首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Limnological changes in Hamilton Harbour, Lake Ontario, over the Holocene were investigated by using proxy evidence from diatoms and other siliceous microfossils in a radiometrically dated sediment core (HH26comp), together with environmental data derived from sediment pollen and oxygen and carbon isotope analyses. The evidence demonstrates that the site of Hamilton Harbour has changed over the past 8300 y from a shallow, separate waterbody, to a deep embayment of Lake Ontario. The earliest evidence, from 8300 BP to 7000 BP, is of a mesotrophic pond of moderate alkalinity, warmer than present, and probably with an extensive marginal wetland. An initial transitory connection with the rising water level of Lake Ontario was established at c. 7000 BP, possibly via a deep outlet channel. This connection is 2000 y earlier then previously estimated. Permanent confluence with Lake Ontario was established at c. 6200 BP, causing a decline in inferred trophic level and water temperatures. Microfossils reach a minimum at 4400 BP coincident with the Nipissing Flood. Decreased mixing of Lake Ontario water from about 4000 BP following the Nipissing Flood highstand is evidenced in isotopic and diatom data. Three isolated shifts in the diatom spectrum at c. 4900 BP, 4500 BP, and 3500 BP may be associated with extreme turbidity or storm deposit events. Between 3200 BP and 280 BP, Hamilton Harbour was evidently a moderately alkaline embayment of Lake Ontario, oligotrophic to mesotrophic, and relatively cooler than present. The final 280 y sedimentary record reveals the magnitude of anthropogenically induced changes to the harbour, including eutrophication and organic pollution.  相似文献   

2.
Fossil diatoms were analysed from a 10.3 m core from Harris Lake, Cypress Hills, Saskatchewan, and a diatom-salinity transfer function was used to construct a history of Holocene salinity changes for the lake. The diatom paleosalinity record indicates that Harris Lake remained fresh <0.5 g l-1 throughout the Holocene, with only slight increases in salinity between approximately 6500 and 5200 years BP. This interval corresponds to the only period in the lake's history when planktonic diatoms were abundant; benthic Fragilaria taxa, mainly F. pinnata, F. construens and F. brevistriata were dominant throughout most of the Holocene. The shift from a benthic to a planktonic diatom flora between 6500 and 5200 years BP may be an indirect response to a warmer climate that reduced forest cover in the watershed and allowed greater rates of inorganic sedimentation. The small salinity increase that accompanies the floristic change is probably not the result of lower lake levels; in fact the lake was probably deeper at this point than in the later Holocene. This paleosalinity record indicates that Harris Lake did not experience episodes of hypersalinity during the mid-Holocene, as suggested by a previous study, and that the lake may have been fresh during the early Holocene as well.  相似文献   

3.
Diatoms, Cladocera, and chironomids preserved in the sediments of Lake Dalgoto were studied to reconstruct the history of the lake ecosystem in the context of the vegetation history as represented by the pollen stratigraphy. Younger Dryas silty sediments at the base of the core are characterized by low diversity of aquatic organisms. The transition to the Holocene is indicated by a sharp change from silt to clay-gyttja. The migration and expansion of trees at lower elevations between 10200 and 8500 14C-yr BP, along with higher diversities and concentrations of aquatic organisms and the decreased proportion of north-alpine diatoms, point to rapidly rising summer temperatures. After 6500 14C-yr BP the expansion of Pinus mugo in the catchment coincides with signs of natural eutrophication as recorded by an increase of planktonic diatoms. In the late Holocene (4000–0 14C-yr BP) Pinus peuce and Abies are reduced and Picea expands. Cereal grains and disturbance indicators suggest late-Holocene human modification of the vegetation.  相似文献   

4.
Diatoms, pollen, physical and magnetic analyses of the sediments have been used to reconstruct the development over the last 6000 years of Lake Bussjösjön, a small lake in southern Sweden. Stratigraphic variations in a core of more than 15 m reveal changes in diatom assemblages, which correspond closely to changes in pollen, loss-on-ignition, and magnetic measurements that are related to land use and vegetation changes in the catchment. From ca 6000 BP to 2700 BP, a forest surrounded what was then a slightly eutrophic lake. The sudden appearance of Cyclostephanos dubius (Fricke) Round and several epiphytic/epipsammic diatoms at 2700 BP coincides with deforestation of the catchment (2700 BP to 2500 BP). A change in land use from predominantly pasture to arable land from 1300 BP to 1100 BP caused a high level of soil erosion with a decrease of C. dubius and the increase of Stephanodiscus species. An increase of epiphytic/epipsammic species coincides with increased arable farming and the change from a field-rotation to a crop-rotation system, and shows not only an increase in eutrophication but also changes in water depth. The influence of the catchment through time resulted in a smaller, shallower and eutrophic to hypertrophic lake.  相似文献   

5.
We analysed a 620-cm-long sediment record from Lake Kotokel located in East Siberia (Russia) for subfossil diatoms, chironomids and pollen to provide a reconstruction of the climate history of the area for the last 12.2 kyr. The subfossil records show differing time lags in their responses to climate change; diatoms and chironomids were more sensitive to climate change than the pollen record. Changes in the biogenic proxies seem related with changes in insolation, the temperature of the North Atlantic and solar activity. The chironomids Chironomus plumosus-type and Einfeldia carbonaria-type and the diatom Aulacoseira granulata were interpreted as markers of warm climate condition. The proxy records were divided into four periods (A, B, C and D) suggesting differing climate in East Siberia during the Holocene. Period D (12.2–9.5 kyr BP) at the beginning of the Holocene, according to chironomid and diatom records, was characterized by warm climate with summer temperatures close to modern. However, forest vegetation had not become fully established yet. During Period C (9.5–5.8 kyr BP), the climate seemed to gradually become colder and wetter from the beginning of Period C to 7 kyr BP. From 7 to 5.8 kyr BP, the climate seemed to remain cold, but aridity increased. Period B (5.8–1.7 kyr BP) was characterised by frequent and sharp alternations between warm and cold conditions. Unstable conditions during this time are also registered in records from Lakes Baikal, Khubsugul and various other shallow lakes of the region. Optimal warm and wet conditions seemed to occur ca. 4 kyr BP. During Period A (the last 1.5 kyr) the diatom and chironomid records show evidence of cold conditions at 1.5–1 kyr BP, but the forest vegetation did not change significantly.  相似文献   

6.
Paleolimnological data are presented relating trophic development to sea level variation in Lake Blanca, a small (0.6 km2), coastal fresh waterbody in southern Uruguay. Using a sediment core that extended to 7300 years BP, analyses of grain size, thin sections, organic matter, carbonate, total carbon, nutrients, diatoms and palynomorphs, allowed us to infer changes in trophic state and paleosalinities, which were closely related to Holocene sea level variation. Higher trophic states were observed during regressive events, most probably due to increases in runoff and erosion as regression progressed. Four diatom association zones (DAZ) were identified in the sediment core. The basal core section pre-dated the first Holocene marine transgression, contained no diatoms, chrysophyte cysts or non-siliceous microalgae, and showed C/N ratios values higher than 20. Thus, it is likely that the system exhibited terrestrial characteristics. In the second section (6500–2200 years BP, following the first Holocene transgression), there was dominance of marine/brackish diatom species. The lowest trophic states of the core were observed in this section. The third section (2200–1100 years BP), represented the system as it became separate from the Atlantic Ocean, and showed a dominance of brackish/freshwater species and increases in trophic state were observed. In the last section (after 1100 years BP), the system became fully freshwater as no marine or brackish diatom species were found, but a trend to oligotrophication was observed, probably due to nutrient depletion. However, after 1967 AD, eutrophication intensified because of forestry and soil fertilization in the catchment. Pollen association zones (PAZ) allowed us to identify four sections. Below 250 cm (2200 years BP), the core contained no pollen grains as redox potential and pH values were not conducive for pollen preservation. After 2200 years BP (when the system started to separate from the ocean), xerophilic taxa typical of coastal dunes colonized the catchment. Only after 1100 years BP (after fully freshwater conditions established) pollen grains of trees were observed.  相似文献   

7.
The Holocene diatom and pollen records from Kelly’s Lough have been analysed to determine the timing and extent of the acidification in this upland lake. The pollen data during the early Holocene reflect the typical vegetation changes that occur in sediments throughout Ireland during this period. The diatom record begins by being dominated by circumneutral and acidophilous benthic forms. Later tychoplanktonic Aulacoseira species begin to expand and dominate indicating increased water transparency following the stabilization of catchment soils. Peatland development in the catchment is evident from approximately 6,450 cal year BP. The main change in the diatom assemblages at this time is the decline of Aulacoseira species and expansion of periphytic species. At around 1,450 cal year BP, loss-on-ignition (LOI) values, Calluna pollen and microscopic charcoal all increase suggesting the initiation of a major phase of peat erosion and an increased inwash of organic matter to the lake. Lake acidity changed significantly although the initial acidification is very subtle as indicated by the diatom-inferred pH record. Changes in the diatom assemblages might be largely the result of increasing erosion and inwash of organic matter from the catchment to the lake leading to reduced water transparency and more acidic conditions. The diatom flora remains relatively stable until the mid-twentieth century when more acidibiontic species increase. These diatom changes result in the reconstructed pH curve showing a moderate recent acidification from pH 5.7 to 5.1. About half of the total change in pH took place by around the late 1960s. The lowest diatom-inferred pH value occurs in the late 1970s, and parallels the peak in SO2 emissions in Ireland. Acidic conditions seem to have prevailed in Kelly’s Lough throughout its entire history and alkalinity has been low or absent for much of the time. However, soil acidification and inwash of organic acids from peatlands are not a sufficiently effective mechanism to explain the low pH levels found today in Kelly’s Lough. The effect of acid deposition on the waters of Kelly’s Lough is clear and it has probably caused these already naturally acid waters to acidify further.  相似文献   

8.
The late Quaternary diatom record from subalpine Crowfoot Lake, Banff National Park, Alberta (lat. 51° 61N; long. 116° 31W) has been analyzed. Results are related to independently inferred vegetation and climate changes. No diatoms were found in the basal diamict that predates 11330 14C yr BP. Very few occur until ca. 10 10014 C yr BP probably due to the short time between de-glaciation and an advance of the Crowfoot Glacier during the Younger Dryas Chron. Initial pioneering species were characteristic of alkaline water and calcareous organic sediments. They appeared as sediments became organic and laminated suggesting increasing water clarity, and as the Pinus-dominated forest expanded and the climate warmed. After ca. 9060 14C yr BP diatom numbers increased rapidly, reaching a maximum prior to the Mazama tephra; they remained high until ca. 3500 14C yr BP. The period between ca. 9060 and 3500 14C yr saw timberline elevation increase and the dominance of xerophytic taxa. These are consistent with early to mid-Holocene warmth and aridity. Diatom productivity reflects the warm climate and presumably longer ice-free season, a stable catchment and transparent water. Decreases in diatom productivity coincide with a vegetation change with reduction of xerophytic taxa and the appearance of a closed Picea-Abies forest, hence a cooler, wetter climate at ca. 4100 to 3500 14C yr BP. The diatom numbers during the Neoglacial were of the same magnitude as prior to ca. 9060 14C yr BP. Small species of Fragilaria (overwhelmingly Fragilaria construens v. venter) became extremely dominant during the period of high diatom productivity, and remained so thereafter. Recovery of the lake appears to have been rapid after deposition of the Mazama tephra. Maximum occurrence of Cyclotella radiosa occurred ca. 8000 14C yr BP during the warm early Holocene and may reflect this warmer climate, a longer ice-free season than presently, perhaps less turbid water, or it may reflect a subtly higher nutrient status of the lake water. The diatom record of Crowfoot Lake has responded with sensitivity, particularly in terms of productivity, to the Holocene vegetation and climate changes.  相似文献   

9.
This paper presents the first paleolimnological study of the postglacial development of a marl and peat complex on the Canadian Precambrian Shield. Ring Lake (48° 46 N, 85° 51 W), situated within the carbonate glacial drift area of northwestern Ontario, originated about 9000 BP in a basin exposed by the retreating waters of proglacial Lake Superior. The development of Ring Lake was interpreted from pollen and diatom analysis of one sediment core from the littoral zone and another core from near the lake centre.The sequence of postglacial vegetation development parallels published accounts of forest history in northern Ontario. The predominant diatom throughout the littoral core was the alkaliphilous Cymbella diluviana. The central core was dominated by circumneutral and alkaliphilous species of Achnanthes Navicula, Fragilaria, and Cymbella, except in recent samples where acidophilous species of Anomoeoneis were common.Diatom-inferred (DI) pH shows that the early lake was alkaline because of drainage from base-rich tills. The presence of marl in the littoral core indicates deposition of calcareous materials until the site dried out during the Hypsithermal period. There is evidence that beaver activity around 5000 BP caused a temporary change in lake hydrology. A decline in DI pH over much of the postglacial reflects gradual exhaustion of carbonates in the drainage area. An increase in acidophilous diatoms in samples representing the past 3500 y is consistent with gradual acidification of the system and development of a littoral peatland in a cooler neoglacial climate.  相似文献   

10.
Pollen and diatoms preserved in the radiocarbon dated sediments of Two Frog Lake in the Seymour-Belize Inlet Complex of the central mainland coast of British Columbia document postglacial climate change. Two Frog Lake was isolated from the sea prior to 11,040 ± 50 yr BP (13,030 cal. yr BP) when the climate was cool and dry, and open Pinus contorta woodlands covered the landscape. These woodlands were replaced by a mixed conifer forest ca. 10,200 yr BP (ca. 12,300 cal. yr BP) when the climate became moister. A relatively dry and warm early Holocene climate allowed Pseudotsuga menziesii to migrate northward to this site where it grew with Picea, Tsuga heterophylla and Alnus. The climate became cooler and moister at ca. 8,000 yr BP (ca. 9,200 cal. yr BP), approximately 500–1,000 years prior to sites located south of Two Frog Lake and on the Queen Charlotte Islands, but contemporary with sites on the northern mainland coast of British Columbia and south coastal Alaska. Climate heterogeneity in central coastal British Columbia appears to have occurred on a synoptic scale, suggesting that atmospheric dynamics linked to a variable Aleutian Low pressure system may have had an important influence on early Holocene climate change in the Seymour-Belize Inlet Complex. The transition to cooler and moister conditions facilitated the expansion of Cupressaceae and the establishment of a modern-type coastal temperate rainforest dominated by Cupressaceae and T. heterophylla. This was associated with progressive lake acidification. Diatom changes independent of vegetation change during the late Holocene are correlative with the mid-Neoglacial period, when cooler temperatures altered diatom communities.  相似文献   

11.
A 341 cm long sediment sequence was recovered from the unofficially named Raffles Sø on Raffles Ø, outer Scoresby Sund region, East Greenland. The sediment sequence consists in the upper part (0–230 cm) of a stratified gyttja enriched in organic carbon and biogenic silica whereas the lower core part (235–341 cm) is composed of terrigenous, consolidated glacio-limnic sediments. 14C-AMS measurements indicate that the sediment sequence represents the entire Holocene lake history from 10,030 calibrated radiocarbon years.The geochemical parameters (opal, total organic carbon (TOC), total nitrogen (TN)) and the total diatom concentration show similar developments during the Holocene, and reflect changes in biological production and nutrient input into the lake. These records clearly reveal a broad Holocene TOC-opal-maximum interval between 5200 and 1800 cal. yrs BP.The diatom flora consisted of 66 taxa representing 20 genera but only seven taxa were abundant and, sometimes, these were monospecifically dominant during the Holocene. In the sediment core from Raffles Sø four successive stratigraphical zones can be distinguished. Accumulation of diatom valves began at 9900 cal. yrs BP with a Stephanodiscus minutulus (Kütz.) Cleve and Möller dominated assemblage (stratigraphic zone 1) followed by a diatom flora dominated by Cyclotella pseudostelligera Hustedt and, less frequently, by Diatoma tenuis Agardh (9400 until 5900 cal. yrs BP, zone 2). Cyclotella sp. A, a taxon which belongs to the Cyclotella rossii-comensis-tripartita-complex, was the dominant floral element between 5200 and 1800 cal. yrs BP (zone 3). From 1800 cal. yrs BP, the periphytic taxa Fragilaria capucina var. gracilis (Østr.) Hustedt and F. capucina var. rumpens (Kütz.) Lange-Bertalot attained highest relative abundances, also almost monospecifically (zone 4).The distribution and composition of the diatom assemblages in the sediment record from Raffles Sø probably reflect past variations in the extent of the lake-ice cover during the growing season. More or less ice-free conditions during summer may have prevailed during the early Holocene until ca. 1800 cal. yrs BP, which allowed growth of planktonic diatoms (Cyclotella taxa) in the pelagic lake region. From 1800 cal. yrs BP, colder conditions lead to a perennial lake-ice cover with a small ice-free moat in summer which favored the growth of periphytic, littoral species (Fragilaria capucina varieties).  相似文献   

12.
We assess Holocene environmental change at alpine Lake Njulla(68°22N, 18°42E, 999 m a.s.l.) innorthernmost Sweden using sedimentary remains of chironomid head capsules anddiatoms. We apply regional calibration sets to quantitatively reconstruct meanJuly air temperature (using chironomids and diatoms) and lake-water pH(using diatoms). Both chironomids and diatoms infer highest temperatures(1.7–2.3°C above present-day estimates, includinga correction for glacio-isostatic land up-lift by0.6°C) during the early Holocene (c.9,500–8,500 cal. yrs BP). Diatoms suggest a decreasing lake-waterpH trend (c. 0.6 pH units) since the early Holocene. Usingdetrended canonical correspondence analysis (DCCA), we compare the Holocenedevelopment of diatom communities in Lake Njulla with four other nearby lakes(Lake 850, Lake Tibetanus, Vuoskkujávri, Vuolep Njakajaure) locatedalong an altitudinal gradient. All five lakes show similar initial DCCA scoresafter deglaciation, suggesting that similar environmental processes such ashigh erosion rates and low light availability associated with high summertemperature appear to have regulated the diatom community, favouring highabundances of Fragilaria species. Subsequently, the diatomassemblages develop in a directional manner, but timing and scale ofdevelopment differ substantially between lakes. This is attributed primarily todifferences in the local geology, which is controlling the lake-waterpH. Imposed on the basic geological setting, site-specific processessuch as vegetation development, climate, hydrological setting andin-lake processes appear to control lake development in northernSweden.  相似文献   

13.
Swan Lake is a small kettle lake located on the Oak Ridges Moraine; a moraine that is recognized as an important source of ground water for the nearby and rapidly expanding Greater Toronto Area. A paleolimnological reconstruction using pollen and diatoms from the lake sediments showed significant changes in biological community composition through the last ∼400 years. Alterations in the diatom and pollen assemblages were most dramatic ca. A.D. 1850, correlating with the highest sediment flux in the lake between the period ca. A.D. 1850 and A.D. 1870. These changes were directly linked to regional deforestation and agricultural activities associated with European settlement. The pollen record from ca. A.D. 1850 to present day indicated that tree species (e.g. Pinus spp., Tsuga canadensis) were declining, while grass (Poaceae) and invasive species (e.g. Ambrosia) were increasing. Around A.D. 1850, the diatom flora changed from an assemblage dominated by large, benthic species (e.g. Sellaphora pupula, Pinnularia cf. maior, and Stauroneis phoenicenteron) to an assemblage characterized by smaller, tychoplanktonic (e.g. Fragilaria tenera, Staurosirella pinnata) and epiphytic (e.g. Achnanthidium minutissimum, Rossithidium linearis) taxa. This diatom community change supports the intermediate disturbance hypothesis which predicts a high level of diversity and richness following an intermediate to intense disturbance of short duration. Phosphorus concentrations in Swan Lake were inferred using a diatom-based regional calibration model, and the results indicated marked changes in lake water chemistry through time (from below detection limits before land clearance and settlement to 19.3 μg l−1 in the current sediments), which were concurrent with episodes of regional deforestation and land-use change. Although the sediment and biological records indicate that the lake ecology has stabilized over the last 30–50 years, paleolimnological records show that the water quality and biology of Swan Lake has changed dramatically and not returned to pre-settlement conditions. Swan Lake presents a detailed record of the impact created by deforestation and urban development with a population of <50 individuals per km2. Detailed paleolimnological studies like Swan Lake, in tandem with global human footprint studies, can create realistic estimates of land-use impacts at the global scale.  相似文献   

14.
Changes in the diatom assemblages preserved in a sediment core taken from a small lake located north of arctic treeline on the western Taimyr Peninsula, Russia, were examined in order to investigate late Holocene (i.e., ca 5000 cal yr BP to present) climatic and environmental changes within the region. Early diatom assemblages were dominated by benthic Fragilaria taxa and indicate a transitional phase in the lake history, most likely reflecting lake development and environmental change associated with treeline retreat to the south of the study site. Concurrent with pollen and macrofossil evidence of a vegetation shift to shrub tundra in the catchment basin at ca 4200 cal yr BP, an increase in cold-water taxa, followed by little change in diatom assemblages until ca 2800 cal yr BP, suggests that conditions were relatively cool and stable at this time. The last 2000 years of the Middendorf Lake record have been marked by fluctuating limnological conditions, characterized by striking successional shifts between Fragilaria pinnata and Aulacoseira distans var. humilis. Recent conditions in Middendorf Lake indicate an increase in diatom taxa previously rare in the record, possibly associated with twentieth-century climatic warming. The Middendorf Lake record indicates that significant limnological change may occur in the absence of catchment vegetation shifts, suggesting late-Holocene decoupling of aquatic and terrestrial responses to climatic and hydrological change. Our study results represent one of the few paleoecological records currently available from northern Russia, and highlight the need for further development of calibration data sets from this region.  相似文献   

15.
Palaeolimnological and palynological records from climatically variable central Alberta, Canada, document periods of hypersaline lake conditions indicative of late glacial and early Holocene drought. The sensitivity of palaeolimnological indicators for inferring palaeoclimates is examined by comparing records from two sites at opposite ends of the regional precipitation gradient. Palaeosalinity is identified by the presence of Ruppia pollen, a hypersaline aquatic plant not presently growing in either lake, and diatom assemblages comprising both saline epipelic and planktonic species. Goldeye Lake (52° 27 N; 116° 12 W), in the relatively moist Rocky Mountain Foothills remained saline from its inception before ca 14500 years BP until ca 10400 years BP by which time pioneering forests had replaced tundra vegetation; however, freshwater planktonic diatoms dominated ca 12500 to 11500 years BP. However, dating problems endemic to the Foothills region make this chronology only tentative. Moore Lake (54° 30 N; 110° 30 N), in dry, east-central Alberta contained Ruppia only between ca 9000 and 6000 years BP. Freshwater diatoms dominated until ca 10000 years BP when they were succeeded by taxa characteristic of saline water. The lake remained saline until ca 6000 years BP. The late glacial period of palaeosalinity at Goldeye Lake occurred because the lake was surrounded by Cordilleran and Laurentide glacial ice, and therefore, cut off from moisture sources until the early Holocene by which time significant ice recession had occurred. Factors causing the second period of salinity remain unknown at this time. In contrast, by the early Holocene, Moore Lake was influenced by drought caused by high summer insolation induced by orbital fluctuations. Freshwater conditions were maintained through the Holocene in the Foothills region of west-central Alberta, but occurred consistently only over the last 4000 years in central and east-central Alberta. The warmer, drier climate during the early Holocene did affect lake levels in at least one headwater Foothills lake (Fairfax Lake — 52° 58 N; 116° 34 W). The severity of the drought increased in an easterly direction across the province.This publication is the fourth of a series of papers presented at the Conference on Sedimentary and Palaeolimnological Records of Saline Lakes. This Conference was held August 13–16, 1991 at the University of Saskatchewan, Saskatoon, Canada. Dr. Evans is serving as Guest Editor.  相似文献   

16.
Serpent River Bog lies north of North Channel, 10 m above Lake Huron and 15 m below the Nipissing Great Lake level. A 2.3 m Holocene sequence contains distinct alternating beds of inorganic clastic clay and organic peat that are interpreted as evidence of successive inundation and isolation by highstands and lowstands of the large Huron-Basin lake. Lowstand phases are confirmed by the presence of shallow-water pollen and plant macrofossil remains in peat units. Twelve 14C dates on peat, wood and plant macrofossils combined with previously published 14C ages of lake-level indicators confirm much of the known early Holocene lake-level history with one notable exception. A new Late Mattawa highstand (8,390 [9,400 cal]–8,220 [9,200 cal] BP) evidenced by a sticky blue-grey clay bed is tied to outburst floods of glacial Lake Minong during erosion of the Nadoway drift barrier in the eastern Lake Superior basin. A subsequent Late Mattawa highstand (8,110 [9,040 cal]–8,060 [8,970 cal] BP) is attributed to enhanced meltwater inflows that first had deposited thick varves throughout Superior Basin. Inundation by the Nadoway floods and possibly the last Mattawa flood were likely responsible for termination of the Olson Forest (southern Lake Michigan). A pollen diagram supports the recognized progression of Holocene vegetation, and defines a subzone implying a very dry, cool climate about 7.8–7.5 (8.6–8.3 cal) ka BP based on the Alnus crispa profile during the Late Stanley lowstand. A new date of 9,470 ± 25 (10,680–10,750 cal) BP on basal peat over lacustrine clay at Espanola West Bog supports the previous interpretation of the Early Mattawa highstand at ca. 9,500 (10,740 cal) BP. The organic and clastic sediment units at these two bogs are correlated with other records showing coherent evidence of Holocene repeated inundation and isolation around northern Lake Huron. Taken together the previous and new lake-level data suggest that the Huron and Georgian basin lakes were mainly closed lowstands throughout early Holocene time except for short-lived highstands. Three of the lowstands were exceptionally low, and likely caused three episodes of offshore sediment erosion which had been previously identified as seismo-stratigraphic sequence boundaries.  相似文献   

17.
West Hawk Lake (WHL) is located within the glacial Lake Agassiz basin, 140 km east of Winnipeg, Manitoba. The small lake lies in a deep, steep-sided, meteorite impact crater, which has been partly filled by 60 m of sediment that today forms a flat floor in the central part of the basin below 111 m of water. Four cores, 5–11 m in length, were collected using a Kullenberg piston gravity corer. All sediment is clay, contains no unconformities, and has low organic content in all but the upper meter. Sample analyses include bulk and clay mineralogy, major and minor elements, TOC, stable isotopes of C, N, and O, pollen, charcoal, diatoms, and floral and faunal macrofossils. The sequence is divided into four units based mainly on thickness and style of lamination, diatoms, and pollen. AMS radiocarbon dates do not provide a clear indication of age in the postglacial sequence; possible explanations include contamination by older organic inwash and downward movement of younger organic acids. A chronological framework was established using only selected AMS dates on plant macrofossils, combined with correlations to dated events outside the basin and paleotopographic reconstructions of Lake Agassiz. The 822 1-cm-thick varves in the lower 8 m of the cored WHL sequence were deposited just prior to 10,000 cal years BP (∼8,900 14C years BP), during the glacial Lake Agassiz phase of the lake. The disappearance of dolomite near the top of the varved sequence reflects the reduced influence of Lake Agassiz and the carbonate bedrock and glacial sediment in its catchment. The lowermost varves are barren of organisms, indicating cold and turbid glacial lake waters, but the presence of benthic and planktonic algae in the upper 520 varves indicates warming; this lake phase coincides with a change in clay mineralogy, δ18O and δ13C in cellulose, and in some other parameters. This change may have resulted from a major drawdown in Lake Agassiz when its overflow switched from northwest to east after formation of the Upper Campbell beach of that lake 9,300–9,400 14C years ago. The end of thick varve deposition at ∼10,000 cal years BP is related to the opening of a lower eastern outlet of Lake Agassiz and an accompanying drop in West Hawk Lake level. WHL became independent from Lake Agassiz at this time, sedimentation rates dropped, and only ∼2.5 m of sediment was deposited in the next 10,000 years. During the first two centuries of post-Lake Agassiz history, there were anomalies in the diatom assemblage, stable O and C isotopes, magnetic susceptibility, and other parameters, reflecting an unstable watershed. Modern oligotrophic conditions were soon established; charcoal abundance increased in response to the reduced distance to the shoreline and to warmer conditions. Regional warming after ∼9,500 cal years BP is indicated by pollen and diatoms as well as C and O isotope values. Relatively dry conditions are suggested by a rise in pine and decrease in spruce and other vegetation types between 9,500 and 5,000 cal years BP (∼8,500–4,400 14C years BP), plus a decrease in δ13Ccell values. After this, there was a shift to slightly cooler and wetter conditions. A large increase in organic content and change in elemental concentration in the past several thousand years probably reflects a decline in supply of mineral detritus to the basin and possibly an increase in productivity.  相似文献   

18.
Salinity fluctuations in lakes of semi-arid regions have long been recognised as indicators of palaeoclimatic change, and have provided a valuable line of evidence in palaeo-climatic reconstruction. In the present study, fossil remains of diatoms and midges were used to reconstruct salinity changes at Mahoney Lake from the early postglacial, through the early, mid and late Holocene. A transition from midges typical of a freshwater community (Protanypus, Sergentia, Heterotrissocladius, Cladopelma, Dicrotendipes) during the early postglacial, to those indicative of saline environments (Cricotopus/Orthocladius, Tanypus) occurred in the early Holocene. The midge-inferred salinity values reflected the shift from freshwater (0.031 g/L) immediately after deglaciation, to saline water (2.4 to 55.2 g/L) in subsequent periods. A less saline period was found to have occurred after 1000 yr BP, suggesting a cooler or wetter period. The diatom record indicates similar trends, with freshwater taxa (e.g.,Cyclotella bodanica var. aff.lemanica) dominating near the bottom of the core. Diatom-inferred salinities indicate that saline conditions (about 30 g/L) prevailed throughout subsequent Holocene time, although relatively fresh conditions are indicated following deposition of the Mazama Ash, and from about 1500 yr BP until the present day. Midge and diatom-inferred salinity reconstructions for Mahoney Lake compare favorably with each other, and with climate trends inferred from earlier palynological evidence. The palaeosalinity record thus contributes new data relevant to past climatic conditions, in a region where little data have previously been collected.  相似文献   

19.
A 2.5-m-long sediment core was retrieved from Lake Somaslampi, a small lake located in a kame field on the north slope of the Scandes Mountains in Finnish Lapland. Holocene environmental changes were inferred from the lithological, geochemical, pollen, diatom and Cladocera records stored in the lake sediment. The chronology was based on six radiocarbon AMS dates supported by a palynological control chronology. The sediment profile consists of a glacial sedimentary sequence truncated by a lacustrine one. A hiatus, tentatively correlated with climate cooling and advances of glaciers during the 8.2 ka yrs BP “Finse cooling Event”, occurs between these sequences. The glacial sequence was composed of fluvioglacial clastics, smoothly changing into glacio-lacustrine diatomaceous ooze deposited in a meromictic proglacial lake that covered the kame field. The meromixis was probably caused by the greater depth of the lake, the extended ice-cover, and the microbial mats covering large areas of the lake bottom. A distinct change in the biota of the glacio-lacustrine sediments indicates higher trophic conditions than during deposition of the fluvioglacial clastics. The late-Pleistocene vegetation was characterised by subarctic birch tundra vegetation (BetulaSalix–Ericaceae) with low biodiversity gradually changing to BetulaPinus dominance in the early Holocene. The lake was deep and had a diatom inferred pH ~ 7 indicated also by the dominance of planktonic Cladocera. The base of the lacustrine sediment sequence (6,650–6,300 cal. BP) consisted of loess-rich sediment indicating an increase in eolian activity. This is also supported by the pollen record, which is dominated by more long-distant taxa such as Alnus and Pinus, and by the increased C/N ratio of the sediment. After the initial meromictic phase of the lake, an abrupt lowering of the water level occurred. Lake Somaslampi was isolated from the larger Pre-Lake Somas basin and became holomictic, shallow, much warmer and more productive, until the deterioration of climate around 3,000 yr BP and the increased input of clastics from the tundra soils. The vegetation followed the general climatic trend by gradually changing from the dominance of Betula and Pinus to the dominance of more tundra-related vegetation like Poaceae and Cyperaceae. However, the higher frequencies of planktonic Cladocera and centric diatoms in the most recent sediments indicates higher trophic conditions, increased turbulence and a prolonged ice-free period, which can possibly be linked to the recent climate warming especially in areas of higher altitude and latitude.  相似文献   

20.
An estuarine sequence outcropping at La Ballenera Creek (BuenosAires Province), dated between 6,800 and 4,100 14C years BP, wasinvestigated for diatoms and molluscs. The sea level history along the BuenosAires coastline has been reconstructed from discrete beach ridge sequencesalong low-lying plains. The La Ballenera profile is located on a cliffcoast where a sequence recorded environmental changes. Fifty-eightdiatom species were grouped based on their salinity and life formcharacteristics. Cluster analysis allowed the division of the sequence intothree diatom zones. Mollusc tolerances were also used to discern theenvironmental changes induced by sea-level fluctuations. The base of thesequence recorded the initiation of the marine influence about6,790–6,200 years ago. Diatom assemblages consist ofbrackish-freshwater tychoplankton accompanied by brackish benthicdiatoms. Among the molluscs, the freshwater-brackish species Heleobiaparchappii dominates. Between 6,200 and ca. 4,800 14C years BP, anestuarine lagoon environment is indicated by benthic and epiphyticmarine-brackish diatoms, as well as by the estuarine snail Heleobiaaustralis. After 4,800 14C years BP, the diatom assemblages and therelative abundance of freshwater molluscs indicate a marshy environment withlower salinity content. The La Ballenera records the salinity changes thataffect an estuary that infilled during the 2,700 years after the maximum sealevel reached in mid-latitudes of South America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号