首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using slab model atmospheres that are irradiated from both sides by photospheric, chromospheric, and coronal radiation fields we have determined the ionization and excitation equilibrium for hydrogen.The model atom consists of two bound levels (n = 1 and n = 2) and a continuum. Ly- was assumed to be optically thick with the transition in detailed radiative balance. The Balmer continuum was assumed to be optically thin with the associated radiative ionization dominated by the photospheric radiation field (T rad = 5940 K). The ionization equilibrium was determined from an exact treatment of the radiative transfer problem for the internally generated Ly-c field and the impressed chromospheric and coronal field (characterized by T rad = 6500K).Our calculations corroborate the hypothesis that N2, the n = 2 population density, is uniquely determined by the electron density N e. We also present ionization curves for 6000K, 7500K, and 10000K models ranging in total hydrogen density from 1 × 1010/cm3 to 3 × 1012/cm3. Using these curves it is possible to obtain the total hydrogen density from the n = 2 population density in prominences and spicules.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

2.
A series of H chromospheric magnetograms was obtained at various wavelengths near the line center with the vector video magnetograph at Huairou Solar Observing Station as a diagnostic of chromospheric magnetic structures. The two-dimensional distribution of the circular polarization light of the H line with its blended lines at various wavelength in active regions was obtained, which consists of the analyses of Stokes' profileV of this line. Due to the disturbance of the photospheric blended line Fei 4860.98 for the measurement of the chromospheric magnetic field, a reversal in the chromospheric magnetograms relative to the photospheric ones occurs in the sunspot umbrae. But in the quiet, plage regions, even penumbrae, the influence of the photospheric blended Fei 4860.98 line is not obvious. As regards the observation of the H chromospheric magnetograms, we can select the working wavelength between -0.20 and -0.24 from the line core of H to avoid the wavelengths of the photospheric blended lines in the wing of H.After the spectral analysis of chromospheric magnetograms, we conclude that the distribution of the chromospheric magnetic field is similar to the photospheric field, especially in the umbrae of the sunspots. The chromospheric magnetic field is the result of the extension of the photospheric field.  相似文献   

3.
In this paper, we analyze the relations between photospheric vector magnetic fields, chromospheric longitudinal magnetic fields and velocity fields in a solar active region. Agreements between the photospheric and chromospheric magnetograms can be found in large-scale structures or in the stronger magnetic structures, but differences also can be found in the fine structures or in other places, which reflect the variation of the magnetic force lines from the photosphere to the chromosphere. The chromospheric superpenumbral magnetic field, measured by the Hline, presents a spoke-like structure. It consists of thick magnetic fibrils which are different from photospheric penumbral magnetic fibrils. The outer superpenumbral magnetic field is almost horizontal. The direction of the chromospheric magnetic fibrils is generally parallel to the transverse components of the photospheric vector magnetic fields. The chromospheric material flow is coupled with the magnetic field structure. The structures of the H chromospheric magnetic fibrils in the network are similar to H dark fibrils, and the feet of the magnetic fibrils are located at the photospheric magnetic elements.  相似文献   

4.
Spectroheliograms, obtained in certain Fraunhofer lines with the 82-cm solar image at the Kitt Peak National Observatory, show a bright photospheric network having the following properties:
  1. It resembles, but does not coincide with, the chromospheric network, the structure of the photospheric network being finer and more delicate than the relatively coarse structure of the chromospheric network.
  2. It is exactly cospatial with the network of non-sunspot photospheric magnetic fields.
  3. Its visibility in a given photospheric Fraunhofer line is primarily dependent on the states of ionization and excitation from which the line is formed and secondarily dependent on the Zeemansensitivity of the line-being most visible in low-excitation lines of neutral atoms and least visible in high-excitation lines of singly ionized atoms.
We conclude that these magnetic regions of the solar atmosphere are a few hundred degrees hotter than their surroundings, and that they are visible in white light near the limb as photospheric faculae.  相似文献   

5.
It is generally accepted that densities of quiet-Sun and active region plasma are sufficiently low to justify the optically thin approximation, and this is commonly used in the analysis of line emissions from plasma in the solar corona. However, the densities of solar flare loops are substantially higher, compromising the optically thin approximation. This study begins with a radiative transfer model that uses typical solar flare densities and geometries to show that hot coronal emission lines are not generally optically thin. Furthermore, the model demonstrates that the observed line intensity should exhibit center-to-limb variability (CTLV), with flares observed near the limb being dimmer than those occurring near disk center. The model predictions are validated with an analysis of over 200 flares observed by the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO), which uses six lines, with peak formation temperatures between 8.9 and 15.8 MK, to show that limb flares are systematically dimmer than disk-center flares. The data are then used to show that the electron column density along the line of sight typically increases by \(1.76 \times 10^{19}~\mbox{cm}^{-2}\) for limb flares over the disk-center flare value. It is shown that the CTLV of hot coronal emissions reduces the amount of ionizing radiation propagating into the solar system, and it changes the relative intensities of lines and bands commonly used for spectral analysis.  相似文献   

6.
Zhang Hongqi 《Solar physics》1993,144(2):323-340
In this paper, the formation and the measurement of the H line in chromospheric magnetic fields are discussed. The evolution of the chromospheric magnetic structures and the relation with the photospheric vector magnetic fields and chromospheric velocity fields in the flare producing active region AR 5747 are also demonstrated.The chromospheric magnetic gulfs and islands of opposite polarity relative to the photospheric field are found in the flare-producing region. This probably reflects the complication of the magnetic force lines above the photosphere in the active region. The evolution of the chromospheric magnetic structures in the active region is caused by the emergence of magnetic flux from the sub-atmosphere or the shear motion of photospheric magnetic fields. The filaments separate the opposite polarities of the chromospheric magnetic field, but only roughly those of the photospheric field. The filaments also mark the inversion lines of the chromospheric Doppler velocity field which are caused by the relative motion of the main magnetic poles of opposite polarities in the active region under discussion.  相似文献   

7.
Time-sequenced H filtergrams and narrow-band blue filtergrams (0 = 4308 Å, = 10 Å) of umbral dots in a decaying sunspot were studied. The results are: (a) Photospheric umbral dots have lifetimes of about 40 min. (b) Two types of proper motion were found for photospheric umbral dots. Umbral dots born in the umbra or in the light bridge show virtually no proper motion. On the other hand, umbral dots of penumbral origin move inward to the umbra with speeds of about 0.4 km s –1. (c) Chromospheric umbral dots, which have dimensions of 0.6 × 1.2 in the mean, were more numerously found than photospheric umbral dots. (d) Photospheric umbral dots were observed to be associated with chromospheric umbral dots. Thus umbral dots are not phenomena confined to photospheric levels but also extend to chromospheric levels. (e) Some of the chromospheric umbral dots are unrelated to the photospheric umbral dots. They may be excited by the infalling matter from the umbral corona.Contribution from the Kwasan and Hida Observatories, University of Kyoto, No. 266.  相似文献   

8.
We investigate the morphology and temporal variability of a quiet-Sun network region in different solar layers. The emission in several extreme ultraviolet (EUV) spectral lines through both raster and slot time-series, recorded by the EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft is studied along with \(\mbox{H}\upalpha\) observations and high-resolution spectropolarimetric observations of the photospheric magnetic field. The photospheric magnetic field is extrapolated up to the corona, showing a multitude of large- and small-scale structures. We show for the first time that the smallest magnetic structures at both the network and internetwork contribute significantly to the emission in EUV lines, with temperatures ranging from \(8\times 10^{4}~\mbox{K}\) to \(6\times 10^{5}~\mbox{K}\). Two components of transition region emission are present, one associated with small-scale loops that do not reach coronal temperatures, and another component that acts as an interface between coronal and chromospheric plasma. Both components are associated with persistent chromospheric structures. The temporal variability of the EUV intensity at the network region is also associated with chromospheric motions, pointing to a connection between transition region and chromospheric features. Intensity enhancements in the EUV transition region lines are preferentially produced by \(\mbox{H}\upalpha\) upflows. Examination of two individual chromospheric jets shows that their evolution is associated with intensity variations in transition region and coronal temperatures.  相似文献   

9.
It is a well-established fact that the Mn I 539.47 nm line exhibits significant cycle dependence similar to lines arising in the chromosphere which are affected by non-thermal heating in the chromospheric plages. Among these lines the case of the Mn I 539.47 nm line seems unique. It is of photospheric origin on the basis of theoretical calculations but its cyclic dependence hints at a chromospheric nature. The present work provides further evidence to both connections. The line exhibits asymmetry features and a center-to-limb variation as though influenced by the photospheric granulation. On the other hand an enhancement of the central intensity has been detected in a well identifiable Ca plage area. The line seems to be a promising candidate as an irradiance variation indicator.  相似文献   

10.
Semi-empirical models of solar faculae, cospatial with strong photospheric magnetic fields, have been constructed from continuum observations. The center-to-limb contrast of the various models was computed taking into account their geometrical shape. The adopted model whose horizontal size was taken to be 750 km, indicates that, in field regions, the temperature begins to rise outwards at z -125 km (above 5000 = 1) and that the extrapolated temperature at z -400 km is about 1500 K above that of the undisturbed atmosphere; the electron density is higher by a factor of about 30.  相似文献   

11.
The Multi-Application Solar Telescope is a 50 cm off-axis Gregorian telescope recently installed at the Udaipur Solar Observatory, India. In order to obtain near-simultaneous observations at photospheric and chromospheric heights, an imager optimized for two or more wavelengths is being integrated with the telescope. Two voltage-tuneable lithium-niobate Fabry–Perot etalons along with a set of interference blocking filters have been used for developing the imager. Both of the etalons are used in tandem for photospheric observations in Fe i 6173 Å and chromospheric observation in H\(\alpha\) 6563 Å spectral lines, whereas only one of the etalons is used for the chromospheric Ca II line at 8542 Å. The imager is also being used for spectropolarimetric observations. We discuss the characterization of the etalons at the above wavelengths, detail the integration of the imager with the telescope, and present a few sets of observations taken with the imager set-up.  相似文献   

12.
In this paper, the chromospheric magnetic structures and their relation to the photospheric vector magnetic field in the vicinity of a dark filament in active region 5669 have been demonstrated. Structural variations are shown in chromospheric magnetograms after a solar flare. Filament-like structures in the chromospheric magnetograms occurred after a solar flare. They correspond to the reformation of the chromospheric dark filament, but there is no obvious variation of the photospheric magnetic field. We conclude that (a) some of the obvious changes of the chromospheric magnetic fields occurred after the flare, and (b) a part of these changes is perhaps due to flare brightening in the chromospheric H line.During the reforming process of the dark filament, a part of its chromospheric velocity field shows downward flow, and it later shows upward flow.  相似文献   

13.
Yngve Öhman 《Solar physics》1969,10(1):178-183
During a stay at the Kitt Peak National Observatory the writer has tried to find an influence of flare radiation on the high photospheric and low chromospheric lines of the area occupied by the flare. Observations have been made in the H region and in the region of the H and K lines. When flare emission is present in sunspots some of the faint (molecular) lines seem to be weakened. When a flare appears near the solar limb some of the Evershed-type (chromospheric) lines are strongly influenced.Kitt Peak National Observatory Contribution No. 481.Visiting Astronomer to the Solar Division, Kitt Peak National Observatory, operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.  相似文献   

14.
Tritschler  A.  Schmidt  W.  Langhans  K.  Kentischer  T. 《Solar physics》2002,211(1-2):17-29
We present the characteristics and demonstrate the performance of the Triple Etalon SOlar Spectrometer (TESOS) operated at the German Vacuum Tower Telescope (VTT) on Tenerife. The Fabry–Pérot interferometer TESOS is ideally suited for precise measurements of photospheric and chromospheric motion. Installed in 1997 and equipped with two etalons, TESOS has recently been completed with a third etalon and upgraded with two high-speed, backside-illuminated CCD cameras. The image scale of 0.089 arc sec pixel–1 is adapted to the resolution of the telescope. The improved system enables frame rates up to 5 frames per second. The spectral resolution of 300000 allows for spectral diagnostics of weak photospheric lines, including individual CH-lines within the G-band at 430.6 nm.  相似文献   

15.
The results of the analysis of the full Stokes profiles of the photospheric lines Fe I λ 630.15 nm and Fe I λ 630.25 nm in a region of chromospheric dual flows appearance in the vicinity of a small pore are presented. The analysis is based on the spectropolarimetric observations of the active region NOAA 11024 with the THEMIS French–Italian telescope (Tenerife Island, Spain). The temporal variations in the high-resolution Stokes parameters I, Q, U, and V were considered for each pixel. It was found that the dual chromospheric flows appeared in the region of the abnormal Stokes profiles of the photospheric lines. Most of the Stokes profiles Q, U, and V have a complex shape and vary greatly from pixel to pixel, which indicates strong inhomogeneities in the structure of the magnetic field in that region. The amplitude and shape of the Stokes profiles were rapidly changing during the observations. A change in the polarity of the photospheric magnetic field took place during the observations in the region of a bright chromospheric point. The evidence of the emergence of a new small-scale magnetic flux of the opposite polarity is obtained; this could lead to magnetic reconnections, appearance of dual chromospheric flows, and occurrence of a microflare.  相似文献   

16.
Kobanov  N.I.  Makarchik  D.V.  Sklyar  A.A. 《Solar physics》2003,217(1):53-67
In this paper we carry out an analysis of the spatial–temporal line-of-sight velocity variations measured in the chromospheric (H, H) and photospheric (Fei 6569 Å, Fei 4864 Å, Nii 4857 Å) lines at the base of 17 coronal holes. Time series of a duration from 43 to 120 min were recorded with the CCD line-array and the CCD matrix. Rather frequently we observed quasi-stationary upward flows with a measured velocity of up to 1 km s–1 in the photosphere and up to 4–5 km s–1 in the chromosphere (equivalent radial velocity of up to 3 km s–1 and up to 12–15 km s–1 accordingly) near dark points on the chromospheric network boundary inside polar CH. Line-of-sight velocity fluctuation spectra contain meaningful maxima in the low-frequency region clustering around the values 0.4, 0.75, and 1 mHz. Usually, the spatial localization of these maxima mutually coincides and, in our opinion, coincides with the chromospheric network boundary. Acoustic 3- and 5-min oscillations are enhanced in the coronal hole region and reach 1 km s–1 in the photosphere and 3–4 km s–1 in the chromosphere. These oscillations are not localized spatially and are distinguished throughout the entire region observed.  相似文献   

17.
We compare temporal power spectra of solar atmospheric oscillations in plage and quiet Sun regions occurring on different parts of a time series of high-quality spectrograms. For periods shorter than 300 s, the oscillation amplitude in the photospheric and low chromospheric parts of the plage is reduced. There is a significant increase in long period power in the chromospheric plage. Our results provide no clear evidence that plages are heated by the dissipation of short-period waves.Operated by the Association of Universities for Research in Astronomy, Inc. under contract AST-78-17292 with the National Science Foundation.  相似文献   

18.
We analyzed chromospheric events and their connection to oscillation phenomena and photospheric dynamics. The observations were done with the New Solar Telescope of Big Bear Solar Observatory using a broad-band imager at the wavelength of a TiO band and FISS spectrograph scanning Ca?ii and Hα spectral lines. The event in Ca?ii showed strong plasma flows and propagating waves in the chromosphere. The movement of the footpoints of flux tubes in the photosphere indicated flux tube entanglement and magnetic reconnection as a possible cause of the observed brightening and waves propagating in the chromosphere. An upward propagating train of waves was observed at the site of the downflow event in Hα. There was no clear relationship between photospheric waves and the Ca?ii and Hα events. Our observations indicate that chromospheric waves that were previously thought to originate from the photosphere may be generated by some events in the chromosphere as well.  相似文献   

19.
An analysis of the local sources (LS) structure of the S-component of solar radio emission confirms the presence of a core component which is characterized by strong circular polarization and a steep growing spectrum at shorter centimeter wavelengths. These details coincide in position with the sunspots' umbra and their height above the photosphere does not generally exceed about 2000 km. Gyroresonance emission of thermal electrons of the corona is generally accepted as being responsible for this type of emission. The spectral and polarization observations of LS made with RATAN-600 using high resolution in the wavelength range 2.0–4.0 cm, allow us to measure the maximum magnetic fields of the corresponding sunspots at the height of the chromosphere-corona transition region (CCTR). This method is based on determining the short wavelength limit of gyroresonance emission of the LS and relating it to the third harmonic of gyrofrequency.An analysis of a large number of sunspots and their LS (core component) has shown a good correlation between radio magnetic fields near the CCTR and optical photospheric ones. The magnetic field in CCTR above a sunspot is found only 10 to 20% lower than in the photosphere. The resulting gradient of the field strength is not less than 0.25 G km–1. This result seems to contradict the lower values of magnetic fields generally found above sunspots using the chromospheric H line. Some possible ways of overcoming this difficulty are proposed.  相似文献   

20.
Five days of coordinated observation were carried out from 24–29 September, 1987 at Big Bear and Huairou Solar Observatories. Longitudinal magnetic fields of an p sunspot active region were observed almost continuously by the two observatories. In addition, vector magnetic fields, photospheric and chromospheric Doppler velocity fields of the active region were also observed at Huairou Solar Observatory. We studied the evolution of magnetic fields and mass motions of the active region and obtained the following results: (1) There are two kinds of Moving Magnetic Features (MMFs). (a) MMFs with the same magnetic polarity as the center sunspot. These MMFs carry net flux from the spot, move through the moat, and accumulate at the moat's outer boundary. (b) MMFs in pairs of mixed polarity. These MMFs are not responsible for the decay of the spot since they do not carry away the net flux. MMFs in category (b) move faster than those of (a). (2) The speed of the mixed polarity MMFs is larger than the outflow measured by photospheric Dopplergrams. The uni-polar MMFs are moving at about the same speed as the Doppler outflow. (3) The chromospheric velocity is in approximately the opposite direction from the photospheric velocity. The photospheric Doppler flow is outward; chromospheric flow is inward. We also found evidence that downward flow appears in the photospheric umbra; in the chromosphere there is an upflow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号