首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vulcanian eruptions are common at many volcanoes around the world. Vulcanian activity occurs as either isolated sequences of eruptions or as precursors to sustained explosive events and is interpreted as clearing of shallow plugs from volcanic conduits. Breadcrust bombs characteristic of Vulcanian eruptions represent samples of different parts of these plugs and preserve information that can be used to infer parameters of pre-eruption magma ascent. The morphology and preserved volatile contents of breadcrust bombs erupted in 1999 from Guagua Pichincha volcano, Ecuador, thus allow us to constrain the physical processes responsible for Vulcanian eruption sequences of this volcano. Morphologically, breadcrust bombs differ in the thickness of glassy surface rinds and in the orientation and density of crack networks. Thick rinds fracture to create deep, widely spaced cracks that form large rectangular domains of surface crust. In contrast, thin rinds form polygonal networks of closely spaced shallow cracks. Rind thickness, in turn, is inversely correlated with matrix glass water content in the rind. Assuming that all rinds cooled at the same rate, this correlation suggests increasing bubble nucleation delay times with decreasing pre-fragmentation water content of the melt. A critical bubble nucleation threshold of 0.4–0.9 wt% water exists, below which bubble nucleation does not occur and resultant bombs are dense. At pre-fragmentation melt H2O contents of >∼0.9 wt%, only glassy rinds are dense and bomb interiors vesiculate after fragmentation. For matrix glass H2O contents of ≥1.4 wt%, rinds are thin and vesicular instead of thick and non-vesicular. A maximum measured H2O content of 3.1 wt% establishes the maximum pressure (63 MPa) and depth (2.5 km) of magma that may have been tapped during a single eruptive event. More common H2O contents of ≤1.5 wt% suggest that most eruptions involved evacuation of ≤1.5 km of the conduit. As we expect that substantial overpressures existed in the conduit prior to eruption, these depth estimates based on magmastatic pressure are maxima. Moreover, the presence of measurable CO2 (≤17 ppm) in quenched glass of highly degassed magma is inconsistent with simple models of either open- or closed-system degassing, and leads us instead to suggest re-equilibration of the melt with gas derived from a deeper magmatic source. Together, these observations suggest a model for the repeated Vulcanian eruptions that includes (1) evacuation of the shallow conduit during an individual eruption, (2) depressurization of magma remaining in the conduit accompanied by open-system degassing through permeable bubble networks, (3) rapid conduit re-filling, and (4) dome formation prior to the subsequent explosion. An important part of this process is densification of upper conduit magma to allow repressurization between explosions. At a critical overpressure, trapped pressurized gas fragments the nascent impermeable cap to repeat the process.  相似文献   

2.
A type example of Vulcanian eruptive dynamics is the series of 88 explosions that occurred between August and October 1997 at Soufrière Hills volcano on Montserrat Island. These explosions are interpreted to be caused by the pressurization of a conduit by a shallow highly crystalline and degassed magma plug. We test such an interpretation by combining the pressures and porosities of the pre-explosive magma column proposed by Burgisser et al. (2010, doi:10.1016/j.jvolgeores.2010.04.008) into a physical model that reconstructs a depth-referenced density profile of the column for four mechanisms of pressure buildup. Each mechanism yields a different overpressure profile: 1) gas accumulation, 2) conduit wall elasticity, 3) microlite crystallization, and 4) magma flowage. For the first three mechanisms, the three-part vertical layering of the conduit prior to explosion was spatially distributed as a dense cap atop the conduit with a thickness of a few tens of meters, a transition zone of 400–700 m with heterogeneous vesicularities, and, at greater depth, a more homogeneous, low-porosity zone that brings the total column length to ~ 3.5 km. A shorter column can be obtained with mechanism 4: a dense cap of less than a few meters, a heterogeneous zone of 200–500 m, and a total column length as low as 2.5 km. Inflation/deflation cycles linked to a periodic overpressure source offer a dataset that we use to constrain the four overpressure mechanisms. Magma flowage is sufficient to cause periodic edifice deformation through semi-rigid conduit walls and build overpressures able to trigger explosions. Gas accumulation below a shallow plug is also able to build such overpressures and can occur regardless of magma flowage. The concurrence of these three mechanisms offers the highest likelihood of building overpressures leading to the 1997 explosion series. We also explore the consequences of sudden (eruptive) overpressure release on our magmatic columns to assess the role of syn-explosive vesiculation and pre-fragmentation column expansion. We find that large shallow overpressures and efficient syn-explosive vesiculation cause the most dramatic pre-fragmentation expansion. This leads us to depict two end-member pictures of a Vulcanian explosion. The first case corresponds to the widely accepted view that the downward motion of a fragmentation front controls column evacuation. In the second case, syn-explosive column expansion just after overpressure release brings foamed-up magma up towards an essentially stationary and shallow fragmentation front.  相似文献   

3.
Long-period seismicity during magma movement at Volcán de Colima   总被引:1,自引:1,他引:0  
During the period from February to September 2005, Volcán de Colima produced 30 Vulcanian explosions of sufficient magnitude to produce pyroclastic flows of variable size, with a total volume of at least 2.5 × 106 m3. Swarms of long-period events were associated with each event, their duration ranging from about 6 h to 3 days and each swarm containing up to 886 events. The characteristics of the swarms have been studied to understand the source mechanism and their relationship with the Vulcanian explosions. In total, 12,548 long-period events were analysed using various comparative and statistical methods. Patterns were not apparent in the data with no correlation between different properties of the swarms (duration, magnitude or frequency of occurrence of LP events) and the magnitude of the associated Vulcanian explosion, whether recorded by seismicity, volume of pyroclastics or altitude of the eruption column. This, along with other characteristics of the swarms, such as the continuation of the swarm after the explosion, with an increase in long-period event amplitude in some cases, suggests that the mechanism is not merely associated with the pressurization under an impermeable cap and resulting pressure differentials between adjacent volumes within the system. It is more likely that the production of long-period events is dominated by brittle fracturing on the margins of an ascending magma body. A model is proposed whereby the unloading above the ascending magma column produced by a Vulcanian explosion resulted in an increase in ascent rate, reflected in the increasing amplitude of long-period events. The results reflect the complexity of non-linear processes involved during magma ascent, degassing, crystallization and rupture of the impermeable plug during the Vulcanian process. At Volcán de Colima, as at many volcanoes, long-period events represent a useful precursor for eruptive activity. For monitoring, this paper highlights some useful analyses that can be carried out, which could illustrate certain characteristics of an eruptive episode. A preliminary model is presented of the conduit processes at work during the cyclic extrusive and explosive activity during 2005.  相似文献   

4.
Eruptions of Mount St Helens (Washington, USA) decreased in intensity and explosivity after the main May 18, 1980 eruption. As the post-May 18 eruptions progressed, albitic plagioclase microlites began to appear in the matrix glass, although the bulk composition of erupted products, the phenocryst compositions and magmatic temperatures remained fairly constant. Equilibrium experiments on a Mount St Helens white pumice show that at 160 MPa water pressure and 900°C, conditions deduced for the 8 km deep magma storage zone, the stable plagioclase is An47. The microlites in the natural samples, which are more albitic, had to grow at lower water pressures during ascent. Isothermal decompression experiments reported here demonstrate that a decrease in water pressure from 160 to 2 MPa over four to eight days is capable of producing the albitic groundmass plagioclase and evolved melt compositions observed in post-May 18 1980 dacites. Because groundmass crystallization occurs over a period of days during and after decreases in pressure, microlite crystallization in the Mount St Helens dacites must have occurred during the ascent of each magma batch from a deep reservoir rather than continuously in a shallow holding chamber. This is consistent with data on the kinetics of amphibole breakdown, which require that a significant portion of magma vented in each eruption ascended from a depth of at least 6.5 km (160 MPa water pressure) in a matter of days. The size and shape of the microlite population have not been studied because of the small size of the experimental samples; it is possible that the texture continues to mature long after chemical equilibrium is approached. As the temperature, composition, crystal content and water content of magma in the deep reservoir remained approximately constant from May 1980 to at least March 1982, the spectacular decrease in eruption intensity during this period cannot be attributed to changes in viscosity or density of the magma. Simple fluld mechanical considerations indicate, however, that the observed changes in mass flux of magma can be modelled by a five-fold decrease in conduit radius from 35 to 7 m, produced perhaps by plating of magma along the conduit walls. The decreased ascent rates which accompanied the decrease in conduit radius can explain the change from closed-system to open-system degassing and the shift from explosive to effusive eruptions during 1980.  相似文献   

5.
The mechanics of explosive eruptions influence magma ascent pathways. Vulcanian explosions involve a stop–start mechanism that recurs on various timescales, evacuating the uppermost portions of the conduit. During the repose time between explosions, magma rises from depth and refills the conduit and stalls until the overpressure is sufficient to generate another explosion. We have analyzed major elements, Cl, S, H2O, and CO2 in plagioclase-hosted melt inclusions, sampled from pumice erupted during four vulcanian events at Soufrière Hills volcano, Montserrat, to determine melt compositions prior to eruption. Using Fourier transform infrared spectroscopy, we measured values up to 6.7 wt.% H2O and 80 ppm CO2. Of 42 melt inclusions, 81 % cluster between 2.8 and 5.4 wt.% H2O (57 to 173 MPa or 2–7 km), suggesting lower conduit to upper magma reservoir conditions. We propose two models to explain the magmatic conditions prior to eruption. In Model 1, melt inclusions were trapped during crystal growth in magma that was stalled in the lower conduit to upper magma reservoir, and during trapping, the magma was undergoing closed-system degassing with up to 1 wt.% free vapor. This model can explain the melt inclusions with higher H2O contents since these have sampled the upper parts of the magma reservoir. However, the model cannot explain the melt inclusions with lower H2O because the timescale for plagioclase crystallization and melt inclusion entrapment is longer than the magma residence time in the conduit. In Model 2, melt inclusions were originally trapped at deeper levels of the magma chamber, but then lost hydrogen by diffusion through the plagioclase host during periodic stalling of the magma in the lower conduit system. In this second scenario, which we favor, the melt inclusions record re-equilibration depths within the lower conduit to upper magma reservoir.  相似文献   

6.
Equilibrium and disequilibrium degassing of a volatile phase from a magma of K-phonolitic composition was investigated to assess its behavior upon ascent. Decompression experiments were conducted in Ar-pressurized externally heated pressure vessels at superliquidus temperature (1050 °C), in the pressure range 10–200 MPa using pure water as fluid phase. All experiments were equilibrated at 200 MPa and then decompressed to lower pressures with rates varying from 0.0028 to 4.8 MPa/s. Isobaric saturation experiments were performed at the same temperature and at 900–950 °C to determine the equilibrium water solubility in the pressure range 30–250 MPa. The glasses obtained from decompression experiments were analyzed for their dissolved water content, vesicularity and bubble size distribution. All decompressed samples presented a first event of bubble nucleation at the capsule–melt interface. Homogeneous bubble nucleation in the melt only occurred in fast-decompressed experiments (4.8 and 1.7 MPa/s), for ΔP ≅ 100 MPa. For these decompression rates high water over-saturations were maintained until a rapid exsolution was triggered at ΔP > 150 MPa. For slower rates (0.0028, 0.024, 0.17 MPa/s) the degassing of the melt took place by diffusive growth of the bubbles nucleating at the capsule–melt interface. This process sensibly reduced water over-saturation in the melt, preventing homogeneous nucleation to occur. For decompression rates of 0.024 and 0.17 MPa/s low water over-saturations were attained in the melt, gradually declining toward equilibrium concentrations at low pressures. A near-equilibrium degassing path was observed for a decompression rate of 0.0028 MPa/s. Experimental data combined with natural pumice textures suggest that both homogeneous and heterogeneous bubble nucleations occurred in the phonolitic magma during the AD 79 Vesuvius plinian event. Homogeneous bubble nucleation probably occurred at a depth of ∼ 3 km, in response to a fast decompression of the magma during the ascent.  相似文献   

7.
The 1982–1983 eruptions of Galunggung represent a nine-month period of intermittent volcanic activity with significant changes in explosivity and emission of volatiles. Eruptions started with Vulcanian explosions but changed gradually to Strombolian activity. Compositions of juvenile material changed from basaltic andesite to high-Mg basalt, which are among the most primitive rock types known in the Indonesian arc system. Although bulk compositions suggest a single evolution trend, we infer from the compositions of melt inclusions in olivine phenocrysts that the magmas represent derivatives of a complex spectrum of primary melts. Primitive inclusions in olivine phenocrysts from magma erupted during the Strombolian phase contain up to 2000 ppm sulfur, but concentrations decrease rapidly with increasing SiO2 down to matrix glass values (50–100 ppm). ‘Vulcanian’ inclusions appear to be degassed before eruption (200 ppm S). Chlorine concentrations increase from 750 to 2200 ppm in Strombolian, and from 800 to 1500 in Vulcanian magmas, whereas matrix glass contains about 1000 ppm in both cases. Ash leachates show two cycles of decreasing S/Cl ratios: from 9.7 to 5.6 at the start of the activity, and from 12.2 to 2.0 after four months. As the second cycle follows upon increased seismic activity at shallow depth, it probably reflects degassing of fresh sulfur-rich magma arriving in the shallow Galunggung reservoir. In contrast to the degassed state of Vulcanian magma, the significant amounts of adsorbed sulfur on the ashes point to an excess source of sulfur, which was most likely derived from intruding Strombolian magma. Hence, the observed sulfur flux of 2 Mt is not in accordance with a petrologic estimate of 0.09 Mt. Using a published value of 550 Mt of erupted material about 0.34 km3 fresh undegassed magma is needed to account for the observed sulfur flux. This is close to the erupted volume of Vulcanian magma (0.26 km3), which presumably was replaced completely by Strombolian magma during the eruption. Using the petrologic method, we calculate a total release of 0.3 Mt chlorine, which agrees well with an output of 0.47 Mt estimated independently from S/Cl ratios of the ash leachates and TOMS sulfur yields. Ash leachates show that about 35% of the sulfur and 30% of the chlorine was scavenged from the eruption plumes. Our results suggest that sulfur and chlorine were largely decoupled during degassing, which resulted in considerable variations in S/Cl ratios during the Galunggung eruptions. We infer that sulfur degassing reflects the arrival of fresh magma at shallow depth, whereas chlorine is largely derived from simultaneously erupted material. As a consequence, the petrologic estimates are more consistent with observed emissions for chlorine than for sulfur.  相似文献   

8.
Gas emissions from Erebus volcano, Antarctica, were measured by open-path Fourier transform infrared spectroscopy to understand degassing of its magmatic system. Two degassing phonolite lava lakes were present in the summit crater during observation in December 2004. We report analyses of H2O, CO2, CO, SO2, HF, HCl and OCS, (in order of molar abundance) in the plumes. Variations in the proportions of these species strongly reflect the dynamics of degassing, and sourcing of gas from different depths in the magmatic network. The highest observed ratios of CO2 and H2O are consistent with gas extracted from the melt at a depth of up to ∼ 2 km below the lava lakes. Magma degassing above this depth contributes to a higher H2O/CO2 proportion in the airborne plume. The ratio therefore reflects the balance of deeper vs. shallower contributions of volatiles and, possibly, a combination of closed- and open-system degassing. We observe a strong contrast in HF content in emissions from the two lava lakes, which we attribute to differing levels of magma ascent and/or cooling and crystallization of the magma supply. Fluxes of all gas species were determined using independent SO2 flux determinations and measured gas ratios. In the case of CO2 and water, ∼ 1 and ∼ 0.4 m3 s− 1, respectively, of parental basanite magma are required to sustain the calculated output. The discrepancy between the two figures is readily explained by sequestration of part of the magma supply at depth such that it only partially degasses its complement of water.  相似文献   

9.
Excessive degassing of Izu-Oshima volcano: magma convection in a conduit   总被引:2,自引:0,他引:2  
Excess degassing of magmatic H2O and SO2 was observed at Izu-Oshima volcano during its latest degassing activity from January 1988 to March 1990. The minimum production rate for degassed magma was calculated to be about 1×104 kg/s using emission rates of magmatic H2O and SO2, and H2O and S contents of the magma. The minimum total volume of magma degassed during the 27-month period is estimated to be 2.6×108 m3. This volume is 20 times larger than that of the magma ejected during the 1986 summit eruption. Convective transport of magma through a conduit is proposed as the mechanism that causes degassing from a magma reservoir at several kilometers depth. The magma transport rate is quantitatively evaluated based on two fluid-dynamic models: Poiseuille flow in a concentric double-walled pipe, and ascent of non-degassed magma spheres through a conduit filled with degassed magma. This process is further tested for an andesitic volcano and is concluded to be a common process for volcanoes that discharge excess volatiles.  相似文献   

10.
This paper presents the results of 7 years (Aug. 1999–Oct. 2006) of SO2 gas measurements during the ongoing eruption of Tungurahua volcano, Ecuador. From 2004 onwards, the operation of scanning spectrometers has furnished high temporal resolution measurements of SO2 flux, enabling this dataset to be correlated with other datasets, including seismicity. The emission rate of SO2 during this period ranges from less than 100 to 35,000 tonnes/day (t d− 1) with a mean daily emission rate of 1458 t d− 1 and a standard deviation of ± 2026 t d− 1. Average daily emissions during inferred explosive phases are about 1.75 times greater than during passive degassing intervals. The total amount of sulfur emitted since 1999 is estimated as at least 1.91 Mt, mostly injected into the troposphere and carried westwards from the volcano. Our observations suggest that the rate of passive degassing at Tungurahua requires SO2 exsolution of an andesitic magma volume that is two orders of magnitude larger than expected for the amount of erupted magma. Two possible, and not mutually exclusive, mechanisms are considered here to explain this excess degassing: gas flow through a permeable stagnant-magma-filled conduit and gas escape from convective magma overturning in the conduit. We have found that real-time gas monitoring contributes significantly to better eruption forecasting at Tungurahua, because it has provided improved understanding of underlying physical mechanisms of magma ascent and eruption.  相似文献   

11.
During June 1999, we measured the amplitude and rate (number of events per second) at which gas exited the vent at Stromboli volcano as discrete gas bursts or puffs. This allowed us to identify two styles of gas burst (puffing) activity. The first is characterized by frequent, rapidly rising puffs, the second by less frequent, slowly rising puffs. Each style persisted over 5–40-min-long durations and was associated with a high and low number of strombolian explosions per hour, respectively. Each period was also associated with characteristic delay times between the arrival of the infrasonic and thermal signals during strombolian explosions; the delays were longer during vigorous puffing periods. To explain our observations, we propose a model in which the degassing process cycles between vigorous and weak degassing phases. During vigorous degassing phases, bubble layers ascend the conduit at a frequency of 0.5–1.0 s−1. This high degassing level reflects a gas-rich magma column and leads to an increased rate in the formation of shallow foams and, hence, an increase in puffing and explosive activity, as well as a higher free surface level and/or gas jet velocity. During weak phases, bubble layers ascend the conduit at a reduced frequency of 0.2–0.3 s−1. During such times the magma column is poor in gas. This leads to a decreased rate of foam layer formation and hence a reduction in puffing and explosive activity, as well as a lower free surface level and/or gas jet velocity. Variations in puffing activity can thus be used to track changes in the rate at which the shallow system is supplied by fresh, gas-rich magma. Our observations indicate that the two degassing styles last from 5 to 40 min and that the switch from one to the other occurs over a matter of minutes.  相似文献   

12.
We experimentally studied the dacitic magma ejected during the first event in the Usu 2000 eruption to investigate the conditions of syneruptive magmatic ascent. Geophysical data revealed that the magma reached under West Nishiyama, the location of the event’s craters, after rising beneath the summit. Prior study of bubble-size distributions of ejecta shows two stages (stage 1 and stage 2) with different magma ascent rates, as the magma accelerated beneath West Nishiyama with the start of the second stage. To simulate ascent of stage 1 from the main reservoir, which was located at a depth of 4–6 km (125 MPa) to 2 km (50 MPa) beneath West Nishiyama, decompression experiments were conducted isothermally at 900°C following two paths. Single step decompression (SSD) samples were decompressed rapidly (0.67 MPa/s) to their final pressure and held for 12 to 144 hours. Multiple step decompression (MSD) samples were decompressed stepwise to their final pressure and quenched instantly. In MSD, the average decompression rates and total experimental durations varied between 0.01389 to 0.00015 MPa/s and 1.5 to 144 hours, respectively. Syneruptive crystallization was confined to stage 1, and the conditions of ascent were determined by documenting similarities in decompression-induced crystallization between ejecta and experiments. Core compositions, number densities, and shapes of experimental microlites indicate that ascent to 2 km depth occurred in less than 1.5 h. Volumes and number densities of experimental microlites from the SSD experiments that best replicate the decompression rate to 2 km indicate that the magma remained at 2 km for approximately 24 h before the eruption. Stagnation at a depth of 2 km corresponds with horizontal transport through a dike from beneath the summit to West Nishiyama, according to geodetic results. The total magma transport timescale including stage 2 is tens of hours and is shorter than the timescale of precursory seismicity (3.5 days), indicating that the erupted magma did not move out of the reservoir for the first 2 days. This is consistent with the temporal change in numbers of earthquakes, which reached a peak after 2 days.  相似文献   

13.
Recent stratigraphic studies at Vesuvius have revealed that, during the past 4,000 years, long lasting, moderate to low-intensity eruptions, associated with continuous or pulsating ash emission, have repeatedly occurred. The present work focuses on the AS1a eruption, the first of a series of ash-dominated explosive episodes which characterized the period between the two Subplinian eruptions of 472 AD and 1631 AD. The deposits of this eruption consist of an alternation of massive and thinly laminated ash layers and minor well sorted lapilli beds, reflecting the pulsatory injection into the atmosphere of variably concentrated ash-plumes alternating with Violent Strombolian stages. Despite its nearly constant chemical composition, the juvenile material shows variable external clast morphologies and groundmass textures, reflecting the fragmentation of a magma body with lateral and/or vertical gradients in both vesicularity and crystal content. Glass compositions and mineralogical assemblages indicate that the eruption was fed by rather homogeneous phonotephritic magma batches rising from a reservoir located at ~ 4 km (100 MPa) depth, with fluctuations between magma delivery and magma discharge. Using crystal size distribution (CSD) analyses of plagioclase and leucite microlites, we estimate that the transit time of the magma in the conduit was on the order of ~ 2 days, corresponding to an ascent rate of around 2 × 10−2 ms−1. Accordingly, assuming a typical conduit diameter for this type of eruption, the minimum duration of the AS1a event is between about 1.5 and 6 years. Magma fragmentation occurred in an inertially driven regime that, in a magma with low viscosity and surface tension, can act also under conditions of slow ascent.  相似文献   

14.
Formenti  Y.  Druitt  T. H.  Kelfoun  K. 《Bulletin of Volcanology》2003,65(8):587-605
The activity of Convention at Montserrat Soufrière Hills Volcano, Montserrat, during the period 1995–1999 included numerous violent explosions. Two major cycles of Vulcanian explosions occurred in 1997: a first of 13 explosions between 4 and 12 August and a second of 75 between 22 September and 21 October. The explosions were short-lived events lasting a few tens of seconds during which partial fountain collapse generated pyroclastic surges and pyroclastic flows, and buoyant plumes ascended 3–15 km into the atmosphere. Each explosion discharged on average 3×105 m3 (dense-rock equivalent, DRE) of magma, draining the conduit to depths of 1–2 km. The paper focuses on the first few seconds of three explosions of the 75 that occurred in September/October 1997: 6 October 1997 at 17:50, 7 October 1997 at 16:02 and 9 October 1997 at 12:32. Physical parameters such as exit velocities, magmatic water contents and magma pressures at fragmentation are estimated by following and modelling the ascent of individual momentum-dominated finger jets visible on videos during the initial stages of each explosion. The model treats each finger jet as an incompressible flow sustained by a steady flux of gas and particles during the few seconds of ascent, and produces results that compare favourably with those using a multiphase compressible code run using similar eruptive parameters. Each explosion reveals a progressive increase in eruptive intensity with time, jet exit velocities increasing from 40 m s–1 at the beginning of the explosion up to 140 m s–1 after a few seconds. Modelling suggests that the first magma to exit was largely degassed, whereas that discharged after a few seconds contained up to 2 wt% water. Magma overpressures up to ~10 MPa are estimated to have existed in the conduit immediately prior to each explosion. Progressive increases in jet exit velocity with time over the first few seconds of each explosion provide direct evidence for strong pre-eruptive gradients in water content and magma pressure in the upper reaches (probably 100–500 m) of the conduit. Fountain collapse occurred during the first 10–20 s of each explosion because the discharging jets had bulk densities up to 100 times that of the atmosphere and were unable to entrain enough air to become buoyant. Such high eruptive densities were due to the presence of partially degassed magma in the conduit.Editorial responsibility: A. Woods  相似文献   

15.
The Monte Nuovo eruption is the most recent event that occurred at Phlegrean Fields (Italy) and lasted from 29 September to 6 October 1538. It was characterized by 2 days of quasi-sustained phreatomagmatic activity generating pumice-bearing pyroclastic density currents and forming a 130-m-high tuff cone (Lower Member deposits). The activity resumed after a pause of 2 days with two discrete Vulcanian explosions that emplaced radially distributed, scoria-bearing pyroclastic flows (Upper Member deposits). The juvenile products of Lower and Upper Members are, respectively, phenocryst-poor, light-coloured pumice and dark scoria fragments with K-phonolitic bulk compositions, identical in terms of both major and trace elements. Groundmass is formed by variable proportions of K-feldspar and glass, along with minor sodalite and Fe-Ti oxide present in the most crystallized samples. Investigations of groundmass compositions and textures were performed to assess the mechanisms of magma ascent, degassing and fragmentation along the conduit and implications for the eruptive dynamics. In pumice of the Lower Member groundmass crystal content increases from 13 to 28 vol% from the base to the top of the sequence. Products of the Upper Member consist of clasts with a groundmass crystal content between 30 and 40 vol% and of totally crystallized fragments. Crystal size distributions of groundmass feldspars shift from a single population at the base of the Lower Member to a double population in the remaining part of the sequence. The average size of both populations regularly increases from the Lower to the Upper Member. Crystal number density increases by two orders of magnitude from the Lower to the Upper Member, suggesting that nucleation dominated during the second phase of the eruption. The overall morphological, compositional and textural data suggest that the juvenile components of the Monte Nuovo eruption are likely to record variations of the magma properties within the conduit. The different textures of pumice clasts from the Lower Member possibly reflect horizontal gradients of the physical properties (P, T) of the ascending magma column, while scoriae from the second phase are thought to result from the disruption of a slowly rising plug crystallizing in response to degassing. In particular, crystal size distribution data point to syn-eruptive degassing-induced crystallization as responsible for the transition in eruptive style from the first to the second phase of the eruption. This mechanism not only has been proved to profoundly affect the dynamics of dome-forming calc-alkaline eruptions, but may also have a strong influence in driving the eruption dynamics of alkaline magmas of intermediate to evolved compositions.Editorial responsibility: J. Donnelly-Nolan  相似文献   

16.
A series of experiments and petrographic analyses have been run to determine the pre-eruption phase equilibria and ascent dynamics of dacitic lavas composing Black Butte, a dome complex on the flank of Mount Shasta, California. Major and trace element analyses indicate that the Black Butte magma shared a common parent with contemporaneously erupted magmas at the Shasta summit. The Black Butte lava phenocryst phase assemblage (20 v.%) consists of amphibole, plagioclase (core An77.5), and Fe–Ti oxides in a fine-grained (< 0.5 mm) groundmass of plagioclase, pyroxene, Fe–Ti oxides, amphibole, and cristobalite. The phenocryst assemblage and crystal compositions are reproduced experimentally between 890 °C and 910 °C, ≥ 300 MPa, XH2O = 1, and oxygen fugacity = NNO + 1. This study has quantified the extent of three crystallization processes occurring in the Black Butte dacite that can be used to discern ascent processes. Magma ascent rate was quantified using the widths of amphibole breakdown rims in natural samples, using an experimental calibration of rim development in a similar magma at relevant conditions. The majority of rims are 34 ± 10 μm thick, suggesting a time-integrated magma ascent rate of 0.004–0.006 m/s among all four dome lobes. This is comparable to values for effusive samples from the 1980 Mount St. Helens eruption and slightly faster than those estimated at Montserrat. A gap between the compositions of plagioclase phenocryst cores and microlites suggests that while phenocryst growth was continuous throughout ascent, microlite formation did not occur until significantly into ascent. The duration of crystallization is estimated using the magma reservoir depth and ascent rate, as determined from phase equilibria and amphibole rim widths, respectively. Textural analysis of the natural plagioclase crystals yields maximum growth rates of plagioclase phenocryst rims and groundmass microlites of 8.7 × 10− 8 and 2.5 × 10− 8 mm/s, respectively. These rates are comparable to values determined from time-sequenced samples of dacite erupted effusively from Mount St. Helens during 1980 and indicate that syneruptive crystallization processes were important during the Black Butte eruptive cycle.  相似文献   

17.
Causes and consequences of pressurisation in lava dome eruptions   总被引:3,自引:0,他引:3  
High total and fluid pressures develop in the interior of high-viscosity lava domes and in the uppermost parts of the feeding conduit system as a consequence of degassing. Two effects are recognised and are modelled quantitatively. First, large increases in magma viscosity result from degassing during magma ascent. Strong vertical gradients in viscosity result and large excess pressures and pressure gradients develop at the top of the conduit and in the dome. Calculations of conduit flow show that almost all the excess pressure drop from the chamber in an andesitic dome eruption occurs during the last several hundred metres of ascent. Second, microlites grow in the melt phase as a consequence of undercooling caused by gas loss. Rapid microlite growth can cause large excess fluid pressures to develop at shallow levels. Theoretically closed-system microlite crystallization can increase local pressure by a few tens of MPa, although build up of pressure will be countered by gas loss through permeable flow and expansion by viscous flow. Microlite crystallization is most effective in causing excess gas pressures at depths of a few hundred metres in the uppermost parts of the conduit and dome interior. Some of the major phenomena of lava dome eruptions can be attributed to these pressurisation effects, including spurts of growth, cycles of dome growth and subsidence, sudden onset of violent explosive activity and disintegration of lava during formation of pyroclastic flows. The characteristic shallow-level, long-period and hybrid seismicity, characteristic of dome eruptions, is attributed to the excess fluid pressures, which are maintained close to the fracture strength of the dome and wallrock, resulting in fluid movement during formation of tensile and shear fractures within the dome and upper conduit.  相似文献   

18.
The AD 79 eruption of Vesuvius is certainly one of the most investigated explosive eruptions in the world. This makes it particularly suitable for the application of numerical models since we can be quite confident about input data, and the model predictions can be compared with field-based reconstruction of the eruption dynamics. Magma ascent along the volcanic conduit and the dispersal of pyroclasts in the atmosphere were simulated. The conduit and atmospheric domain were coupled through the flow conditions computed at the conduit exit. We simulated two different peak phases of the eruption which correspond to the emplacement of the white and gray magma types that produced Plinian fallout deposits with interlayered pyroclastic flow units during the gray phase. The input data, independently constrained and representative of each of the two eruptive phases, consist of liquid magma composition, crystal and water content, mass flow rate, and pressure–temperature–depth of the magma at the conduit entrance. A parametric study was performed on the less constrained variables such as microlite content of magma, pressure at the conduit entrance, and particle size representative of the eruptive mixture. Numerical results are substantially consistent with the reconstructed eruptive dynamics. In particular, the white eruption phase is found to lead to a fully buoyant eruption plume in all cases investigated, whereas the gray phase shows a more transitional character, i.e. the simultaneous production of a buoyant convective plume and pyroclastic surges, with a significant influence of the microlite content of magma in determining the partition of pyroclast mass between convective plumes and pyroclastic flows.  相似文献   

19.
Emission rates of sulfur dioxide (SO2) were measured at Erebus volcano, Antarctica in December between 1992 and 2005. Since 1992 SO2 emissions rates are normally distributed with a mean of 61 ± 27 Mg d− 1 (0.7 ± 0.3 kg s− 1) (n = 8064). The emission rates vary over minutes, hours, days and years. Hourly and daily variations often show systematic and cyclic trends. Long-wavelength, large amplitude trends appear related to lava lake area and both are likely controlled by processes occurring at depth. Time series analysis of continuous sequences of measurements obtained over periods of several hours reveals periodicity in SO2 output ranging from 10 to 360 min, with a 10 min cycle being the most dominant. Closed and open-system degassing models are considered to explain observed variable degassing rates. Closed-system degassing is possible as rheological stiffening and stick/slip may occur within the system. However, the timescales represented in these models do not fit observations made on Erebus. Open-system degassing and convection fits the observations collected as the presented models were developed for a system similar to Erebus in terms of degassing, eruptive activity and process repose time. We show that with the observed emission rate (0.71 kg s− 1) and a crystal content of 30%, magma will cool 65 °C to match observed heat fluxes; this cooling is sufficient enough to drive convection.  相似文献   

20.
The 22 km3 (DRE) 1.8 ka Taupo eruption ejected chemically uniform rhyolite in a wide range of eruptive styles and intensities. The 7 eruptive units include the ‘type examples’ of phreatoplinian (units 3 and 4) and ultraplinian fall (unit 5) deposits, and low-aspect-ratio ignimbrite (unit 6). Contrasts in bulk vesicularity, vesicle (and microlite) number densities and the size distributions of bubbles (and crystals) in the Taupo ejecta can be linked to the influence of shallow conduit processes on volatile exsolution and gas escape, before and during eruption, rather than changes in pre-eruptive chemistry. Existing work has modeled the individual phases of this complex eruption but not fully explained the abrupt shifts in style/intensity that occur between phases. We link these rapid transitions to changes in vent position, which permitted contrasts in storage, conduit geometry, and magma ascent history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号