首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shergottites have provided abundant information on the volcanic and impact history of Mars. Northwest Africa (NWA) 14672 contributes to both of these aspects. It is a vesicular ophitic depleted olivine–phyric shergottite, with average plagioclase An61Ab39Or0.2. It is highly ferroan, with pigeonite compositions En49-25Fs41-61Wo10-14 like those of basaltic shergottites, for example, NWA 12335. Olivine (Fo53-15) has discrete ferroan overgrowths, more ferroan when in contact with plagioclase than when enclosed by pyroxene. The pyroxene (a continuum of augite, subcalcic augite, and pigeonite) is patchy, with ragged “cores” enveloped or invaded by ferroan pyroxene. Magma mixing may be responsible for capture of olivine and formation of pyroxene mantles. The plagioclase is maskelynite-like in appearance, but the original laths were (congruently) melted and the melt partly crystallized as fine dendrites. Most of the 14% vesicles occur within plagioclase. Olivine, pyroxene, and ilmenite occur in part as fine aggregates crystallized after congruent melting with limited subsequent liquid mixing. There are two fine-grained melt components, barred plagioclase with interstitial Fe-bearing phases, and glass with olivine dendrites, derived by melting of mainly plagioclase and mainly pyroxene, respectively. Rare silica particles contain coesite and/or quartz, and silica glass. The rock has experienced >50% melting, compatible with peak pressure >~65 GPa. It is the most highly shocked shergottite so far, at shock stage S6/7. It may belong to the group of depleted shergottites ejected at ~1 Myr from Tooting Crater.  相似文献   

2.
Abstract– A few relatively unbrecciated olivine‐rich diogenites consist of an equilibrium assemblage of olivine and magnesian orthopyroxene (harzburgite). More common diogenites with smaller amounts of olivine are breccias containing two distinct orthopyroxenes—one magnesian and one ferroan. These diogenites are mixtures of a harzburgite lithology that is more magnesian, with the “normal” orthopyroxenite lithology that is ferroan and may contain small amounts of plagioclase. Both lithologies likely formed by fractional crystallization in multiple plutons emplaced within the crust of asteroid 4 Vesta. Minor element trends in orthopyroxenes indicate that these plutons exhibited a range of compositions. We propose a revised taxonomy for the HED (howardites, eucrites, and diogenites) suite where all ultramafic samples are referred to as diogenites. Within this group, the prefixes dunitic, harzburgitic, and orthopyroxenitic are used to distinguish diogenites consisting of more than or equal to 90% olivine, olivine + orthopyroxene, and more than or equal to 90% orthopyroxene, respectively. The prefix polymict is used to describe brecciated mixtures of any of these rock types. The recognition that olivine is a significant phase in some diogenites is consistent with spectral interpretations of olivine in a deeply excavated crater on Vesta, and has important implications for the bulk composition and petrogenesis of that body.  相似文献   

3.
Tissint, a new unaltered piece of Martian volcanic materials, is the most silica‐poor and Mg‐Fe‐rich igneous rock among the “depleted” olivine‐phyric shergottites. Fe‐Mg zoning of olivine suggests equilibrium growth (<0.1 °C h?1) in the range of Fo80–56 and olivine overgrowth (Fo55–18) through a process of rapid disequilibrium (~1.0–5.0 °C h?1). The spatially extended (up to 600 μm) flat‐top Fe‐Mg profiles of olivine indicates that the early‐stage cooling rate of Tissint was slower than the other shergottites. The chemically metastable outer rim of olivine (55) consists of oscillatory phosphorus zoning at the impact‐induced melt domains and grew rapidly compared to the early to intermediate‐stage crystallization of the Tissint bulk. High‐Ca pyroxene to low‐Ca pyroxene and high‐Ca pyroxene to plagioclase ratios of Tissint are more comparable to the enriched basaltic and enriched olivine‐phyric shergottites. Dominance of augite over plagioclase induced augite to control the Ca‐buffer in the residual melt suppressing the plagioclase crystallization, which also caused a profound effect on the Al‐content in the late‐crystallized pyroxenes. Mineral chemical stability, phase‐assemblage saturation, and pressure–temperature path of evolution indicates that the parent magma entered the solidus and left the liquidus field at a depth of 40–80 km in the upper mantle. Petrogenesis of Tissint appears to be similar to LAR 06319, an enriched olivine‐phyric shergottite, during the early to intermediate stage of crystallization. A severe shock‐induced deformation resulted in remelting (10–15 vol%), recrystallization (most Fe‐rich phases), and exhumation of Tissint in a time scale of 1–8 yr. Tissint possesses some distinct characteristics, e.g., impact‐induced melting and deformation, forming phosphorus‐rich recrystallization rims of olivine, and shock‐induced melt domains without relative enrichment of LREEs compared to the bulk; and shared characteristics, e.g., modal composition and magmatic evolution with the enriched basaltic shergottites, evidently reflecting unique mantle source in comparison to the clan of the depleted members.  相似文献   

4.
Abstract— The low modal abundances of relict chondrules (1.8 vol%) and of coarse (i.e., ≥200 μm‐size) isolated mafic silicate grains (1.8 vol%) in Spade relative to mean H6 chondrites (11.4 and 9.8 vol%, respectively) show Spade to be a rock that has experienced a significant degree of melting. Various petrographic features (e.g., chromite‐plagioclase assemblages, chromite veinlets, silicate darkening) indicate that melting was caused by shock. Plagioclase was melted during the shock event and flowed so that it partially to completely surrounded nearby mafic silicate grains. During crystallization, plagioclase developed igneous zoning. Low‐Ca pyroxene that crystallized from the melt (or equilibrated with the melt at high temperatures) acquired relatively high amounts of CaO. Metallic Fe‐Ni cooled rapidly below the Fe‐Ni solvus and transformed into martensite. Subsequent reheating of the rock caused transformation of martensite into abundant duplex plessite. Ambiguities exist in the shock stage assignment of Spade. The extensive silicate darkening, the occurrence of chromite‐plagioclase assemblages, and the impact‐melted characteristics of Spade are consistent with shock stage S6. Low shock (stage S2) is indicated by the undulose extinction and lack of planar fractures in olivine. This suggests that Spade reached a maximum prior shock level equivalent to stage S6 and then experienced post‐shock annealing (probably to stage S1). These events were followed by a less intense impact that produced the undulose extinction in the olivine, characteristic of shock stage S2. Annealing could have occurred if Spade were emplaced near impact melts beneath the crater floor or deposited in close proximity to hot debris within an ejecta blanket. Spade firmly establishes the case for post‐shock annealing. This may have been a common process on OC asteroids.  相似文献   

5.
Abstract— The petrographic relationships in diogenites between orthopyroxene and minor phases such as chromite, troilite, diopside, plagioclase, and silica are often obscured by the intense brecciation that characterizes these meteorites. Although brecciated, Bilanga preserves numerous clasts displaying primary textural relations between orthopyroxene and these minor phases that are large enough to analyze by electron microprobe. In this study, we focus on the distribution, composition, and origin of the minor phases in Bilanga to provide new insights into the crystallization and metamorphic history of these rocks. The samples examined consist mainly of orthopyroxene grains plus five types of assemblages containing diopside + a Fe‐rich phase (chromite, troilite, and/or Fe‐Ni metal) ± plagioclase ± silica. We interpret type 1 assemblages as being remnants of intercumulus melt trapped in the interstices between orthopyroxene grains after crystal settling in a magma chamber. Type 2 assemblages appear to have formed by heterogeneous exsolution during thermal metamorphism. Type 3 assemblages are believed to be remnants of other assemblages that have been shocked, melted, and rapidly recrystallized by impact events. Type 4 assemblages consist of veins that also appear to have formed from trapped intercumulus melt. Regions of silica‐rich mesostasis (type 5) appear to be larger patches of more evolved intercumulus melt that have been significantly affected by late‐stage impact melting. Finally, large clasts containing plagioclase ± diopside are interpreted to be exotic fragments of a different but possibly related rock type incorporated in the Bilanga breccia.  相似文献   

6.
Abstract— We petrologically examined the Miller Range (MIL) 03346 nakhlite. The main‐phase modal abundances are 67.7 vol% augite, 0.8 vol% olivine, and 31.5 vol% mesostasis. Among all known nakhlites, MIL 03346's modal abundance of olivine is the smallest and of mesostasis is the largest. Augite occurs as cumulus phenocrysts having a homogeneous core composition (En36–38Fs24–22Wo40), which is identical with other nakhlites. They accompany thin ferroan rims divided into inner and outer rims with a compositional gap at the boundary between the two rims. Olivine grains have magnesian cores (Fa ≥ 55) and show normal zoning toward ferroan rims (Fa ≤ 84). Mesostasis consists mostly of glass (26.0 vol%) with minor skeletal fayalites, skeletal titanomagnetites, acicular phosphate, massive cristobalite, and sulfides. We conclude that MIL 03346 is the most rapidly cooled nakhlite among all known nakhlites based on the petrography. We obtain the intercumulus melt composition for MIL 03346 from the mass balance calculation using the modal abundances and discuss the crystallization sequence of MIL 03346 in comparison with that of Yamato (Y‐) 000593. Although magnesian olivines of Y‐000593 are phenocrystic, magnesian olivine grains of MIL 03346 seem to have texturally crystallized from the intercumulus melt. After the MIL 03346 magma intruded upward to the Martian surficial zone, the magnesian olivine crystallized, and then the ferroan inner rim formed on phenocrystic core augite. The outer rim of phenocrystic augites formed after the crystallization of skeletal fayalites and skeletal titanomagnetites, resulting in a compositional gap between the inner and outer rims. Finally, glassy mesostasis formed from the residual melt. This crystallization sequence of MIL 03346 is different from those of other nakhlites, including Y‐000593.  相似文献   

7.
The CM carbonaceous chondrite meteorites experienced aqueous alteration in the early solar system. They range from mildly altered type 2 to almost completely hydrated type 1 chondrites, and offer a record of geochemical conditions on water‐rich asteroids. We show that CM1 chondrites contain abundant (84–91 vol%) phyllosilicate, plus olivine (4–8 vol%), magnetite (2–3 vol%), Fe‐sulfide (<5 vol%), and calcite (<2 vol%). The CM1/2 chondrites contain phyllosilicate (71–88 vol%), olivine (4–20 vol%), enstatite (2–6 vol%), magnetite (2–3 vol%), Fe‐sulfides (1–2 vol%), and calcite (~1 vol%). As aqueous alteration progressed, the abundance of Mg‐serpentine and magnetite in the CM chondrites increased. In contrast, calcite abundances in the CM1/2 and CM1 chondrites are often depleted relative to the CM2s. The modal data support the model, whereby metal and Fe‐rich matrix were the first components to be altered on the CM parent body(ies), before further hydration attacked the coarser Mg‐rich silicates found in chondrules and fragments. Based on the absence of tochilinite, we suggest that CM1 chondrites experienced increased alteration due to elevated temperatures (>120 °C), although higher water/rock ratios may also have played a role. The modal data provide constraints for interpreting the composition of asteroids and the mineralogy of samples returned from these bodies. We predict that “CM1‐like” asteroids, as has been proposed for Bennu—target for the OSIRIS‐REx mission—will have a high abundance of Mg‐rich phyllosilicates and Fe‐oxides, but be depleted in calcite.  相似文献   

8.
Caleta el Cobre (CeC) 022 is a Martian meteorite of the nakhlite group, showing an unbrecciated cumulate texture, composed mainly of clinopyroxene and olivine. Augite shows irregular core zoning, euhedral rims, and thin overgrowths enriched in Fe relative to the core. Low‐Ca pyroxene is found adjacent to olivine. Phenocrysts of Fe‐Ti oxides are titanomagnetite with exsolutions of ilmenite/ulvöspinel. Intercumulus material consists of both coarse plagioclase and fine‐grained mesostasis, comprising K‐feldspars, pyroxene, apatite, ilmenite, Fe‐Ti oxides, and silica. CeC 022 shows a high proportion of Martian aqueous alteration products (iddingsite) in olivine (45.1 vol% of olivine) and mesostasis. This meteorite is the youngest nakhlite with a distinct Sm/Nd crystallization age of 1.215 ± 0.067 Ga. Its ejection age of 11.8 ± 1.8 Ma is similar to other nakhlites. CeC 022 reveals contrasted cooling rates with similarities with faster cooled nakhlites, such as Northwest Africa (NWA) 817, NWA 5790, or Miller Range 03346 nakhlites: augite irregular cores, Fe‐rich overgrowths, fine‐grained K‐feldspars, quenched oxides, and high rare earth element content. CeC 022 also shares similarities with slower cooled nakhlites, including Nakhla and NWA 10153: pyroxene modal abundance, pyroxenes crystal size distribution, average pyroxene size, phenocryst mineral compositions, unzoned olivine, and abundant coarse plagioclase. Moreover, CeC 022 is the most magnetic nakhlite and represents an analog source lithology for the strong magnetization of the Martian crust. With its particular features, CeC 022 must originate from a previously unsampled sill or flow in the same volcanic system as the other nakhlites, increasing Martian sample diversity and our knowledge of nakhlites.  相似文献   

9.
Abstract– The absence of dunite (>90 vol% olivine) in the howardite, eucrite, and diogenite (HED) meteorite suite, when viewed with respect to spectroscopic and petrologic evidence for olivine on Vesta, is problematic. Herein, we present petrologic, geochemical, and isotopic evidence confirming that Miller Range (MIL) 03443, containing 91 vol% olivine, should be classified with the HED clan rather than with mesosiderites. Similarities in olivine and pyroxene FeO/MnO ratios, mineral compositions, and unusual mineral inclusions between MIL 03443 and the diogenites support their formation on a common parent body. This hypothesis is bolstered by oxygen isotopic and bulk geochemical data. Beyond evidence for its reclassification, we present observations and interpretations that MIL 03443 is probably a crustal cumulate rock like the diogenites, rather than a sample of the Vestan mantle.  相似文献   

10.
The asteroid 4 Vesta is one of the very few heavenly bodies to have been linked to samples on Earth: the howardite‐eucrite‐diogenite (HED) meteorite suite. This large and diverse suite of meteorites provides a detailed picture of Vesta's igneous and postigneous history. We have used the range of igneous rock types and compositions in the HED suite to test a series of chemical models for solidification processes following peak melting (magma ocean) conditions on Vesta. Fractional crystallization cannot have been a dominant early process in the magma ocean because it leads to excessive Fe‐enrichment in the melt. Models that are dominated by equilibrium crystallization cannot produce orthopyroxene cumulates (diogenites). Our best models invoke 60–70% equilibrium crystallization of a magma ocean followed by continuous extraction of the residual melt into shallow magma chambers. Fractional crystallization in these magma chambers combined with continuous or periodic addition of more melt from the slowly compacting crystal mush (magmatic recharge) can produce all of the igneous HED lithologies (noncumulate and cumulate eucrites, diogenites, dunites, harzburgites, and olivine diogenites). Magmatic recharge can also explain the narrow range in eucrite compositions and the variability of incompatible trace element concentrations in diogenites. We predict an internal structure for Vesta that permits excavation of the HEDs during the formation of the Rheasilvia basin, while remaining consistent with observations from the Dawn mission and most impact models.  相似文献   

11.
Abstract— Sayh al Uhaymir (SaU) 300 comprises a microcrystalline igneous matrix (grain size <10 μm), dominated by plagioclase, pyroxene, and olivine. Pyroxene geothermometry indicates that the matrix crystallized at ?1100 °C. The matrix encloses mineral and lithic clasts that record the effects of variable levels of shock. Mineral clasts include plagioclase, low‐ and high‐Ca pyroxene, pigeonite, and olivine. Minor amounts of ilmenite, FeNi metal, chromite, and a silica phase are also present. A variety of lithic clast types are observed, including glassy impact melts, impact‐melt breccias, and metamorphosed impact melts. One clast of granulitic breccia was also noted. A lunar origin for SaU 300 is supported by the composition of the plagioclase (average An95), the high Cr content in olivine, the lack of hydrous phases, and the Fe/Mn ratio of mafic minerals. Both matrix and clasts have been locally overprinted by shock veins and melt pockets. SaU 300 has previously been described as an anorthositic regolith breccia with basaltic components and a granulitic matrix, but we here interpret it to be a polymict crystalline impact‐melt breccia with an olivine‐rich anorthositic norite bulk composition. The varying shock states of the mineral and lithic clasts suggest that they were shocked to between 5–28 GPa (shock stages S1–S2) by impact events in target rocks prior to their inclusion in the matrix. Formation of the igneous matrix requires a minimum shock pressure of 60 GPa (shock stage >S4). The association of maskelynite with melt pockets and shock veins indicates a subsequent, local 28–45 GPa (shock stage S2–S3) excursion, which was probably responsible for lofting the sample from the lunar surface. Subsequent fracturing is attributed to atmospheric entry and probable breakup of the parent meteor.  相似文献   

12.
Abstract— The Rumuruti meteorite shower fell in Rumuruti, Kenya, on 1934 January 28 at 10:43 p.m. Rumuruti is an olivine-rich chondritic breccia with light-dark structure. Based on the coexistence of highly recrystallized fragments and unequilibrated components, Rumuruti is classified as a type 3–6 chondrite breccia. The most abundant phase of Rumuruti is olivine (mostly Fa~39) with about 70 vol%. Feldspar (~14 vol%; mainly plagioclase), Ca-pyroxene (5 vol%), pyrrhotite (4.4 vol%), and pentlandite (3.6 vol%) are major constituents. All other phases have abundances below 1 vol%, including low-Ca pyroxene, chrome spinels, phosphates (chlorapatite and whitlockite), chalcopyrite, ilmenite, tridymite, Ni-rich and Ge-containing metals, kamacite, and various particles enriched in noble metals like Pt, Ir, arid Au. The chemical composition of Rumuruti is chondritic. The depletion in refractory elements (Sc, REE, etc.) and the comparatively high Mn, Na, and K contents are characteristic of ordinary chondrites and distinguish Rumuruti from carbonaceous chondrites. However, S, Se, and Zn contents in Rumuruti are significantly above the level expected for ordinary chondrites. The oxygen isotope composition of Rumuruti is high in δ17O (5.52 ‰) and δ18O (5.07 ‰). Previously, a small number of chondritic meteorites with strong similarities to Rumuruti were described. They were called Carlisle Lakes-type chondrites and they comprise: Carlisle Lakes, ALH85151, Y-75302, Y-793575, Y-82002, Acfer 217, PCA91002, and PCA91241, as well as clasts in the Weatherford chondrite. All these meteorites are finds from hot and cold deserts having experienced various degrees of weathering. With Rumuruti, the first meteorite fall has been recognized that preserves the primary mineralogical and chemical characteristics of a new group of meteorites. Comparing all chondrites, the characteristic features can be summarized as follows: (a) basically chondritic chemistry with ordinary chondrite element patterns of refractory and moderately volatile lithophiles but higher abundances of S, Se, and Zn; (b) high degree of oxidation (37–41 mol% Fa in olivine, only traces of Fe, Ni-metals, occurrence of chalcopyrite); (c) exceptionally high Δ17O values of about 2.7 for bulk samples; (d) high modal abundance of olivine (~70 vol%); (e) Ti-Fe3+?rich chromite (~5.5 wt% TiO2); (f) occurrence of various noble metal-rich particles; (g) abundant chondritic breccias consisting of equilibrated clasts and unequilibrated lithologies. With Rumuruti, nine meteorite samples exist that are chemically and mineralogically very similar. These meteorites are attributed to at least eight different fall events. It is proposed in this paper to call this group R chondrites (rumurutiites) after the first and only fall among these meteorites. These meteorites have a close relationship to ordinary chondrites. However, they are more oxidized than any of the existing groups of ordinary chondrites. Small, but significant differences in chemical composition and in oxygen isotopes between R chondrites and ordinary chondrites exclude formation of R chondrites from ordinary chondrites by oxidation. This implies a separate, independent R chondrite parent body.  相似文献   

13.
Pecora Escarpment 91002: A member of the new Rumuruti (R) chondrite group   总被引:1,自引:0,他引:1  
Abstract— Pecora Escarpment (PCA)91002 is a light/dark-structured chondrite breccia related to Carlisle Lakes and Rumuruti; the meteorite contains ~10–20 vol% equilibrated (type ?5 and ?6) clasts within a clastic groundmass, much of which was metamorphosed to type-3.8 levels. The olivine compositional distribution forms a tight cluster that peaks at Fa38–40; by contrast, low-Ca pyroxene compositions are highly variable. Opaque phases identified in PCA91002 and its paired specimen, PCA91241, include pyrrhotite, pentlandite, pyrite, chromite, ilmenite, metallic Cu and magnetite. The majority of the rock is of shock stage S3-S4; there are numerous sulfide-rich shock veins and 50-μm plagioclase melt pockets. Instrumental neutron activation analysis shows that, unlike Carlisle Lakes and ALH85151, PCA91002 exhibits no Ca enrichment or Au depletion; because PCA91002 is relatively unweathered, it seems probable that the Ca and Au fractionations in Carlisle Lakes and ALH85151 were caused by terrestrial alteration. The Rumuruti-like (formerly Carlisle-Lakes-like) chondrites now include eight separate meteorites. Their geochemical and petrographic similarities suggest that they constitute a distinct chondrite group characterized by unfractionated refractory lithophile abundances (0.95 ± 0.05x CI), high bulk Δ17O, a low chondrule/groundmass modal abundance ratio, mean chondrule diameters in the 400 ± 100 μm range, abundant NiO-bearing ferroan olivine, sodic plagioclase, titanian chromite, abundant pyrrhotite and pentlandite and negligible metallic Fe-Ni. We propose that this group be called R chondrites after Rumuruti, the only fall. The abundant NiO-bearing ferroan olivine grains, the occurrence of Cu-bearing sulfide, and the paucity of metallic Fe-Ni indicate that R chondrites are highly oxidized. It is unlikely that appreciable oxidation took place on the parent body because of the essential lack of plausible oxidizing agents (e.g., magnetite or hydrated silicates). Therefore, oxidation of R chondrite material must have occurred in the nebula. A few type-I porphyritic olivine chondrules containing olivine grains with cores of Fa3–4 composition occur in PCA91002; these chondrules probably formed initially as metallic-Fe-Ni-bearing objects at high nebular temperatures. As temperatures decreased and more metallic Fe was oxidized, these chondrules accreted small amounts of oxidized material and were remelted. The ferroan compositions of the >5-μm olivine grains in the R chondrites reflect equilibration with fine-grained FeO-rich matrix material during parent body metatnorphism.  相似文献   

14.
Grove Mountains (GRV) 020090 is an enriched lherzolitic shergottite, distinct from other lherzolitic shergottites, except RBT 04262/1. Its characteristics include high abundance of plagioclase (24.2 vol% in the nonpoikilitic area), presence of K‐feldspar, common occurrence of baddeleyite, high FeO contents of olivine (bimodal peaks at Fa 33 mol% and Fa 41 mol%) and low‐Ca pyroxenes (bimodal peaks at Fs 23.8–31.7 mol% and Fs 25.7–33.9 mol%), and significant LREE enrichment of phosphates (500–610 × CI). The bulk composition of GRV 020090 suggests derivation from partial melting of an enriched reservoir. However, the REE patterns of the cores of pigeonite oikocrysts and the olivine chadacrysts are indistinguishable from those of GRV 99027 and other moderately depleted lherzolitic shergottites, and reveal a LREE‐depleted pattern of the primordial parent magma. We propose that the primordial parent magma of GRV 020090 was derived from a moderately depleted Martian upper mantle reservoir, and later the residual melt was contaminated by oxidized and enriched Martian crustal materials as it ascended up to the subsurface. GRV 020090 and RBT 04262/1 may have sampled an igneous unit different from other lherzolitic shergottites.  相似文献   

15.
Abstract— Sayhal Uhaymir (SaU) 094 is a 223.3 g, partially crusted, strongly to very strongly shocked melanocratic olivine-porphyric rock of the shergottite group showing a microgabbroic texture. The rock consists of pyroxene (52.0–58.2 vol%)—dominantly prismatic pigeonite (En60–68Fs20–27Wo7–9) associated with minor augite (En46–49Fs15–16Wo28–31)—brown (shock-oxidized) olivine (Fo65–69; 22.1–31%), completely isotropic interstitial plagioclase glass (maskelynite; An50–64Or0.3-0.9; 8.6–13.0%), chromite and titanian magnesian chromite (0.9-1.0%), traces of ilmenite (Ilm80–86), pyrrhotite (Fe92–100; 0.1-0.2%), merrillite (<<0.1%), and pockets (4.8-6.7%) consisting of green basaltic to basaltic andesitic shock glass that is partially devitrified into a brown to black product along boundaries with the primary minerals. The average maximum dimensions of minerals are: olivine (1.5 mm), pyroxene (0.3 mm) and maskelynite (0.3 mm). Primary melt inclusions in olivine and chromite are common and account for 0.1-0.6% of the rock. X-ray tomography revealed that the specimen contains ˜0.4 vol% of shock-melt associated vesicles, up to 3 mm in size, which show a preferred orientation. Fluidization of the maskelynite, melting and recrystallization of pyroxene, olivine and pyrrhotite indicate shock stage S6. Minor terrestrial weathering resulted in calcite-veining and minor oxidation of sulfides. The meteorite is interpreted as paired with SaU 005/008/051. The modal composition is similar to Dar al Gani 476/489/670/735/876, with the exception that neither mesostasis nor titanomagnetite nor apatite are present and that all phases show little zonation. The restricted mineral composition, predominance of chromite among the oxides, and abundance of olivine indicate affinities to the lherzolitic shergottites.  相似文献   

16.
Abstract– Northwest Africa (NWA) 4797 is an ultramafic Martian meteorite composed of olivine (40.3 vol%), pigeonite (22.2%), augite (11.9%), plagioclase (9.1%), vesicles (1.6%), and a shock vein (10.3%). Minor phases include chromite (3.4%), merrillite (0.8%), and magmatic inclusions (0.4%). Olivine and pyroxene compositions range from Fo66–72,En58–74Fs19–28Wo6–15, and En46–60Fs14–22Wo34–40, respectively. The rock is texturally similar to “lherzolitic” shergottites. The oxygen fugacity was QFM?2.9 near the liquidus, increasing to QFM?1.7 as crystallization proceeded. Shock effects in olivine and pyroxene include strong mosaicism, grain boundary melting, local recrystallization, and pervasive fracturing. Shock heating has completely melted and vesiculated igneous plagioclase, which upon cooling has quench‐crystallized plagioclase microlites in glass. A mm‐size shock melt vein transects the rock, containing phosphoran olivine (Fo69–79), pyroxene (En44–51Fs14–18Wo30–42), and chromite in a groundmass of alkali‐rich glass containing iron sulfide spheres. Trace element analysis reveals that (1) REE in plagioclase and the shock melt vein mimics the whole rock pattern; and (2) the reconstructed NWA 4797 whole rock is slightly enriched in LREE relative to other intermediate ultramafic shergottites, attributable to local mobilization of melt by shock. The shock melt vein represents bulk melting of NWA 4797 injected during pressure release. Calculated oxygen fugacity for NWA 4797 indicates that oxygen fugacity is decoupled from incompatible element concentrations. This is attributed to subsolidus re‐equilibration. We propose an alternative nomenclature for “lherzolitic” shergottites that removes genetic connotations. NWA 4797 is classified as an ultramafic poikilitic shergottite with intermediate trace element characteristics.  相似文献   

17.
Abstract— NWA 2526 is a coarse‐grained, achondritic rock dominated by equigranular grains of polysynthetically twinned enstatite (?85 vol%) with frequent 120° triple junctions and ?10–15 vol% of kamacite + terrestrial weathering products. All other phases including troilite, daubreelite, schreibersite, and silica‐normative melt areas make up 相似文献   

18.
Abstract– We evaluate the chemical and physical conditions of metamorphism in ordinary chondrite parent bodies using X‐ray diffraction (XRD)‐measured modal mineral abundances and geochemical analyses of 48 type 4–6 ordinary chondrites. Several observations indicate that oxidation may have occurred during progressive metamorphism of equilibrated chondrites, including systematic changes with petrologic type in XRD‐derived olivine and low‐Ca pyroxene abundances, increasing ratios of MgO/(MgO+FeO) in olivine and pyroxene, mean Ni/Fe and Co/Fe ratios in bulk metal with increasing metamorphic grade, and linear Fe addition trends in molar Fe/Mn and Fe/Mg plots. An aqueous fluid, likely incorporated as hydrous silicates and distributed homogeneously throughout the parent body, was responsible for oxidation. Based on mass balance calculations, a minimum of 0.3–0.4 wt% H2O reacted with metal to produce oxidized Fe. Prior to oxidation the parent body underwent a period of reduction, as evidenced by the unequilibrated chondrites. Unlike olivine and pyroxene, average plagioclase abundances do not show any systematic changes with increasing petrologic type. Based on this observation and a comparison of modal and normative plagioclase abundances, we suggest that plagioclase completely crystallized from glass by type 4 temperature conditions in the H and L chondrites and by type 5 in the LL chondrites. Because the validity of using the plagioclase thermometer to determine peak temperatures rests on the assumption that plagioclase continued to crystallize through type 6 conditions, we suggest that temperatures calculated using pyroxene goethermometry provide more accurate estimates of the peak temperatures reached in ordinary chondrite parent bodies.  相似文献   

19.
Abstract— Plagioclase in the Martian lherzolitic shergottite Grove Mountains (GRV) 99027 was shocked, melted, and recrystallized. The recrystallized plagioclase contains lamellae of pyroxene, olivine, and minor ilmenite (<1 μm wide). Both the pyroxene and the olivine inclusions enclosed in plagioclase and grains neighboring the plagioclase were partially melted into plagioclase melt pools. The formation of these lamellar inclusions in plagioclase is attributed to exsolution from recrystallizing melt. Distinct from other Martian meteorites, GRV 99027 contains no maskelynite but does contain recrystallized plagioclase. This shows that the meteorite experienced a slower cooling than maskelynite‐bearing meteorites. We suggest that the parent rock of GRV 99027 could have been embedded in hot rocks, which facilitated a more protracted cooling history.  相似文献   

20.
An amoeboid olivine inclusion in CK3 NWA 1559 (0.54 × 1.3 mm) consists of a diopside‐rich interior (approximately 35 vol%) and an olivine‐rich rim (approximately 65 vol%). It is the first AOI to be described in CK chondrites; the apparent paucity of these inclusions is due to extensive parent‐body recrystallization. The AOI interior contains irregular 3–15 μm‐sized Al‐bearing diopside grains (approximately 70 vol%), 2–20 μm‐sized pores (approximately 30 vol%), and traces of approximately 2 μm plagioclase grains. The 75–160 μm‐thick rim contains 20–130 μm‐sized ferroan olivine grains, some with 120º triple junctions. A few coarse (25–50 μm‐sized) patches of plagioclase with 2–18 μm‐thick diopside rinds occur in several places just beneath the rim. The occurrence of olivine rims around AOI‐1 and around many AOIs in CV3 Allende suggests that CK and CV AOIs formed by the acquisition of porous forsteritic rims around fine‐grained, rimless CAIs that consisted of diopside, anorthite, melilite, and spinel. Individual AOIs in carbonaceous chondrites may have formed after transient heating events melted their olivine rims as well as portions of the underlying interiors. In AOI‐1, coarse plagioclase grains with diopside rinds crystallized immediately below the olivine rim. Secondary parent‐body alteration transformed forsterite in the rims of CV and CK AOIs into more‐ferroan olivine. Some of the abundant pores in the interior of AOI‐1 may have formed during aqueous alteration after fine‐grained melilite and anorthite were leached out. Chondrite groups with large chondrules tend to have large AOIs. AOIs that formed in dust‐rich nebular regions (where CV and CK chondrites later accreted) tend to be larger than AOIs from less‐dusty regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号