments. Regional differences reflect the mass transfer process from terrestrial areas to coastal seas and the influence of the local marine geology. An analysis of variance (ANOVA) reveals that for many elements, the particle size effect is predominant over regional difference. The mean chemical compositions of coastal sea sediments are similar to those of stream sediments in adjacent terrestrial areas and in the upper crust of Japan. This observation supports the fact that coastal sea sediments have certainly originated from terrestrial materials. However, the spatial distributions of elemental concentrations are not always continuous between the land and coastal seas. The scale of mass movement observed in marine geochemical maps occurs at a distance of 20 km from the river mouth. A detailed examination of the spatial distribution patterns of K (K2O) and Cr concentrations suggests that terrestrial materials supplied through rivers are deposited near the shore initially, and then gravity-driven processes shift the sediments deeper into the basin. Contamination with heavy metals such as Zn, Cd and Pb was observed in coastal bays surrounded by urban and industrial areas. It is noteworthy that the areas with the highest concentration of these elements usually do not occur near the shore (not near the contamination source) but at the center of the bay. Unexpected low concentrations of Zn, Cd and Pb near shore may either be due to a decreased anthropogenic load in the most recent sediments or to dilution by unpolluted flood sediments.  相似文献   

20.
Identifying geochemical anomalies from background is a fundamental task in exploration geochemistry. The Gangdese mineral district in western China has complex geochemical surface expression due to complex geological background and was chosen as a study area for recognition of the spatial distribution of geochemical elements and separating anomalies from background using stream sediment geochemical data. The results illustrate that weak anomalies are hidden within the strong variance of background and are not well identified by means of inverse distance weighted; neither are they clearly identified by the C–A method if this method is applied to the whole study area. On the other hand, singularity values provide new information that complements use of original concentration values and can quantify the properties of enrichment and depletion caused by mineralization. In general, producing maps of singularities can help to identify relatively weak metal concentration anomalies in complex geological regions. Application of singularity mapping technique in Gangdese district shows local anomalies of Cu are not only directly associated with known deposits in the central part of the study area, but also with E–W and N–E oriented faults in the north of the study area. Both types of anomalies should be further investigated for undiscovered Cu mineral deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号