首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thirty-nine samples of both cold and thermal karst groundwater from Taiyuan, northern China were collected and analyzed with the aim of developing a better understanding of the geochemical processes that control the groundwater quality evolution in the region’s carbonate aquifers. The region’s karst groundwater system was divided into three geologically distinct sub-systems, namely, the Xishan Mountain karst groundwater subsystem (XMK), the Dongshan Mountain karst groundwater subsystem (DMK) and the Beishan Mountain karst groundwater subsystem (BMK). Hydrochemical properties of the karst groundwaters evolve from the recharge zones towards the cold water discharge zones and further towards the thermal water discharge zones. In the XMK and the DMK, the hydrochemical type of the groundwater evolves from HCO3-Ca·Mg in the recharge - flow-through zone, to HCO3·SO4-Ca·Mg/SO4·HCO3-Ca·Mg in the cold water discharge zone, and further to SO4-Ca·Mg in the thermal water discharge zone. By contrast, the water type changes from HCO3-Ca·Mg to HCO3·SO4-Ca·Mg in the BMK, with almost invariable TDS and temperatures all along from the recharge to the discharge zone. The concentrations of Sr, Si, Fe, F and of some trace elements (Al, B, Li, Mn, Mo, Co, Ni) increase as groundwater temperature increases. Different hydrogeochemical processes occur in the three karst groundwater sub-systems. In the XMK and the DMK, the geochemical evolution of the groundwater is jointly controlled by carbonate dissolution/precipitation, gypsum dissolution and dedolomitization, while only calcite and dolomite dissolution/precipitation occurs in the BMK without dedolomitization. The hydrogeochemical data of the karst groundwaters were used to construct individual geochemical reaction models for each of the three different karst groundwater sub-systems. The modeling results confirm that dedolomization is the major process controlling hydrochemical changes in the XMK and the DMK. In the thermal groundwaters, the dissolution rates of fluorite, siderite and strontianite were found to exceed those of the cold karst groundwater systems, which can explain the higher concentrations of F, Fe and Sr2+ that are found in these waters.  相似文献   

2.
Distribution of fluoride in groundwater of Maku area, northwest of Iran   总被引:3,自引:0,他引:3  
High fluoride groundwater occurs in Maku area, in the north of West Azarbaijan province, northwest of Iran. Groundwater is the main source of drinking water for the area residents. Groundwater samples were collected from 72 selected points including 40 basaltic and 32 nonbasaltic springs and wells, in two stages, during June and August 2006. The areas with high fluoride concentrations have been identified, and the possible causes for its variation have been investigated. Regional hydrogeochemical investigation indicates that water-rock interaction is probably the main reason for the high concentration of ions in groundwater. The concentration of F in groundwater is positively correlated with that of HCO3 and Na+, indicating that groundwater with high HCO3 and Na+ concentrations help to dissolve some fluoride-rich minerals. All of the water samples, collected from the basaltic areas do not meet the water quality standards for fluoride concentration and some other parameters. Hence, it is not suitable for consumption without any prior treatment. Inhabitants of the area that obtain their drinking water supplies from basaltic springs and wells are suffering from dental fluorosis. The population of the study area is at a high risk due to excessive fluoride intake especially when they are unaware of the amount of fluoride being ingested due to lack of awareness.  相似文献   

3.
Hydrogeochemistry data were utilized to understand origin, distribution, and geochemical evolution of the high-fluoride groundwater in Taiyuan basin, China. In the study area, the spatial distribution of the high-fluoride groundwater are strictly controlled by the host rock and geomorphic conditions. Three types of groundwater with the F concentration of <1.5 mg/L, 1.5–2 mg/L and >2 mg/L are located in the areas bordering the limestone zones, in the areas bordering the sandstone of Permian and Carboniferous, and in the depressions of the central parts of the basin, respectively. The high-fluoride groundwater mostly have the high values of TDS, and its values of pH range from 7.2 to 8.8. The most common water types of the high-fluoride groundwater are Na·Ca–HCO3 and Na·Mg–HCO3. The geochemical mode reveals that the dissolution of the fluorine-containing minerals and the evaporation effect of the shallow groundwater control the evolution of high F concentration in Taiyuan basin.  相似文献   

4.
Fluoride (F?) has significant impacts on human health. High fluoride groundwater (up to 1.90 mg/L) has been found in upper confined aquifer underlying the first terrace of Weihe River during a hydrogeological investigation for water supply in 2005. To reveal the occurrence and hydrogeochemistry of high F? groundwater, hydrogeochemical tools such as saturation index, ionic ratios and correlation analysis were used in this study. The study shows that the concentrations of most physiochemical parameters from phreatic water, influenced by intensive evaporation and anthropogenic activities such as unregulated sewage and excreta disposal and agricultural practices in the area, are higher than those of confined water. The F? concentration in phreatic water is within the acceptable limits set by China and the World Health Organization (WHO), while that of upper confined water shows a decreasing trend northwestward as the Weihe River approaches, with F? concentration in the first terrace beyond the national and the WHO standards. High F? groundwater is observed in alkaline environment associated with high Na+, pH, HCO3 ? and low Ca2+ and Mg2+. The enrichment of F? is controlled by geologic and hydrogeological conditions, fluorine-bearing minerals presented in alluvial formations and their dissolution/precipitation under the alkaline environment along groundwater flow. Ion exchange, human activities and the mixing of different recharge waters may influence the enrichment of F? as well.  相似文献   

5.
Fluoride in drinking water has both beneficial and detrimental effects on public health, and a narrow range between .6 and 1.5 mg/L is optimal for consumption. However, natural groundwater sources exceed these guidelines affecting the entire population. This study aims to assess the distribution and controlling factors of fluoride concentration in the Tamiraparani River basin, South India. A total of 124 groundwater samples were analyzed for their fluoride content and other hydrogeochemical parameters. The fluoride concentration in the study area varied from .01 to 1.67 mg/L, and the highest concentrations were measured in the northern and central parts of the study area, which is underlain by charnockites and hornblende biotite gneiss. The sampling indicated (as per the Bureau of Indian Standards) that 53.9% of the area has fluoride concentrations below levels that are protective of teeth from dental caries (<.6 mg/L). .1% of the area is considered to be at risk of dental fluorosis, and the remaining 46% of the area is considered to have fluoride levels at desirable to permissible limit in groundwater. The groundwater in the study area belongs to Ca–Mg–Cl–SO4 and Ca–Mg–HCO3 types. A positive correlation between fluoride and TDS, Na+, K+ and HCO3 ? indicates its geogenic origin, and positive loading between pH and fluoride shows that alkaline environment enhances the dissolution of fluoride-bearing minerals into the groundwater. An empirical Bayesian kriging model was applied to interpolate the fluoride concentration in the study area. This geostatistical model is found to be better than other kriging methods, and it yielded an average standard error of .332 and root-mean-square standardized value of .986.  相似文献   

6.
An investigation was conducted to assess the hydrogeochemical processes of an alluvial channel aquifer located in a typical Karoo Basin of Southern Africa. The investigation was aimed at identifying and describing the groundwater chemistry evolution and its contribution to the overall groundwater quality. X-ray fluorescent spectrometry (XRF) and X-ray diffractometry (XRD) analyses were performed on geological samples to identify and quantify the major element oxides and minerals. The study utilises the conventional Piper diagram, bivariate plots and PHREEQC hydrogeochemical model to analyse groundwater chemistry data obtained during the wet (February and May) and dry seasons (August and December) of 2011. The XRF and XRD results show that the channel deposits are dominated by SiO2 element oxides and quartz minerals, thus elevated concentrations of silicon (Si4+) were found in the groundwater. Dolomite and calcite minerals were also detected in the unconsolidated aquifer sediments. The detailed study of the alluvial aquifer system has shown that dissolution of dolomite and calcite minerals and ion exchange are the dominant hydrogeochemical processes influencing the groundwater quality. The groundwater evolves from Ca2+–Mg2+–HCO3 ? recharge water that goes through ion exchange with Na+ in the clay-silt sediment to give a Na+–HCO3 ? water type. The groundwater is supersaturated with respect to quartz, dolomite and calcite minerals. The study shows the potential usefulness of simple bivariate plots as a complimentary tool to the conventional methods for analyzing groundwater hydrogeochemical processes.  相似文献   

7.
178 groundwater and surface waters have been sampled from April to September 1994 in an endoreic basin located in the N of Mexico (Comarca Lagunera). In this area, groundwater has been exploited over the past century mainly for irrigation and cattle supply. Recent intensive pumping has caused the lowering of the water table at a rate of 1 m a−1 Chemical analyses have been performed on all collected samples and 37 of them have been selected for isotopic measurements (18O,2H,13C and14C). Water stable isotope contents (18O,2H) show an increasing evaporation of the groundwater towards the Nazas river. They also indicate that the recharge occurs from the Nazas river and from the mountains surrounding the depression (Sierra Madre Occidental). Water presents a large spatial variability of the chemical facies (SO4Ca, SO4ClNa, HCO3-Ca and HCO3-Na) which is in relation with (i) their interaction with the geological formations of the basin (carbonates, gypsum and various silicates) and (ii) evaporation. This evaporation occurs in the upper part of the unsaturated zone during infiltration especially for the groundwater sampled near the Nazas river. The14C activity varies between 110.4 (± 1.1) and 4.0 (±0.2) pmc. The13C contents of the total dissolved inorganic C (TDIC) range between −11.0 and −3.6‰. The calculated13C contents of the CO2 in equilibrium with the TDIC, varying between −18.4%0 to −10.9% indicate two origins of C in solution: the carbonate matrix (δ13C= +0.9‰) and the soil CO2 (δ13C from −27.7‰ to −21.7‰ for the cultivated areas). Mean residence times have been determined after correction of the initial activities for dead C from the rock matrix. The mean residence times confirm a modern recharge of the groundwater from the Nazas and indicate the presence of palaeowaters in the northern and southern parts of the basin (up to 30 ka BP).  相似文献   

8.
Fluoride (F?) is essential for normal bone growth, but higher concentration in the drinking water causes health problems which are reported in many states of India. Andhra Pradesh is one of the states which suffer from excess fluoride in groundwater particularly in the hard rock terrain. In this context, a study was conducted in Andhra Pradesh based on chemical analysis of water samples from hydrograph net work stations (dug wells) and exploratory bore wells. The concentration of fluoride in groundwaters ranges from traces to 9.75 mg/l. The occurrence of fluoride is mostly sporadic, uneven and varies with depth. The highly affected districts include Nalgonda and Warangal in Telangana region, Prakasam in coastal region, Anantapur and Kurnool in Rayalaseema region. In certain areas of Nalgonda district, 85% of wells have fluoride more than permissible limit (> 1.5 mg/l) for drinking water. High F? is present in all the geological formations, predominantly in granitic aquifers, compared to the other formations. The average value of fluoride is high in the deeper zone (1.10 mg/L), compared to the shallow zone (0.69 mg/L). The fluoride-rich minerals present are the main sources for fluoride concentrations in groundwater. Residence time, evapotranspiration and weathering processes are some of the other supplementary factors for high fluoride concentrations in groundwater. Long-term data of hydrograph net work stations (dug wells) reveal that fluoride concentrations do not show any marked change of trend with respect to time. The concentration of fluoride is found to increase with increase of Na+and HCO 3 ? , and decrease with increase of Ca2+. Sodium bicarbonate waters are more effective in releasing fluoride from minerals into groundwater. High fluoride waters are of Na+ type. The paper presents a brief account of the study and its results.  相似文献   

9.
Datong Basin is one of the Cenozoic faulted basins in Northern China’s Shanxi province, where groundwater is the major source of water supply. The results of hydrochemical investigation show that along the groundwater flow path, from the margins to the lower-lying central parts of the basin, groundwater generally shows increases in concentrations of TDS, HCO3 ?, SO4 2?, Cl?, Na+ and Mg2+ (except for Ca2+ content). Along the basin margin, groundwater is dominantly of Ca–HCO3 type; however, in the central parts of the basin it becomes more saline with Na–HCO3-dominant or mixed-ion type. The medium-deep groundwater has chemical compositions similar to those of shallow groundwater, except for the local area affected by human activity. From the mountain front to the basin area, shallow groundwater concentrations of major ions increase and are commonly higher than those in medium-deep aquifers, due to intense evapotranspiration and anthropogenic contamination. Hydrolysis of aluminosilicate and silicate minerals, cation exchange and evaporation are prevailing geochemical processes occurring in the aquifers at Datong Basin. The isotopic compositions indicate that meteoric water is the main source of groundwater recharge. Evaporation is the major way of discharge of shallow groundwater. The groundwater in medium-deep aquifers may be related to regional recharges of rainwater by infiltrating along the mountain front faults, and of groundwater permeating laterally from bedrocks of the mountain range. However, in areas of groundwater depression cones, groundwater in the deep confined aquifers may be recharged by groundwater from the upper unconfined aquifer through aquitards.  相似文献   

10.
The Heihe River Basin is a typical arid inland river basin for examining stress on groundwater resources in northwest China. The basin is composed of large volumes of unconsolidated Quaternary sediments of widely differing grain size, and during the past half century, rapid socio-economic development has created an increased demand for groundwater resources. Understanding the hydrogeochemical processes of groundwater and water quality is important for sustainable development and effective management of groundwater resources in the Heihe River basin. To this end, a total of 30 representative groundwater samples were collected from different wells to monitor the water chemistry of various ions and its quality for irrigation. Chemical analysis shows that water presents a large spatial variability of chemical facies (SO4 2−–HCO3, SO4 2−–Cl, and Cl–SO4 2−) as groundwater flow from recharge area to discharge area. The ionic ratio indicates positive correlation between the flowing pairs of parameters: Cl and Na+(r = 0.95), SO4 2− and Na+ (r = 0.84), HCO3 and Mg2+(r = 0.86), and SO4 2− and Ca2+ (r = 0.91). Dissolution of minerals, such as halite, gypsum, dolomite, silicate, and Mirabilite (Na2SO4·10H2O) in the sediments results in the Cl, SO4 2−, HCO3 , Na+, Ca2+ and Mg2+ content in the groundwater. Other reactions, such as evaporation, ion exchange, and deposition also influence the water composition. The suitability of the groundwater for irrigation was assessed based on the US Salinity Laboratory salinity classification and the Wilcox diagram. The results show that most of the groundwater samples are suitable for irrigation uses barring a few locations in the dessert region in the northern sub-basin.  相似文献   

11.
This work addresses hydrogeochemical processes in shallow aquifers, represented by the Quaternary alluvial deposits, from a part of the semi-arid Mexican Highlands through the evaluations of physicochemical parameters as well as the δ18O and δ2H compositions of groundwater. Mifflin diagram separates the Na-bicarbonate, sulphate and mixed groundwater into one group showing interactions with volcanic lithology in the recharge zones and another group interacting with the evaporite rich sedimentary formation. In the Gibbs diagram, the samples with Cl?/(Cl? + HCO3?) < 0.4 showed higher influence of ion exchange and the samples with Cl?/(Cl? + HCO3?) > 0.4 showed higher effects of evaporation. All of them were oversaturated with carbonate minerals (i.e., calcite and dolomite) and unsaturated with evaporites (i.e., gypsum and halite). Evaporation (earlier stage) occurred before the water-rock interactions (later stage). Evolution occurs through three different routes such as up to 7.5‰ enrichment in δ18O caused by the infiltration with a certain delay and subsequently, the water-rock interaction became dominant. Ternary mixing models revealed dominant influence of local recharge (C1) on the water system, contributing 70.4%. Water-rock interaction (C3) with 18% and evaporation (C2) with 11.6% had comparatively less influences. The presence of nitrate (2–60 mg/L) in the groundwater indicated variable degrees of anthropogenic pollution.  相似文献   

12.
Presence of fluoride in groundwater is a public health problem in the so-called endemic fluorosis belt of the central Iran, where the groundwater is the major source of drinking water in most urban and rural areas. Therefore, an attempt has been made to determine the hydrogeochemical factors controlling fluoride enrichment in the groundwater resources at this belt. Fluoride concentrations ranged from 0.20 to 1.99 mg/L (1.02 ± 0.47) in groundwater samples. The presence of different F-bearing minerals and also clay minerals in the soils and aquifer materials was confirmed using XRD analysis. To identify probable sources of dissolved F? and investigate groundwater quality, multivariate statistical analyses were carried out. Geochemical modeling indicated that all samples were undersaturated with respect to fluorite, halite, gypsum and anhydrite and mostly oversaturated with respect to calcite and dolomite. Contrary to most high-fluoride regions in the World, the high F? content was dominated by Na–Cl- and Ca–SO4-type groundwater in the study area. Besides, fluoride showed negative relationship with pH and HCO3 ? in groundwater. In order to assess the bioavailability of fluoride in soils, a two-step chemical fractionation method was applied. The results showed that fluoride in soils mostly accompanied with the residual and water-soluble fractions and was poorly associated with soil’s bonding sites. Calculated aqueous migration coefficient demonstrated that fluoride in the studied soils was mobile to easily leachable to the groundwater. Finally, the results demonstrated that combination of water–rock interaction and influence of clay minerals is geochemical mechanism responsible for controlling fluoride enrichment in groundwater.  相似文献   

13.
One hundred forty-eight groundwater samples were collected from the lower part of Wadi Siham catchment area for hydrogeochemical investigations to understand the hydrogeochemical processes affecting groundwater chemistry and their relation with groundwater quality. Groundwater in the study area is abstracted from different aquifers. The study area is characterized by arid climate and extremely high relative humidity. The results indicate that groundwater in the study area is fresh to brackish in nature. The abundance of the major ions is as follows: Na+1?>?Ca+2?>?Mg+2?≥?K+1 and Cl?1?>?HCO 3 ?1 ?>?SO 4 ?2 ?>?NO 3 ?1 . Various graphical and ionic ration plots, statistical analyses, and saturation indices calculations have been carried out using chemical data to deduce a hydrochemical evaluation of the study area. The prevailing hydrogeochemical processes operating in the study area are dissolution, mixing, evaporation, ion exchange, and weathering of silicate minerals in the eastern part (recharge areas). The reverse ion exchange and seawater intrusion control the groundwater chemistry along the Red Sea coast areas and few parts of the study area. Deterioration in groundwater quality from anthropogenic activities has resulted from saltwater intrusion along the coastal areas due to groundwater overpumping and extensive use of fertilizers and infiltration of sewage water. Salinity and nitrate contamination are the two major problems in the area, which is alarming considering the use of this water for drinking.  相似文献   

14.
A total of 194 groundwater samples were collected from wells in hard rock aquifers of the Medak district, South India, to assess the distribution of fluoride in groundwater and to determine whether this chemical constituent was likely to be causing adverse health effects on groundwater user in the region. The study revealed that the fluoride concentration in groundwater ranged between 0.2 and 7.4 mg/L with an average concentration of 2.7 mg/L. About 57% of groundwater tested has fluoride concentrations more than the maximum permissible limit of 1.5 mg/L. The highest concentrations of fluoride were measured in groundwater in the north-eastern part of the Medak region especially in the Siddipeta, Chinnakodur, Nanganoor and Dubhaka regions. The areas are underlain by granites which contain fluoride-bearing minerals like apatite and biotite. Due to water–rock interactions, the fluoride has become enriched in groundwater due to the weathering and leaching of fluoride-bearing minerals. The pH and bicarbonate concentrations of the groundwater are varied from 6.6 to 8.8 and 18 to 527 mg/L, respectively. High fluoride concentration in the groundwater of the study area is observed when pH and the bicarbonate concentration are high. Data plotted in Gibbs diagram show that all groundwater samples fall under rock weathering dominance group with a trend towards the evaporation dominance category. An assessment of the chemical composition of groundwater reveals that most of the groundwater samples have compositions of Ca2+–Mg2+–Cl? > Ca2+–Na+–HCO3 ? > Ca2+–HCO3 ? > Na+–HCO3 ?. This suggests that the characteristics of the groundwater flow regime, long residence time and the extent of groundwater interaction with rocks are the major factors that influence the concentration of fluoride. It is advised not to utilize the groundwater for drinking purpose in the areas delineated, and they should depend on alternate safe source.  相似文献   

15.
In order to assess the impact of fluoride-rich groundwater of Shasilair Vagu watershed on groundwater regime, more than hundred groundwater samples for pre- and post-monsoon seasons were collected from bore wells/dug wells and analyzed for major ions. Water quality analysis of major ion chemistry shows elevated concentration of fluoride in groundwater samples. The fluoride concentration ranges from 1.4 to 5.9 mg/l and 1.5 to 5.8 mg/l in pre- and post-monsoons, respectively. The result clearly shows that the seasonal variation of fluoride in groundwater is due to recharge of rain water during monsoon. The water quality data was analyzed by hydrochemical facies (Piper diagram), Gibbs plot, and various plots. Plots of Na versus Cl, Ca versus SO4, and (Na+Cl)-(SO4+HCO3) versus (Na+K-Cl) shows positive and negative values, indicating that their source of high concentration are aquifer, evapotranpiration, and other anthropogenic sources. Saturation index of halite and gypsum shows that all groundwater samples were undersaturated and suggests that carbonate minerals influence the concentration. Using multivariate statistical techniques, viz., principal component (factor analysis and cluster analysis), the analysis brought out impact of intensity of excess use of fertilizers and excess withdrawal of groundwater regime. Multivariate statistical techniques are potential tools and provide greater precision for identifying contaminant parameter linkages.  相似文献   

16.
The Ordos Basin of China encompasses Shaanxi, Gansu, and Shanxi provinces, Ningxia and Inner Mongolia autonomous regions. It lacks significant surface water resources. Among the water-bearing formations, the Luohe formation, with an area of 1.32×105 km2, is the most prospective aquifer. Groundwater quality data collected at 211 boreholes drilled into the Luhe formation indicate a complex distribution of groundwater chemistry. The hydrochemical properties were used to study the recharge, runoff, and discharge conditions of the groundwater in Ordos Basin and to evaluate sustainable groundwater resources. In the northern part of the basin, the hydrochemistry types and the total dissolved solids (TDS) show a clear lateral transition from SEE to NWW, indicating that the groundwater gets recharge in the northwest region and discharges in the southeast region. In the southern part of the basin, maximum TDS occurs at the center of the Malian River valley, from which the TDS decreases radially. Therefore, the groundwater in the southern basin gets recharge from the southeast and southwest regions, and the Malian River valley is the discharge zone. As a result of this research, the areas with portable groundwater were delineated. They include most of the southeast region of the Sishili Ridge, east of the Ziwu Mountain, and the southwest corner of the basin. The TDS of the groundwater in these regions is less than 1 g/l, and the hydrochemistry type is either HCO3 or HCO3·SO4.  相似文献   

17.
Located in semi-arid regions of northwestern China, Datong basin is a Quaternary sedimentary basin, where groundwater is the most important source for water supply. It is very important to study groundwater characteristics and hydrogeochemical processes for better management of the groundwater resource. We have identified five geochemical zones of shallow groundwater (between 5 and 80 m) at Datong: A. Leaching Zone (Zone I); B. Converging Zone (Zone II); C. Enriching Zone (Zone III); D. Reducing Zone (Zone IV); E. Oxidizing Zone (Zone V). In Zones I, II, and V and some parts of Zones III and IV, hydrolysis of albite/K-feldspar/chalcedony system and/or albite/K-feldspar/quartz system enhanced concentrations of Na+, K+, HCO3 and silicate. In Zone I, dissolution of carbonate and hydrolysis of feldspar generally controlled the groundwater chemistry. Infiltration of meteoric water promoted the formation of HCO3 in the water. In Zone II, the main geochemical processes influencing the groundwater chemistry were dissolutions of calcite and dolomite, ion exchange and evaporation. In Zones III and IV, in addition to ion exchange, evaporation and precipitation of calcite and dolomite, leaching of NaHCO3 in saline–alkaline soils dominated the water quality. Zone IV was under anoxic condition, and reduction reactions led to the decrease of SO42−, NO3 and occurrence of H2S, with the highest arsenic content (mean value of 366 μg/L), far exceeding Maximum Contaminant Level (MCL). Abnormal arsenic in the groundwater resulted in endemic disease of waterborne arsenic poisoning among local people. Zone V overlapped Zone I was intensively affected by coal mining activities. Sulfide minerals, such as pyrite, would have been oxidized when exposed to air due to coal mining, which directly added sulfate to groundwater and thus increased SO42− concentration. Oxidization of sulfide minerals also decreased pH and promoted dissolutions of calcite and dolomite.  相似文献   

18.
Geochemical processes that take place in the aquifer have played a major role in spatial and temporal variations of groundwater quality. This study was carried out with an objective of identifying the hydrogeochemical processes that controls the groundwater quality in a weathered hard rock aquifer in a part of Nalgonda district, Andhra Pradesh, India. Groundwater samples were collected from 45 wells once every 2 months from March 2008 to September 2009. Chemical parameters of groundwater such as groundwater level, EC and pH were measured insitu. The major ion concentrations such as Ca2+, Mg2+, Na+, K+, Cl, and SO4 2− were analyzed using ion chromatograph. CO3 and HCO3 concentration was determined by acid–base titration. The abundance of major cation concentration in groundwater is as Na+ > Ca2+ > Mg2+ > K+ while that of anions is HCO3  > SO4 2− > Cl > CO3 . Ca–HCO3, Na–Cl, Ca–Na–HCO3 and Ca–Mg–Cl are the dominant groundwater types in this area. Relation between temporal variation in groundwater level and saturation index of minerals reveals the evaporation process. The ion-exchange process controls the concentration of ions such as calcium, magnesium and sodium. The ionic ratio of Ca/Mg explains the contribution of calcite and dolomite to groundwater. In general, the geochemical processes and temporal variation of groundwater in this area are influenced by evaporation processes, ion exchange and dissolution of minerals.  相似文献   

19.
The groundwaters from Zhongxiang City, Hubei Province of central China, have high fluoride concentration up to 3.67 mg/L, and cases of dental fluorosis have been found in this region. To delineate the nature and extent of high fluoride groundwaters and to assess the major geochemical factors controlling the fluoride enrichment in groundwater, 14 groundwater samples and 5 Quaternary sediment samples were collected and their chemistry were determined in this study. Some water samples from fissured hard rock aquifers and Quaternary aquifers have high fluoride concentrations, whereas all karst water samples contain fluoride less than 1.5 mg/L due to their high Ca/Na ratios. For the high fluoride groundwaters in the fissured hard rocks, high HCO3 concentration and alkaline condition favor dissolution of fluorite and anion exchange between OH in groundwater and exchangeable F in some fluoride-bearing minerals. For fluoride enrichment in groundwaters of Quaternary aquifers, high contents of fluoride in the aquifer sediments and evapotranspiration are important controls.  相似文献   

20.
Groundwater is the most important source of water supply in the Yeniceoba Plain in Central Anatolia,Turkey.An understanding of the geochemical evolution of groundwater is important for the sustainable development of water resources in this region.A hydrogeochemical investigation was conducted in the Plio-Quaternary aquifer system using stable isotopes(δ~(18)O andδD),tritium(~3H),major and minor elements(Ca,Na,K,Mg,Cl,SO_4,NO_3,HCO_3 and Br)in order to identify groundwater chemistry patterns and the processes affecting groundwater mineralization in this system.The chemical data reveal that the chemical composition of groundwater in this aquifer system is mainly controlled by rock/water interactions including dissolution of evaporitic minerals,weathering of silicates,precipitation/dissolution of carbonates,ion exchange,and evaporation.Based on the values of Cl/Br ratio(300 mg/l)in the Plio-Quaternary groundwater,dissolution of evaporitic minerals in aquifer contributes significantly to the high mineralization.The stable isotope analyses indicate that the groundwater in the system was influenced by evaporation of rainfall during infiltration.Low tritium values(generally1 tritium units)of groundwater reflect a minor contribution of recent recharge and groundwater residence times of more than three or four decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号