首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new method to calculate volcanic susceptibility, i.e. the spatial probability of vent opening, is presented. Determination of volcanic susceptibility should constitute the first step in the elaboration of volcanic hazard maps of active volcanic fields. Our method considers different criteria as possible indicators for the location of future vents, based on the assumption that these locations should correspond to the surface expressions of the most likely pathways for magma ascent. Thus, two groups of criteria have been considered depending on the time scale (short or long term) of our approach. The first one accounts for long-term hazard assessment and corresponds to structural criteria that provide direct information on the internal structure of the volcanic field, including its past and present stress field, location of structural lineations (fractures and dikes), and location of past eruptions. The second group of criteria concerns to the computation of susceptibility for short term analyses (from days to a few months) during unrest episodes, and includes those structural and dynamical aspects that can be inferred from volcano monitoring. Thus, a specific layer of information is obtained for each of the criteria used. The specific weight of each criterion on the overall analysis depends on its relative significance to indicate pathways for magma ascent, on the quality of data and on their degree of confidence. The combination of the different data layers allows to create a map of the spatial probability of future eruptions based on objective criteria, thus constituting the first step to obtain the corresponding volcanic hazards map. The method has been used to calculate long-term volcanic susceptibility on Tenerife (Canary Islands), and the results obtained are also presented.  相似文献   

2.
The Campi Flegrei caldera is a restless structure affected by general subsidence and ongoing resurgence of its central part. The persistent activity of the system and the explosive character of the volcanism lead to a very high volcanic hazard that, combined with intense urbanization, corresponds to a very high volcanic risk. One of the largest sources of uncertainty in volcanic hazard/risk assessment for Campi Flegrei is the spatial location of the future volcanic activity. This paper presents and discusses a long-term probability hazard map for vent opening in case of renewal of volcanism at the Campi Flegrei caldera, which shows the spatial conditional probability for the next vent opening, given that an eruption occurs. The map has been constructed by building a Bayesian inference scheme merging prior information and past data. The method allows both aleatory and epistemic uncertainties to be evaluated. The probability map of vent opening shows that two areas of relatively high probability are present within the active portion of the caldera, with a probability approximately doubled with respect to the rest of the caldera. The map has an immediate use in evaluating the areas of the caldera prone to the highest volcanic hazard. Furthermore, it represents an important ingredient in addressing the more general problem of quantitative volcanic hazards assessment at the Campi Flegrei caldera.  相似文献   

3.
The volcanological history of Campi Flegrei suggests that the most frequent eruptions are characterized by the emplacement of pyroclastic flow and surge deposits erupted from different vents scattered over a 150-km2 caldera. The evaluation of volcanic risk in volcanic fields is complex because of the lack of a central vent. To approach this problem, we subdivided the entire area of Campi Flegrei into a regular grid and evaluated the relative spatial probability of opening of vents based on geological, geophysical and geochemical data. We evaluated the volcanic risk caused by pyroclastic flows based on the formula proposed by UNESCO (1972), R=H×V×Va, where H is the hazard, V is the vulnerability and Va is the value of the elements at risk. The product H×V was obtained by performing simulations of type eruptions centered in each cell of the grid. The simulation is based on the energy cone scheme proposed by Sheridan and Malin [J. Volcanol. Geotherm. Res. 17 (1983) 187–202], hypothesizing a column collapse height of 100 m for eruptions of VEI=3 and 300 m for eruptions of VEI=4 with a slope angle of 6°. Each simulation has been given the relative probability value associated with the corresponding cell. We made use of the GIS software ArcView 3.2 to evaluate the intersection between the energy cone and the topography. The superposition of the areas invaded by pyroclastic flows (124 simulations for VEI=3 and 37 for VEI=4) was used to obtain the relative hazard map of the area. The relative volcanic risk map is obtained by superimposing the urbanization maps.  相似文献   

4.
We describe a numerical simulation of both concentrated and dilute gravity-driven pyroclastic flows on a digital topographic model of the Campi Flegrei volcanic field. Families of numerical flows are generated by sampling a multi-dimensional matrix of vent coordinates, flow properties and dynamical parameters within a wide range of values. Hazard maps are constructed from the data base of simulated flows, using a mixed deterministic–statistical approach. The set of probable vents covers the area of recent eruptions. Results show the key role of topography in controlling the flow dispersion. The maximum hazard appears to be the NE sector of the caldera. Flows in the eastern sector, including the city of Naples, are shown to be efficiently hindered by the Posillipo and Camaldoli hills at the caldera borders, thus reducing the hazard. The results represent the first physically based estimate of hazard from pyroclastic flows in this densely populated area, and can be used for civil defence purposes.  相似文献   

5.
Mt. Cameroon is one of the most active effusive volcanoes in Africa. About 500,000 people living or working around its fertile flanks are subject to significant threat from lava flow inundation. Lava flow hazard and risk were assessed by simulating probable lava flow paths using the DOWNFLOW code. The vent opening probability density function and lava flow length distribution were determined on the basis of available data from past eruptions at Mt. Cameroon volcano. Code calibration was performed through comparison with real lava flow paths. The topographic basis for simulations was the 90-m resolution SRTM DEM. Simulated lava flows from about 80,000 possible vents were used to produce a detailed lava flow hazard map. The lava flow risk in the area was mapped by combining the hazard map with digitized infrastructures (i.e., human settlements and roads). Results show that the risk of lava flow inundation is greatest in the most inhabited coastal areas comprising the town of Limbe, which constitutes the center of Cameroon’s oil industry and an important commercial port. Buea, the second most important town in the area, has a much lower risk although it is significantly closer to the summit of the volcano. Non-negligible risk characterizes many villages and most roads in the area surrounding the volcano. In addition to the conventional risk mapping described above, we also present (1) two reversed risk maps (one for buildings and one for roads), where each point on the volcano is classified according to the total damage expected as a consequence of vent opening at that point; (2) maps of the lava catchments for the two main towns of Limbe and Buea, illustrating the expected damage upon venting at any point in the catchment basin. The hazard and risk maps provided here represent valuable tools for both medium/long-term land-use planning and real-time volcanic risk management and decision making.  相似文献   

6.
In order to zone the territory of Campania Region (southern Italy) with regard to the hazard related to future explosive activity of Somma-Vesuvio, Campi Flegrei, and Ischia Island, we drew a multi-source hazard map for tephra and pyroclastic flows. This map, which merges the areas possibly endangered by the three volcanic sources, takes into account a large set of tephra fall and pyroclastic flow events that have occurred in the last 10 ka. In detail, for fall products at Campi Flegrei and Somma-Vesuvio we used the dispersal of past eruption products as deduced by field surveys and their recurrence over the whole area. For pyroclastic flows, the field data were integrated with VEI = 4 simulated events; about 100 simulations sourcing from different points of the area were performed, considering the different probability of vent opening. The spatial recurrence of products of both past eruptions and simulated events was used to assign a weight to the area endangered by the single volcanic sources. The sum of these weights in the areas exposed to the activity of two sources and/or to different kinds of products was used to draw a hazard map, which highlights the spatial trend and the extent of the single equivalent classes at a regional scale. A multi-source risk map was developed for the same areas as the graphic result of the product of volcanic hazard and exposure, assessed in detail from a dasymetric map. The resulting multi-source hazard and risk maps are essential tools for communication among scientists, local authorities, and the public, and may prove highly practical for long-term regional-scale mitigation planning.  相似文献   

7.
In this paper, we explore the effects of the intrinsic uncertainties upon long-term volcanic hazard by analyzing tephra fall hazard at Campi Flegrei, Italy, using the BET_VH model described in Marzocchi et al. (Bull Volcanol, 2010). The results obtained show that volcanic hazard based on the weighted average of all possible eruptive settings (i.e. size classes and vent locations) is significantly different from an analysis based on a single reference setting, as commonly used in volcanic hazard practice. The long-term hazard map for tephra fall at Campi Flegrei obtained here accounts for a wide spectrum of uncertainties which are usually neglected, largely reducing the bias intrinsically introduced by the choice of a specific reference setting. We formally develop and apply a general method to recursively integrate simulations from different models which have different characteristics in terms of spatial coverage, resolution and physical details. This outcome of simulations will be eventually merged with field data through the use of the BET_VH model.  相似文献   

8.
Flood hazard maps at trans‐national scale have potential for a large number of applications ranging from climate change studies, reinsurance products, aid to emergency operations for major flood crisis, among others. However, at continental scales, only few products are available, due to the difficulty of retrieving large consistent data sets. Moreover, these are produced at relatively coarse grid resolution, which limits their applications to qualitative assessments. At finer resolution, maps are often limited to country boundaries, due to limited data sharing at trans‐national level. The creation of a European flood hazard map would currently imply a collection of scattered regional maps, often lacking mutual consistency due to the variety of adopted approaches and quality of the underlying input data. In this work, we derive a pan‐European flood hazard map at 100 m resolution. The proposed approach is based on expanding a literature cascade model through a physically based approach. A combination of distributed hydrological and hydraulic models was set up for the European domain. Then, an observed meteorological data set is used to derive a long‐term streamflow simulation and subsequently coherent design flood hydrographs for a return period of 100 years along the pan‐European river network. Flood hydrographs are used to simulate areas at risk of flooding and output maps are merged into a pan‐European flood hazard map. The quality of this map is evaluated for selected areas in Germany and United Kingdom against national/regional hazard maps. Despite inherent limitations and model resolution issues, simulated maps are in good agreement with reference maps (hit rate between 59% and 78%, critical success index between 43% and 65%), suggesting strong potential for a number of applications at the European scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Event tree structures constitute one of the most useful and necessary tools in modern volcanology for assessment of hazards from future volcanic scenarios (those that culminate in an eruptive event as well as those that do not). They are particularly relevant for evaluation of long- and short-term probabilities of occurrence of possible volcanic scenarios and their potential impacts on urbanized areas. In this paper, we introduce Hazard Assessment Event Tree (HASSET), a probability tool, built on an event tree structure that uses Bayesian inference to estimate the probability of occurrence of a future volcanic scenario and to evaluate the most relevant sources of uncertainty from the corresponding volcanic system. HASSET includes hazard assessment of noneruptive and nonmagmatic volcanic scenarios, that is, episodes of unrest that do not evolve into volcanic eruption but have an associated volcanic hazard (e.g., sector collapse and phreatic explosion), as well as unrest episodes triggered by external triggers rather than the magmatic system alone. Additionally, HASSET introduces the Delta method to assess precision of the probability estimates, by reporting a 1 standard deviation variability interval around the expected value for each scenario. HASSET is presented as a free software package in the form of a plug-in for the open source geographic information system Quantum Gis (QGIS), providing a graphically supported computation of the event tree structure in an interactive and user-friendly way. We also include further in-depth explanations for each node together with an application of HASSET to Teide-Pico Viejo volcanic complex (Spain).  相似文献   

10.
A unified probabilistic seismic hazard assessment (PSHA) for the Pyrenean region has been performed by an international team composed of experts from Spain and France during the Interreg IIIA ISARD project. It is motivated by incoherencies between the seismic hazard zonations of the design codes of France and Spain and by the need for input data to be used to define earthquake scenarios. A great effort was invested in the homogenisation of the input data. All existing seismic data are collected in a database and lead to a unified catalogue using a local magnitude scale. PSHA has been performed using logic trees combined with Monte Carlo simulations to account for both epistemic and aleatory uncertainties. As an alternative to hazard calculation based on seismic sources zone models, a zoneless method is also used to produce a hazard map less dependant on zone boundaries. Two seismogenic source models were defined to take into account the different interpretations existing among specialists. A new regional ground-motion prediction equation based on regional data has been proposed. It was used in combination with published ground-motion prediction equations derived using European and Mediterranean data. The application of this methodology leads to the definition of seismic hazard maps for 475- and 1,975-year return periods for spectral accelerations at periods of 0 (corresponding to peak ground acceleration), 0.1, 0.3, 0.6, 1 and 2 s. Median and percentiles 15% and 85% acceleration contour lines are represented. Finally, the seismic catalogue is used to produce a map of the maximum acceleration expected for comparison with the probabilistic hazard maps. The hazard maps are produced using a grid of 0.1°. The results obtained may be useful for civil protection and risk prevention purposes in France, Spain and Andorra.  相似文献   

11.
Volcanic hazard assessment at the restless Campi Flegrei caldera   总被引:1,自引:0,他引:1  
Eruption forecasting and hazard assessments at the restless Campi Flegrei caldera, within the Neapolitan volcanic area, have been performed using stratigraphical, volcanological, structural and petrological data.On the basis of the reconstructed variation of eruption magnitude through time, we hypothesize that the most probable maximum expected event is a medium-magnitude explosive eruption, fed by trachytic magma. Such an eruption could likely occur in the north-eastern sector of the caldera floor that is under a tensile stress regime, when the ongoing deformation will generate mechanical failure of the rocks. A vent could open also in the western sector, at the intersection of two fault systems contemporaneously activated, as happened in the last eruption at Monte Nuovo. The eruption could likely be preceded by precursors apparent to the population, such as ground deformation, seismicity and increase in gas emissions. It will probably alternate between magmatic and phreatomagmatic phases with the generation of tephra fallout, and dilute and turbulent pyroclastic currents. During and/or after the eruption, the re-mobilization of ash by likely heavy rains, could probably generate mud flows.In order to perform a zoning of the territory in relation to the expected volcanic hazards, we have constructed a comprehensive hazard map. On this map are delimited (I) areas of variable probability of opening of a new vent, (II) areas which could be affected by variable load of fallout deposits, and (III) areas over which pyroclastic currents could flow. The areas in which a vent could likely open have been defined on the basis of the dynamics of the ongoing deformation of the caldera floor. To construct the fallout hazard map we have used the frequency of deposition of fallout beds thicker than 10 cm, the frequency of load on the ground by tephra fallout and the direction of dispersal axes of the deposits of the last 5 ka, and the limit load of collapse for the variable types of roof construction. The pyroclastic-current hazard map is based on the areal distribution and frequency of pyroclastic-current deposits of the last 5 ka.Editorial Responsibility: T. Druitt  相似文献   

12.
Principal and subsidiary building structure characteristics and their distribution have been inventoried in Icod, Tenerife (Canary Islands) and used to evaluate the vulnerability of individual buildings to three volcanic hazards: tephra fallout, volcanogenic earthquakes and pyroclastic flows. The procedures described in this paper represent a methodological framework for a comprehensive survey of all the buildings at risk in the area around the Teide volcano in Tenerife. Such a methodology would need to be implemented for the completion of a comprehensive risk assessment for the populations under threat of explosive eruptions in this area. The information presented in the paper is a sample of the necessary data required for the impact estimation and risk assessment exercises that would need to be carried out by emergency managers, local authorities and those responsible for recovery and repair in the event of a volcanic eruption. The data shows there are micro variations in building stock characteristics that would influence the likely impact of an eruption in the area. As an example of the use of this methodology for vulnerability assessment, we have applied a deterministic simulation model of a volcanic eruption from Teide volcano and its associated ash fallout which, when combined with the vulnerability data collected, allows us to obtain the vulnerability map of the studied area. This map is obtained by performing spatial analysis with a Geographical Information System (GIS). This vulnerability analysis is included in the framework of an automatic information system specifically developed for hazard assessment and risk management on Tenerife, but which can be also applied to other volcanic areas. The work presented is part of the EU-funded EXPLORIS project (Explosive Eruption Risk and Decision Support for EU Populations Threatened by Volcanoes, EVR1-2001-00047).  相似文献   

13.
This paper reviews how hazard data and geological map data have been combined by the British Geological Survey (BGS) to produce a set of GIS-based national-scale hazard susceptibility maps for the UK. This work has been carried out over the last 9 years and as such reflects the combined outputs of a large number of researchers at BGS. The paper details the inception of these datasets from the development of the seamless digital geological map in 2001 through to the deterministic 2D hazard models produced today. These datasets currently include landslides, shrink-swell, soluble rocks, compressible and collapsible deposits, groundwater flooding, geological indicators of flooding, radon potential and potentially harmful elements in soil. These models have been created using a combination of expert knowledge (from both within BGS and from outside bodies such as the Health Protection Agency), national databases (which contain data collected over the past 175 years), multi-criteria analysis within geographical information systems and a flexible rule-based approach for each individual geohazard. By using GIS in this way, it has been possible to model the distribution and degree of geohazards across the whole of Britain.  相似文献   

14.
Safety against earthquake hazards presents two aspects: structural safety against potentially destructive dynamic forces and site safety related to geotechnical phenomena, such as amplification, landsliding and soil liquefaction. The correct evaluation of seismic hazard is, therefore, highly affected by risk factors due to geological nature and geotechnical properties of soils. In response to these new developments, several attempts have been made to identify and appraise geotechnical hazards and to represent them in the form of zoning maps, in which locations or zones with different levels of hazard potential are identified. The geotechnical zonation of the subsoil of the city of Catania (Italy) suggests a high vulnerability of the physical environment added to site amplification of the ground motion phenomena. The ground response analysis at the surface, in terms of time history and response spectra, has been obtained by some 1D equivalent linear models and by a 2D linear model, using a design scenario earthquake as input at the conventional bedrock. In particular, the study has regarded the evaluation of site effects in correspondence of the database of about 1200 boreholes and water-wells available in the data-bank of the Catania area. According to the response spectra obtained through the application of the 1D and 2D models, the city of Catania has been divided into some zones with different peak ground acceleration at the surface, to which corresponds a different value of the Seismic Geotechnical Hazard. A seismic microzoning map of the urban area of the city of Catania has been obtained. The map represents an important tool for the seismic improvement of the buildings, indispensable for the mitigation of the seismic risk.  相似文献   

15.
龙岗金龙顶子火山空降碎屑物数值模拟及概率性灾害评估   总被引:1,自引:0,他引:1  
空降碎屑物为爆炸式火山喷发产生的一种重要的灾害类型,数值模拟已成为一个快速有效地确定火山灰扩散和沉积范围的方法。本文根据改进的Suzuki(1983)二维扩散模型,编写了基于Windows环境下的火山灰扩散程序。通过对前人资料的分析,模拟了龙岗火山群中最新火山喷发——金龙顶子火山喷发产生的空降碎屑物扩散范围,与实测结果具有很好的一致性,证实了模型的可靠性和参数的合理性。根据该区10年的风参数,模拟了7021次不同风参数时金龙顶子火山灰的扩散范围,以此制作了火山灰沉积厚度超过1cm和0.5cm时的概率性空降碎屑灾害区划图。本文的研究可为龙岗火山区火山危险性分析和灾害预警与对策提供重要的科学依据。  相似文献   

16.
现代地裂缝在世界许多国家普遍存在 ,已成为当今世界范围内的主要地质灾害之一。本文在详尽分析了山西榆次地裂缝的各个致灾因子的基础上 ,利用GIS技术建立了地质学意义上的专题层 ;然后采用人工神经网络技术构建出了地裂缝灾害活动性的评价模型 ,并建立了地裂缝活动性的评价系统 ,对榆次地裂缝进行了灾害活动性评价 ,为榆次市城建和国土规划等部门的正确决策提供了重要的科学依据  相似文献   

17.
In the framework of the UPStrat-MAFA project, a seismic hazard assessment has been undertaken in the volcanic region of Mt. Etna as a first step in studies aimed at evaluating the risk on an urban scale. The analysis has been carried out with the SASHA code which uses macroseismic data in order to calculate, starting from the site seismic history, the maximum intensity value expected in a given site with a probability of exceedance of 10 % (Iref), for a fixed exposure time. Depending on the aims of the project, hazard is estimated for local volcano-tectonic seismicity and short exposure times (10 and 30 years), without taking into account the contribution of “regional” events characterized by much longer recurrence times. Results from tasks A, B and D of the project have produced an updated macroseismic dataset, better performing attenuation models and new tools for SASHA, respectively. The maps obtained indicate that the eastern flank of Etna, the most urbanized sector of the volcano, is characterized by a high level of hazard with Iref values up to degree VIII EMS, and even IX EMS locally. The disaggregated data analysis allows recognizing the “design earthquake” and the seismogenic fault which most contribute to the hazard at a site-scale. The latter analysis is the starting point to select the scenario earthquake to be used in the analyses of tasks C and F of the project dealing with, respectively, synthetic ground motion simulations and the evaluation of the Disruption Index.  相似文献   

18.
Remotely sensed land cover maps are increasingly used as inputs into environmental simulation models whose outputs inform decisions and policy-making. Risks associated with these decisions are dependent on model output uncertainty, which is in turn affected by the uncertainty of land cover inputs. This article presents a method of quantifying the uncertainty that results from potential mis-classification in remotely sensed land cover maps. In addition to quantifying uncertainty in the classification of individual pixels in the map, we also address the important case where land cover maps have been upscaled to a coarser grid to suit the users’ needs and are reported as proportions of land cover type. The approach is Bayesian and incorporates several layers of modelling but is straightforward to implement. First, we incorporate data in the confusion matrix derived from an independent field survey, and discuss the appropriate way to model such data. Second, we account for spatial correlation in the true land cover map, using the remotely sensed map as a prior. Third, spatial correlation in the mis-classification characteristics is induced by modelling their variance. The result is that we are able to simulate posterior means and variances for individual sites and the entire map using a simple Monte Carlo algorithm. The method is applied to the Land Cover Map 2000 for the region of England and Wales, a map used as an input into a current dynamic carbon flux model.  相似文献   

19.
Many research tools for lahar hazard assessment have proved wholly unsuitable for practical application to an active volcanic system where field measurements are challenging to obtain. Two simple routing models, with minimal data demands and implemented in a geographical information system (GIS), were applied to dilute lahars originating from Soufrière Hills Volcano, Montserrat. Single-direction flow routing by path of steepest descent, commonly used for simulating normal stream-flow, was tested against LAHARZ, an established lahar model calibrated for debris flows, for ability to replicate the main flow routes. Comparing the ways in which these models capture observed changes, and how the different modelled paths deviate can also provide an indication of where dilute lahars, do not follow behaviour expected from single-phase flow models. Data were collected over two field seasons and provide (1) an overview of gross morphological change after one rainy season, (2) details of dominant channels at the time of measurement, and (3) order of magnitude estimates of individual flow volumes. Modelling results suggested both GIS-based predictive tools had associated benefits. Dominant flow routes observed in the field were generally well-predicted using the hydrological approach with a consideration of elevation error, while LAHARZ was comparatively more successful at mapping lahar dispersion and was better suited to long-term hazard assessment. This research suggests that end-member models can have utility for first-order dilute lahar hazard mapping.  相似文献   

20.
A realistic definition of seismic input for the Catania area is obtained using advanced modeling techniques that allow us the computation of synthetic seismograms, containing body and surface waves. With the modal summation technique, extended to laterally heterogeneous anelastic structural models, we create a database of synthetic signals which can be used for the study of the local response in a set of selected sites located within the Catania area. We propose a ground shaking scenario corresponding to a source spectrum of an earthquake that mimics the destructive event that occurred on 11 January 1693. Making use of the simplified geotechnical map for the Catania area, we produce maps which illustrate the spatial variability of the SH waveforms over the entire area. Using the detailed geological and geotechnical information along a selected cross section, we study the site response to the SH and P-SV motion in a very realistic case, adopting and comparing different estimation techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号