首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range have distinctly different mineralogical and geochemical signatures. The Cu-Pb-Zn-bearing granites are dominated by metaluminous amphibole-bearing granodiorites, which have higher CaO/(Na2O+K2O) ratios, light/heavy rare earth element(LREE/HREE) ratios, and δEu values,lower Rb/Sr ratios, and weak Ba, Sr, P, and Ti depletions, exhibiting low degrees of fractionation. The W-bearing granites are highly differentiated and peraluminous, and they have lower CaO/(Na2O+K2O) ratios, LREE/HREE ratios, and δEu values,higher Rb/Sr ratios, and strong Ba, Sr, P, and Ti depletions. The Cu-Pb-Zn-bearing granites were formed predominantly between155.2 and 167.0 Ma with a peak value of 160.6 Ma, whereas the W-bearing granites were formed mainly from 151.1 to 161.8Ma with a peak value of 155.5 Ma. There is a time gap of about 5 Ma between the two different types of ore-bearing granites.Based on detailed geochronological and geochemical studies of both the Tongshanling Cu-Pb-Zn-bearing and Weijia W-bearing granites in southern Hunan Province and combined with the other Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range, a genetic model of the two different types of ore-bearing granites has been proposed. Asthenosphere upwelling and basaltic magma underplating were induced by the subduction of the palaeo-Pacific plate. The underplated basaltic magmas provided heat to cause a partial melting of the mafic amphibolitic basement in the lower crust, resulting in the formation of Cu-Pb-Zn mineralization related granodioritic magmas. With the development of basaltic magma underplating,the muscovite-rich metasedimentary basement in the upper-middle crust was partially melted to generate W-bearing granitic magmas. The compositional difference of granite sources accounted for the metallogenic specialization, and the non-simultaneous partial melting of one source followed by the other brought about a time gap of about 5 Ma between the Cu-Pb-Zn-bearing and W-bearing granites.  相似文献   

2.
Constraints on melting and magma production in the crust   总被引:10,自引:0,他引:10  
Major intrusions of granitic rocks are found in several tectonic settings and, in all cases, crustal melts may contribute to the volumes of granitic magma. High-grade metamorphism and partial melting of the crust take place predominantly under fluid-absent conditions. We present a model for calculating the amounts of melt that may be formed by fluid-absent breakdown of micas and amphiboles in common crustal rock types (pelitic, quartzofeldspathic, intermediate and mafic). Melt proportions depend mainly on the kind of source rock, the pressure at which melting takes place, the temperature and the hydrous mineral (H2O) content of the source. As a consequence of the pressure dependence of water solubility in silicate melts, any given source rock will produce more melt, by a given fluid-absent reaction, at lower pressure. At a given pressure, higher-temperature reactions can produce more melt from a given source rock. Based on a survey of the compositions of common rock types, we show that the amounts of melt can vary from < 10to> 50vol.%. Thus, crustal rocks vary widely in their “fertility” as magma sources, depending on the types and amounts of hydrous phases they contain. In general, muscovite breakdown in pelites will yield only small quantities of melt and lead to migmatite formation. Biotite breakdown in pelites occurs at higher temperature and, because most high-grade pelites (below granulite grade) are biotite-rich, can yield up to about 50 vol.% of granitoid melt. Rocks of intermediate composition and hornblende-rich mafic rocks are potentially highly fertile magma sources also, provided that the high temperatures necessary for biotite and hornblende breakdown are realized. Pyroxene-rich mafic rocks and quartzofeldspathic rocks are much less potentially fertile. Data suggest that mechanisms exist for the efficient segregation of melt and restite in systems with < 30and probably< 20vol.% melt. The pressure-temperature history of a region can greatly influence crustal source fertility through its control over the occurrence of subsolidus dehydration and melting equilibria.  相似文献   

3.
Although trace element modeling has been used to great advantage for petrogenetic interpretations of basaltic systems, similar studies on igneous rocks of granitic composition have been fewer. In general the mineral/melt distribution coefficients for rare earth elements (REE) in granitic melts are equal to or greater than those for similar minerals in the basaltic system. Thus the effects of these minerals on the REE patterns of granitic melts during partial melting or differentiation are exaggerated as compared to basaltic systems, making detection of residual phases easier. For the K/Rb ratio, if neither a K-feldspar component nor biotitephlogopite is present in the residue, it is difficult to reduce the K/Rb ratio of the melt relative to the parent by a factor of two by either differentiation or partial melting.The petrogenesis of four distinctly different rocks are received: (1) an Archean tonalite presumably derived by partial melting of an Archean tholeiite at mantle depths, leaving a garnet plus clinopyroxene residue; (2) an Archean quartz monzonite presumably derived by partial melting of a short-lived graywacke-argillite sequence at crustal depths; (3) a dacite from Saipan presumably derived by differentiation from a basaltic parent; and (4) a trachyte from Ross Island, Antarctica, presumably derived by differentiation from a basanitoid parent and contaminated by continental crustal components.  相似文献   

4.
INTRODUCTIONThe mafic-ultramafic complexesinthe Hongqilingarea were emplacedintothe metamorphic rocksof the Hulan Group. Age determination of the intrusion and metamorphism of the Hulan Groupmetamorphic rocks is crucial for the study of petrogenesis and evolution, orogenesis and itsdevelopment of the region. However ,so far it has been difficult to determine the geochronology ofmafic-ultramafic rocks inthe area ,thusthe age obtainedfromprevious data hadto be used.Inrecentyears ,withthe …  相似文献   

5.
Being a part of the Paleo‐Tethys Ocean, closing of the Buqingshan‐Anyemaqen oceanic basin left a rich geologic record in the East Kunlun Orogenic Belt. The genesis and tectonic setting of the granites including quartz monzodiorite, granodiorite and mozogranite is discussed in light of the geochemical and U–Pb chronological data obtained. U–Pb dating studies on zircon from the quartz monzodiorite and monzogranite of the research area yielded ages of 220.11 ± 0.49 Ma ((Mean Square Weighted Deviates) MSWD = 0.046) and 223.33 ± 0.54 Ma (MSWD = 0.14), respectively, by Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA–MC–ICP–MS) method. According to sedimentological and structural investigations, the Paleo‐Tethys Ocean in the Qimantag region began to close at about 235 Ma, and completely disapperared at about 220 Ma. The three types of granites in this study are considered to intrude the syn‐ to post‐collisional stages. The quartz monzodiorite and granodiorite belong to the I‐type granite whereas the monzogranite is of the S‐type granite. These two types of granites were formed by different ways of partial melting: first, partial melting of the lower crust took place as a result of asthenosphere upwelling triggered by break‐up of the leading edge or tearing of the descending oceanic slab. Subsequently partial melting of the middle–lower crust was caused by the underplating of basaltic magma formed by partial melting of the mantle wedge fluxed by fluids liberated by the oceanic slab dehydration. The magma responsible for the formation of S‐type granites appears to have originated from partial melting of the upper crustal material at a shallower level with a clear signature of continental crust.  相似文献   

6.
It is well-known that South China experienced suc- there are also the Indosinian granitoids in Jiangxi, cessively two important tectonic movements during Guangdong, Guangxi, Hainan and so on[4], most of Mesozoic time, i.e. Indosinian and Yanshanian move- them, in the mass, are fairly concentrated in Hunan ment[1], which yield widely-distributed granitoids and Province, in which the Indosinian granites outcrop abundant mineral resources[2]. Therefore, the geologic over an area of ca. 5000 k…  相似文献   

7.
Detailed field mapping in the Güvem area in the Galatia province of NW Central Anatolia, Turkey, combined with K–Ar dating, has established the existence of two discrete Miocene volcanic phases, separated by a major unconformity. The magmas were erupted in a post-collisional tectonic setting and it is possible that the younger phase could be geodynamically linked to the onset of transtensional tectonics along the North Anatolian Fault zone. The Early Miocene phase (18–20 Ma; Burdigalian) is the most voluminous, comprising of over 1500 m of potassium-rich intermediate-acid magmas. In contrast, the Late Miocene volcanic phase (ca. 10 Ma; Tortonian) comprises a single 70-m-thick flow unit of alkali basalt. The major and trace element and Sr–Nd isotope compositions of the volcanics suggest that the Late Miocene basalts and the parental mafic magmas to the Early Miocene series were derived from different mantle sources. Despite showing some similarities to high-K calc-alkaline magma series from active continental margins, the Early Miocene volcanics are clearly alkaline with higher abundances of high field strength elements (Zr, Nb, Ti, Y). Crustal contamination appears to have enhanced the effects of crystal fractionation in the petrogensis of this series and some of the most silica-rich magmas may be crustal melts. The mantle source of the most primitive mafic magmas is considered to have been an asthenospheric mantle wedge modified by crustally-derived fluids rising from a Late Cretaceous–Early Tertiary Tethyan subduction zone dipping northwards beneath the Galatia province. The Late Miocene basalts, whilst still alkaline, have a Sr–Nd isotope composition indicating partial melting of a more depleted mantle source component, which most likely represents the average composition of the asthenosphere beneath the region.  相似文献   

8.
湘西南兰蓉岩体为一加里东期小侵入体,由黑云母二长花岗岩和二云母二长花岗岩组成.(443.5±8.1)Ma的锆石SHRIMP U Pb年龄表明花岗岩形成于早志留世早期.主量元素组成表明岩体总体属钙碱性高钾钙碱性系列强过铝质花岗岩类.该侵入体Ba、(Ta+Nb)、Sr、P、Ti强烈亏损,Rb、(Th+U+K)、(La+Ce)、Nd、(Zr+Hf+Sm)、(Y+Yb+Lu)等相对富集;稀土元素含量较高、轻稀土富集明显、Eu显著亏损;Isr值为0.71299,εSr(t)值为120,εNd (t)值为 8.11和-8.89,t2DM为1.82和1.84Ga.C/MF-A/MF图解显示其源岩为泥质岩和砂屑岩.上述地球化学特征表明兰蓉岩体为陆壳碎屑岩石部分熔融形成的S型花岗岩.基于岩石成因、构造环境判别以及区域构造演化过程,推断兰蓉岩体的具体形成机制为:奥陶纪末志留纪初的北流运动(板内造山运动)导致地壳增厚、升温,尔后在挤压减弱、应力松弛的后碰撞减压构造环境下,中、上地壳酸性岩石发生部分熔融并向上侵位而形成兰蓉岩体.  相似文献   

9.
Zilong  Li  Yoshiaki  Tainosho  Jun-Ichi  Kimura  Kazuyuki  Shiraishi 《Island Arc》2005,14(4):636-652
Abstract The Mefjell plutonic complex consists of 500–550‐Ma Pan‐African plutonic rocks, which intrude into the Precambrian crystalline basement in the Sør Rondane Mountains, East Antarctica, and forms part of the Sør Rondane Suture Zone. The complex comprises syenitic and granitic (mostly monzogranitic) rocks, and is characterized by the presence of iron‐rich hydrous mafic minerals and primary ilmenite, both of which imply its formation at high temperature and under low oxygen fugacity conditions. The syenitic rocks are metaluminous, and are high in alkalis, K2O/Na2O, Al2O3, FeOt/(FeOt + MgO) (0.88–0.98), K/Rb (800–1000), Ga (18–28 p.p.m.), Zr (up to 2100 p.p.m.) and Ba. They also have a low Mg? (Mg/[Mg + Fe2+]), Rb, Sr, Nb, Y and F, low to moderate light rare earth element (LREE)/heavy rare earth element (HREE) ratios and positive Eu anomalies in their rare earth element (REE) patterns. The granitic rocks are metaluminous to peraluminous, and have a high Rb content, high Sr/Ba and LREE/HREE ratios, low K/Rb and negative Eu anomalies. Most of the syenitic and granitic rocks have Y/Nb ratios greater than 1.2, and are depleted in Nb, Ti and Sr on the primitive mantle‐normalized spider diagrams, indicating a crustal origin with subduction zone signatures. We interpret both the syenitic and granitic rocks to be derived from an iron‐rich lower crustal source by dehydration melting induced by the heat of mantle‐derived basaltic intrusion, after which they then underwent limited fractional crystallization. The Mefjell plutonic complex has a high Zr content and tectonic discrimination diagram signatures indicative of normal A‐type granitic rocks. Both rock suites may have been generated under the same postorogenic tectonic setting. The Mefjell syenitic rocks are chemically comparable to charnockites in the Gjelsvikjella and western Mühlig‐Hofmannfjella areas of East Antarctica, whereas the granitic rocks are comparable to aluminous A‐type granitic rocks in South India, which were emplaced during formation and evolution of the Gondwanaland supercontinent.  相似文献   

10.
The NE-trended Mesozoic granodioritic intrusions are spatially and temporally associated with the copper multi-metal mineralization in southeastern Hunan Province, South China. U-Pb dating result of single-grained zircons of four samples respectively from Shuikoushan, Baoshan, western Tongshanling and eastern Tongshanling intrusions reveals that their crystallization age spans a range from 172 Ma to 181 Ma, which also represents the oldest age of the regional copper multi-metal mineralization. Some of the zircon grains give an upper intercept age of about 1753 Ma and 207Pb/206Pb apparent age of (1752 ± 4) Ma, implying the involvement of the pre-Cambrian metamorphic (possible Middle Proterozoic) basement in their genesis. The presence of such a kind of zircon grains in these granodiorites indicates either that the parental magmas were assimilated by basement rocks during magma ascent or that lower/middle crustal rocks were one of the important components during the melting process.  相似文献   

11.
Southern Hunan Province is famous for its intensive rare, radioactive and other metal elements’ mineralizations. There is a relation between the basaltic rocks and mineralizations in space, time and ore-forming elements. The Jurassic-Cretaceous (204–81 Ma) basaltic rocks consists mainly of alkali-basalt and tholeiitic basalt formed in plate environment. Trace elements and Sr, Nd, Pb isotopic compositions show that the regional mantle source was metasomatized shortly before the partial melting. The alkali basalt and tholeiitic basalt might be 3%–5% and 10%–15% of the partial melting of the enriched mantle source respectively. Obviously the enrichment of the regional mantle played an important role in formation of the large and super-large deposits in southern Hunan Province.  相似文献   

12.
The Cenozoic basaltic province of the Vogelsberg area (central Germany) is mainly composed of intercalated olivine to quartz tholeiites and near-primary nephelinites to basanites. The inferred mantle source for the alkaline and tholeiitic rocks is asthenospheric metasomatized garnet peridotite containing some amphibole as the main hydrous phase. Trace element modelling indicates 2 to 3% partial melting for the alkaline rocks and 5 to 7% partial melting for the olivine tholeiites. Incompatible trace element abundances and ratios as well as Nd and Sr radiogenic isotope compositions lie between plume compositions and enriched mantle compositions and are similar to those measured in Ocean Island Basalts (OIB) and the Central European Volcanic Province elsewhere. The mafic olivine tholeiites have similar Ba/Nb, Ba/La and Nd–Sr isotope ratios to the alkaline rocks indicating derivation of both magma types from chemically comparable mantle sources. However, Zr/Nb ratios are slightly higher in olivine tholeiites than in basanites reflecting some fractionation of Zr relative to Nb during partial melting. Quartz tholeiites have higher Ba/Nb, Zr/Nb, La/Nb, but lower Ce/Pb ratios and lower Nd isotope compositions than the alkaline rocks which can be explained by interaction of the basaltic melt with lower (granulite facies) crustal material or partial melts thereof during stagnation within the lower crust. It appears most likely that upwelling of hot, asthenospheric material results in the generation of primitive alkaline rocks at the base of the lithosphere at depths of 75–90 km. Lithospheric extension together with minor plume activity and probably lower lithosphere erosion induced melting of shallower heterogenous upper mantle generating a spectrum of olivine tholeiitic melts. These olivine tholeiitic rocks evolved via crystal fractionation and probably limited contamination to quartz tholeiites.  相似文献   

13.
The North China Craton (NCC) has been thinned from >200 km to <100 km in its eastern part. The ancient subcontinental lithospheric mantle (SCLM) has been replaced by the juvenile SCLM in the Meoszoic. During this period, the NCC was destructed as indicated by extensive magmatism in the Early Cretaceous. While there is a consensus on the thinning and destruction of cratonic lithosphere in North China, it has been hotly debated about the mechanism of cartonic destruction. This study attempts to provide a resolution to current debates in the view of Mesozoic mafic magmatism in North China. We made a compilation of geochemical data available for Mesozoic mafic igneous rocks in the NCC. The results indicate that these mafic igneous rocks can be categorized into two series, manifesting a dramatic change in the nature of mantle sources at ~121 Ma. Mafic igneous rocks emplaced at this age start to show both oceanic island basalts (OIB)-like trace element distribution patterns and depleted to weakly enriched Sr-Nd isotope compositions. In contrast, mafic igneous rocks emplaced before and after this age exhibit both island arc basalts (IAB)-like trace element distribution patterns and enriched Sr-Nd isotope compositions. This difference indicates a geochemical mutation in the SCLM of North China at ~121 Ma. Although mafic magmatism also took place in the Late Triassic, it was related to exhumation of the deeply subducted South China continental crust because the subduction of Paleo-Pacific slab was not operated at that time. Paleo-Pacific slab started to subduct beneath the eastern margin of Eruasian continent since the Jurrasic. The subducting slab and its overlying SCLM wedge were coupled in the Jurassic, and slab dehydration resulted in hydration and weakening of the cratonic mantle. The mantle sources of ancient IAB-like mafic igneous rocks are a kind of ultramafic metasomatites that were generated by reaction of the cratonic mantle wedge peridotite not only with aqueous solutions derived from dehydration of the subducting Paleo-Pacific oceanic crust in the Jurassic but also with hydrous melts derived from partial melting of the subducting South China continental crust in the Triassic. On the other hand, the mantle sources of juvenile OIB-like mafic igneous rocks are also a kind of ultramafic metasomatites that were generated by reaction of the asthenospheric mantle underneath the North China lithosphere with hydrous felsic melts derived from partial melting of the subducting Paleo-Pacific oceanic crust. The subducting Paleo-Pacific slab became rollback at ~144 Ma. Afterwards the SCLM base was heated by laterally filled asthenospheric mantle, leading to thinning of the hydrated and weakened cratonic mantle. There was extensive bimodal magmatism at 130 to 120 Ma, marking intensive destruction of the cratonic lithosphere. Not only the ultramafic metasomatites in the lower part of the cratonic mantle wedge underwent partial melting to produce mafic igneous rocks showing negative εNd(t) values, depletion in Nb and Ta but enrichment in Pb, but also the lower continent crust overlying the cratonic mantle wedge was heated for extensive felsic magmatism. At the same time, the rollback slab surface was heated by the laterally filled asthenospheric mantle, resulting in partial melting of the previously dehydrated rocks beyond rutile stability on the slab surface. This produce still hydrous felsic melts, which metasomatized the overlying asthenospheric mantle peridotite to generate the ultramafic metasomatites that show positive εNd(t) values, no depletion or even enrichment in Nb and Ta but depletion in Pb. Partial melting of such metasomatites started at ~121 Ma, giving rise to the mafic igneous rocks with juvenile OIB-like geochemical signatures. In this context, the age of ~121 Ma may terminate replacement of the ancient SCLM by the juvenile SCLM in North China. Paleo-Pacific slab was not subducted to the mantle transition zone in the Mesozoic as revealed by modern seismic tomography, and it was subducted at a low angle since the Jurassic, like the subduction of Nazca Plate beneath American continent. This flat subduction would not only chemically metasomatize the cratonic mantle but also physically erode the cratonic mantle. Therefore, the interaction between Paleo-Pacific slab and the cratonic mantle is the first-order geodynamic mechanism for the thinning and destruction of cratonic lithosphere in North China.  相似文献   

14.
Mahshar  Raza  MohdShamim  Khan  MohdSafdare  Azam 《Island Arc》2007,16(4):536-552
Abstract   The northern part of the Aravalli mountain belt of northwestern Indian shield is broadly composed of three Proterozoic volcano-sedimentary domains, i.e. the Bayana, the Alwar and the Khetri basins, comprising collectively the north Delhi fold belt. Major, trace and rare earth element concentrations of mafic volcanic rocks of the three basins exhibit considerable diversity. Bayana and Alwar volcanics are typical tholeiites showing close similarity with low Ti–continental flood basalts (CFB) with the difference that the former shows enriched and the latter flat incompatible trace element and rare earth element (REE) patterns. However, the Khetri volcanics exhibit a transitional composition between tholeiite and calc-alkaline basalts. It appears that the melts of Bayana and Alwar tholeiites were generated by partial melting of a common source within the spinel stability field possibly in the presence of mantle plume. During ascent to the surface the Bayana tholeiites suffered crustal contamination but the Alwar tholeiites erupted unaffected. Geochemically, the Khetri volcanics are arc-like basalts which were generated in a segment of mantle overlying a Proterozoic subduction zone. It is suggested that at about 1800 Ma the continental lithosphere in northeastern Rajasthan stretched, attenuated and fractured in response to a rising plume. The produced rifts have undergone variable degrees of crustal extension. The extension and attenuation of the crust facilitated shallowing of the asthenosphere which suffered variable degree of melting to produce tholeiitic melts – different batches of which underwent different degrees of lithospheric contamination depending upon the thickness of the crust in different rifted basins. The occurrence of subduction-related basaltic rocks of Khetri Belt suggests that a basin on the western margin of the craton developed into a mature oceanic basin.  相似文献   

15.
The Nanling Mountain is an important Mesozoic orogenic belt in the south of China, its E-W-trending granites and adjacent sedimentary basins form a dis-tinctive basin-mountain landform. The Nanxiong basin and the Zhuguang granite, both located in the northern Nanling belt, make up a typical basin-mountain sys-tem. Since the 1970s, a systematical research on gran-ites and their deposit ores was carried out, from that the two main viewpoints were proposed[1—5], including (1) the polyphase gr…  相似文献   

16.
Abstract : The Hidaka metamorphic belt consists of an island-arc assembly of lower to upper crustal rocks formed during early to middle Paleogene time and exhumed during middle Paleogene to Miocene time. The tectonic evolution of the belt is divided into four stages, D0rs, D1, D2rs, and D3, based on their characteristic deformation, metamorphism, and igneous activity. The premetamorphic and igneous stage (D0) involves tectonic thickening of an uppermost Cretaceous and earliest Tertiary accretionary complex, including oceanic materials in the lower part of the complex. D1 is the stage of prograde metamorphism with increasing temperatures at a constant pressure during an early phase, and with a slight decrease of pressure at the peak metamorphic phase, accompanying flattening of metamorphic rocks and intrusions of mafic to intermediate igneous rocks. At the peak, incipient partial melting of pelitic and psammitic gneisses took place in the amphibolite–granulite facies transition zone, the melt and residuals cutting the foliations formed by flattening. In the deep crust, large amounts of S-type tonalite magma formed by crustal anatexis, intruded into the granulite facies gneiss zone and also into the upper levels of the metamorphic sequence during the subsequent stage. During D1 stage, mafic and intermediate magmas supplied and transported heat to form the arc-type crust and at the same time, the magmatic underplating caused extensional doming of the crust, giving rise to flattening and vertical uplifting of the crustal rocks. D2 stage is characterized by subhorizontal top-to-the-south displacement and thrusting of lower to upper crustal rocks, forming a basal detachment surface (décollement) and duplex structures associated with intrusions of S-type tonalite. Deformation structures and textures of high-temperature mylonites formed along the décollement, as well as the duplex structures, show that the D2 stage movement occurred under a N-S trending compressional tectonic regime. The depth of intra-crustal décollement in the Hidaka belt was defined by the effect of multiplication of two factors, the fraction of partial melt which increases downward, and the fluid flux which decreases downward. The crustal décollement, however, might have extended to the crust-mantle boundary and/or to the lithosphere and asthenosphere boundary. The subhorizontal movement was transitional to a dextral-reverse-slip (dextral transpression) movement accompanied by low-temperature mylonitization with retrograde metamorphism, the stage defined as D3. The crustal rocks from the basal décollement to the upper were tilted eastward on the N–S axis and exhumed during the D3 stage. During D2 and D3 stages, the intrusion of crustal acidic magmas enhanced the crustal deformation and exhumation in the compressional and subsequent transpressional tectonic regime.  相似文献   

17.
Abstract The petrogenesis of the Ulsan carbonate rocks in the Mesozoic Kyongsang Basin of South Korea, which have previously been interpreted as limestone of Paleozoic age, is reconsidered in the present study. Within the Kyongsang Basin, a small volume of carbonate rocks, containing a magnetite deposit and spatially associated ultramafic rocks, is surrounded by sedimentary, volcanic and granitic rocks of the Mesozoic age. The simple cross‐cutting relationships and other outcrop features of the area indicate that the carbonate rocks are an intrusive phase and younger than the other surrounding Mesozoic rocks. The Ulsan carbonates have low concentrations of rare earth elements (REE) and trace elements with the carbon and oxygen isotope values in the range of δ13CPDB = 2.4 to 4.0‰ and δ18OSMOW = 17.0 to 19.5‰. Outcrop evidence and geochemical signatures indicate that the Ulsan carbonates were formed from crustal carbonate melts, which were generated by the melting/fluxing of crustal carbonate materials, caused by the emplacement‐related processes of alkaline A‐type granitic rocks. Compared to typical mantle‐derived carbonatites associated with silica‐undersaturated, strongly peralkaline systems, the relatively small size and geochemical characteristics of the Ulsan carbonates reflect carbonatite genesis in a silica‐saturated, weakly alkali intrusive system. Major deep‐seated tectonic fractures formed by the collapse of the cauldron or the rift system associated with the opening of the East Sea (Japan Sea) might have facilitated the ascent of the crustal carbonate melts.  相似文献   

18.
Researches over the last 20 years show that the orogenic belt remains rather active after plate colli-sion[1,2]. A complete orogenic cycle in the last period of the Wilson cycle can be defined by three stages of development[3]: (1) horizontal contraction and crustal thickening due to collision, as well as formation of topography and the crustal and lithospheric root; (2) eclogite facies metamorphism of the crustal root; and (3) delamination of the crustal root or lithospheric mantle, extension…  相似文献   

19.
As the core block of the East Gondwana Land, the East Antarctic Shield was traditionally thought, before 1992, as an amalgamation of a number of Archaean-Paleoproterozoic nuclei, be-ing welded by Grenville aged mobile belts during 1400—900 Ma, while the …  相似文献   

20.
Field, chronologic, chemical, and isotopic data for late Cenozoic basaltic rocks from the northwestern United States illustrate the relationship between crustal structure and tectonic forces in controlling the genesis and evolution of continental volcanism. In the northwestern U.S., the first major episode of basaltic volcanism was triggered by crustal rifting in a “back-arc” environment, east of the westward-migrating volcanic arc created by the subduction of the Juan-de-Fuca plate beneath the North American plate. Rifting and volcanism were concentrated by pre-existing zones of crustal weakness associated with boundaries between the old Archean core of the continent and newly accreted terranes. Basalts erupted during this time (Columbia River, Steens Mountain) show evidence of significant fractionation histories including contamination by crust of varying age depending on the crustal structure at the eruption site. Presumably this reflects ponding and stagnation of primary magmas in the crust or at the crust-mantle interface due to their encounter with thick crust, not yet extended and still containing its low-density, easily fusible component. Continued rifting of this crust, and modification of its composition through extraction of rhyolitic partial melts and deposition of the fractionation products from primary basaltic melts, coupled with a shift in stress orientation roughly 10.5 Ma ago, allowed relatively unfractionated and uncontaminated magmas to begin reaching the surface. In the western part of the region (Oregon Plateau), these magmas tapped a mantle source similar to that which produced most of the ocean island basalts of the northern hemisphere. To the east (Snake River Plain), however, the mantle sampled by basaltic volcanism has isotopic characteristics suggesting it has preserved a record of incompatible element enrichment processes associated with the formation of the overlying Archean crustal section some 2.6 Ga ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号