首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Transmission-electron-microscopy (TEM) and optical data suggest that chondrules in the Chainpur (LL3.4) chondrite experienced varied thermal and deformation histories prior to the final agglomeration of the meteorite. Chainpur may be regarded as an agglomerate or breccia that experienced little deformation or heating during and after the final accumulation and compaction of its constituents. One chondrule in Chainpur was impact-shocked to high pressures (~ 20–50 GPa), almost certainly prior to final agglomeration, either while it was an independent entity in space or while it was in the regolith of a parent body. However, most (>85%) of the chondrules in Chainpur were evidently not significantly shock-metamorphosed subsequent to their formation. The dearth of shock effects implies that most chondrules in Chainpur did not form by shock melting, although some chondrules may have formed by this process. Dusty-metal-bearing olivine grains, which are widely interpreted to have escaped melting during chondrule formation, contain moderate densities of dislocations (~ 108 cm?2). The dislocations in these grains were introduced before or during the last episode of melting in at least one chondrule. This observation can be explained if olivine was impact-deformed before or during chondrule formation, or if olivine was strained by reduction or thermally-induced processes during chondrule formation. Low-Ca pyroxene grains in chondrules are often strained. In most cases this strain probably arose as a by-product of polytype transformations (protoenstatite → clinoenstatite/orthoenstatite and clinoenstatite → orthoenstatite) that occurred during the igneous crystallization and static annealing of chondrules. Droplet chondrules with glassy mesostases were minimally annealed, consistent with an origin as relatively rapidly cooled objects in an unconfined, cold environment. Some irregular chondrules and at least one droplet chondrule were thermally metamorphosed prior to final agglomeration, either as a result of moderately slow cooling (~ 100 °C/hr) from melt temperatures (during autometamorphism) or as a result of reheating episodes. Two of the most annealed chondrules contain relatively abundant plagioclase feldspar, and one of these has a uniform olivine composition appropriate to that of an LL4 chondrite.  相似文献   

2.
Abstract— We have studied an Allende dark inclusion by optical microscopy, scanning electron microscopy, electron microprobe analysis and transmission electron microscopy. The inclusion consists of chondrules, isolated olivines and matrix, which, as in the Allende host, is mainly composed of 5–20 μm long lath-shaped fayalitic grains with a narrow compositional range (Fa42 ± 2) and nepheline. Olivine phenocrysts in chondrules and isolated olivine grains show various degrees of replacement by 5–10 μm wide fayalitic rims (Fa39 ± 2) and 100–1000 μm wide translucent zones, which consist of 5–20 μm long lath-shaped fayalitic grains (Fa41 ± 1) intergrown with nepheline. These fayalitic olivines, like those in the matrix of the dark inclusion, contain 10–20 nm sized inclusions of chromite, hercynite, and Fe-Ni sulfides. The fayalitic rims around remnant olivines are texturally and compositionally identical to those in Allende host, suggesting that they have similar origins. Chondrules are surrounded by opaque rims consisting of tiny lath-shaped fayalitic olivines (<1–3 μm long) intergrown with nepheline. As in the Allende host, fayalitic olivine veins may crosscut altered chondrules, fine-grained chondrule rims and extend into the matrix, indicating that alteration occurred after accretion. We infer that fayalitic olivine rims and lath-shaped fayalites in Allende and its dark inclusions formed from phyllosilicate intermediate phases. This explanation accounts for (1) the similarity of the replacement textures observed in the dark inclusion and Allende host to aqueous alteration textures in CM chondrites; (2) the anomalously high abundances of Al and Cr and the presence of tiny inclusions of spinels and sulfides in fayalitic olivines in Allende and Allende dark inclusions; (3) abundant voids and defects in lath-shaped fayalites in the Allende dark inclusion, which may be analogous to those in partly dehydrated phyllosilicates in metamorphosed CM/CI chondrites. We conclude that the matrix and chondrule rims in Allende were largely converted to phyllosilicates and then completely dehydrated. The Allende dark inclusions experienced diverse degrees of aqueous/hydrothermal alteration prior to complete dehydration. The absence of low-Ca pyroxene in the dark inclusion and its significant replacement by fayalitic olivine in Allende is consistent with the lower resistance of low-Ca pyroxene to aqueous alteration relative to forsteritic olivine. Hydro-thermal processing of Allende probably also accounts for the low abundance of planetary noble gases and interstellar grains, and the formation of nepheline, sodalite, salite-hedenbergite pyroxenes, wollastonite, kirschsteinite and andradite in chondrules and Ca,Al-rich inclusions.  相似文献   

3.
Abstract— The CV (Vigarano‐type) chondrites are a petrologically diverse group of meteorites that are divided into the reduced and the Bali‐like and Allende‐like oxidized subgroups largely based on secondary mineralogy (Weisberg et al., 1997; Krot et al., 1998b). Some chondrules and calcium‐aluminum‐rich inclusions (CAIs) in the reduced CV chondrite Vigarano show alteration features similar to those in Allende: metal is oxidized to magnetite; low‐Ca pyroxene, forsterite, and magnetite are rimmed and veined by ferrous olivine (Fs40–50); and plagioclase mesostases and melilite are replaced by nepheline and sodalite (Sylvester et al., 1993; Kimura and Ikeda, 1996, 1997, 1998). Our petrographic observations indicate that Vigarano also contains individual chondrules, chondrule fragments, and lithic clasts of the Bali‐like oxidized CV materials. The largest lithic clast (about 1 times 2 cm in size) is composed of opaque matrix, type‐I chondrules (400–2000 μm in apparent diameter) surrounded by coarse‐grained and fine‐grained rims, and rare CAIs. The matrix‐chondrule ratio is about 1.1. Opaque nodules in chondrules in the clast consist of Cr‐poor and Cr‐rich magnetite, Ni‐ and Co‐rich metal, Ni‐poor and Ni‐rich sulfide; low‐Ni metal nodules occur only inside chondrule phenocrysts. Chromium‐poor magnetite is preferentially replaced by fayalite. Chondrule mesostases are replaced by phyllosilicates; low‐Ca pyroxene and olivine phenocrysts appear to be unaltered. Matrix in the clast consists of very fine‐grained (<1 μm) ferrous olivine, anhedral fayalite grains (Fa80–100), rounded objects of porous Ca‐Fe‐rich pyroxenes (Fs10–50Wo50), Ni‐poor sulfide, Ni‐ and Co‐rich metal, and phyllosilicates; magnetite is rare. On the basis of the presence of the Bali‐like lithified chondritic clast—in addition to individual chondrules and CAIs of both Bali‐like and Allende‐like materials—in the reduced CV chondrite Vigarano, we infer that (1) all three types of materials were mixed during regolith gardening on the CV asteroidal body, and (2) the reduced and oxidized CV materials may have originated from a single, heterogeneously altered asteroid.  相似文献   

4.
Abstract— Iodine concentrations in small domains (~10 μm) of silicates and troilite (FeS) phases in three chondrules from the Semarkona (LL3) meteorite were determined by an ion microprobe. Independent determination of I content in some of these phases was accomplished by in situ laser probe mass spectrometric analysis of I-derived 128Xe in one of these neutron-irradiated chondrules. The ion microprobe data suggest low I content for olivines (20–45 ppb) and relatively higher values for pyroxene and glass (mesostasis) (40–160 ppb). The broad similarity in the measured I contents in pyroxenes in a porphyritic pyroxene chondrule by ion microprobe (42–138 ppb) and by laser probe (37–76 ppb) demonstrate the feasibility of in situ determination of I content in silicate phases via ion microprobe. The I contents in troilite measured by ion microprobe, however, are prone to uncertainty because of the lack of a sulfide standard. The ion microprobe data suggest I content of > 1 ppm in troilite, if the calibration from our silicate standard is used. However, the noble gas data suggest that the I content in troilite is comparable to that in silicates. We attribute this apparent discrepancy to an enhanced sputter ion yield of I from sulfides. Iodine-derived 129Xe excesses were observed in both pyroxene and troilite within this chondrule. The I-Xe model ages of these selected phases are consistent with the I-Xe studies of the bulk chondrule. The individual data points fall on or near the isochron obtained from the bulk chondrule, although all except the most radiogenic data point contain evidence of low-temperature uncorrelated iodine.  相似文献   

5.
Abstract— Calcium- and aluminum-rich inclusions (CAIs), chondrules, dark inclusions and matrices in certain CV3 carbonaceous chondrites appear to have been modified by different degrees of late-stage alteration processes that caused significant variations in mineralogy and chemistry. Some chondrules and CAIs are rimmed with fayalitic olivine. Metal in all components may be oxidized and sulphidized to magnetite, Ni-rich metal and sulfides. Silicates in all components are aqueously altered to different degrees to phyllosilicates. Primary minerals in some CAIs experienced Fe-alkali-halogen metasomatism forming nepheline, sodalite, wollastonite, hedenbergite and other secondary minerals. In CV3 chondrites with metasomatized CAIs, nepheline, sodalite, etc. are also present in chondrule mesostases and in matrices. McSween's (1977b) reduced subgroup of CV3 chondrites generally shows minimal alteration of all components and may represent the unaltered precursors for the oxidized CV3 chondrites, which generally show major alteration. Most studies have been focused on specific components in CV3 chondrites and have not considered possible relationships between alteration processes. We infer from the correlated occurrences of the alteration features that they were closely related in time and space and review nebular and asteroidal models for their origins. We prefer an asteroidal model.  相似文献   

6.
Abstract— We have studied the mineralogy and petrology of mesostases of 783 type I chondrules in seven CO3 chondrites that range in petrologic subtype from 3.0 to 3.7. Chondrule mesostases in the CO chondrite of subtype 3.0 consist mainly of primary glass and plagioclase, while chondrule mesostases in the CO chondrites of higher subtypes (3.2–3.7) contain various amounts of nepheline in addition to glass and plagioclase. Nepheline has replaced glass and plagioclase, forming finegrained aggregates and thin parallel lamellar intergrowths with plagioclase. The nephelinization has proceeded preferentially from the outer margins of chondrules toward the inside. Although the degree of nephelinization differs widely among chondrules in each of the metamorphosed chondrites, our modal analyses and bulk chemical analyses of individual mesostases indicate that the amounts of nepheline in chondrules systematically increase with the increasing petrologic subtype of the host chondrites. Nepheline also has a tendency to increase in grain size with increasing petrologic subtype. We conclude that nepheline in chondrules in the CO3 chondrites has formed largely as a result of effects related to heating on the meteorite parent body. We suggest that nepheline initially formed as hydrous nepheline under the presence of aqueous fluids and subsequently was dehydrated after exhaustion of aqueous fluids. The degree of hydrothermal activity must have increased with increasing degree of heating, and thus, chondrules in more thermally metamorphosed chondrites produced larger amounts of nepheline. The results imply that CO3 chondrites have gone through low‐grade aqueous alteration and subsequent dehydration at the early stage of heating on the meteorite parent body.  相似文献   

7.
Abstract— Iodine-xenon analyses of chondrules from the Bjurböle L4 and Parnallee LL3.6 meteorites have been made using a continuous wave laser microprobe and the resonance ionisation mass spectrometer RELAX. The excess 129Xe content released from the Bjurböle chondrule is lower than previous stepped-heating studies have found, suggesting that the technique does not completely degas the samples. Nonetheless, clear isochrons were produced, and data for initial 129Xe/130Xe are consistent with earlier work. A correlation is evident in each chondrule between 131Xe* and 128Xe* perhaps indicating a common host-phase for their parent nuclides, a condition possibly fulfilled by a Te- and I-bearing sulfide. The I-Xe system of a Parnallee macrochondrule exhibits no excess 129Xe, possibly as a result of thermal alteration or deformation before accumulation of the meteorite. A cristobalite-bearing chondrule depleted in 16O yields an I-Xe age of 4.5 ± 0.5 Ma after the mean Bjurböle age.  相似文献   

8.
Abstract— Plagioclase‐rich chondrules (PRCs) in the reduced CV chondrites Efremovka, Leoville, Vigarano and Grosvenor Mountains (GRO) 94329 consist of magnesian low‐Ca pyroxene, Al‐Ti‐Cr‐rich pigeonite and augite, forsterite, anorthitic plagioclase, FeNi‐metal‐sulfide nodules, and crystalline mesostasis composed of silica, anorthitic plagioclase and Al‐Ti‐Cr‐rich augite. The silica grains in the mesostases of the CV PRCs are typically replaced by hedenbergitic pyroxenes, whereas anorthitic plagioclase is replaced by feldspathoids (nepheline and minor sodalite). Some of the PRCs contain regions that are texturally and mineralogically similar to type I chondrules and consist of forsterite, low‐Ca pyroxene and abundant FeNi‐metal nodules. Several PRCs are surrounded by igneous rims or form independent compound objects. Twelve PRCs contain relic calcium‐aluminum‐rich inclusions (CAIs) composed of anorthite, spinel, high‐Ca pyroxene, ± forsterite, and ± Al‐rich low‐Ca pyroxene. Anorthite of these CAIs is generally more heavily replaced by feldspathoids than anorthitic plagioclase of the host chondrules. This suggests that either the alteration predated formation of the PRCs or that anorthite of the relic CAIs was more susceptible to the alteration than anorthitic plagioclase of the host chondrules. These observations and the presence of igneous rims around PRCs and independent compound PRCs suggest that the CV PRCs may have had a complex, multistage formation history compared to a more simple formation history of the CR PRCs. Relatively high abundances of moderately‐volatile elements such as Cr, Mn and Si in the PRCs suggests that these chondrules could not have been produced by volatilization of ferromagnesian chondrule precursors or by melting of refractory materials only. We infer instead that PRCs in carbonaceous chondrites formed by melting of the reduced chondrule precursors (magnesian olivine and pyroxene, FeNi‐metal) mixed with refractory materials (relic CAIs) composed of anorthite, spinel, high‐Ca pyroxene, and forsterite. The mineralogical, chemical and textural similarities of the PRCs in several carbonaceous chondrite groups (CV, CO, CH, CR) and common presence of relic CAIs in these chondrules suggest that PRCs may have formed in the region(s) intermediate between the regions where CAIs and ferromagnesian chondrules originated.  相似文献   

9.
Abstract— Anorthite‐rich chondrules in CR and CH carbonaceous chondrites consist of magnesian low‐Ca pyroxene and forsterite phenocrysts, FeNi‐metal nodules, interstitial anorthite, Al‐Ti‐Cr‐rich low‐Ca and high‐Ca pyroxenes, and crystalline mesostasis composed of silica, anorthite and high‐Ca pyroxene. Three anorthite‐rich chondrules contain relic calcium‐aluminum‐rich inclusions (CAIs) composed of anorthite, spinel, ±Al‐diopside, and ± forsterite. A few chondrules contain regions which are texturally and mineralogically similar to magnesian (type I) chondrules and consist of forsterite, low‐Ca pyroxene and abundant FeNi‐metal nodules. Anorthite‐rich chondrules in CR and CH chondrites are mineralogically similar to those in CV and CO carbonaceous chondrites, but contain no secondary nepheline, sodalite or ferrosilite. Relatively high abundances of moderately‐volatile elements such as Cr, Mn and Si in the anorthite‐rich chondrules suggest that these chondrules could not have been produced by volatilization of the ferromagnesian chondrule precursors or by melting of the refractory materials only. We infer instead that anorthite‐rich chondrules in carbonaceous chondrites formed by melting of the reduced chondrule precursors (olivine, pyroxenes, FeNi‐metal) mixed with the refractory materials, including relic CAIs, composed of anorthite, spinel, high‐Ca pyroxene and forsterite. The observed mineralogical and textural similarities of the anorthite‐rich chondrules in several carbonaceous chondrite groups (CV, CO, CH, CR) may indicate that these chondrules formed in the region(s) intermediate between the regions where CAIs and ferromagnesian chondrules originated. This may explain the relative enrichment of anorthite‐rich chondrules in 16O compared to typical ferromagnesian chondrules (Russell et al., 2000).  相似文献   

10.
Elemental compositions of olivine, low-Ca pyroxene and mesostasis in chondrules from type-3 ordinary chondrites (OC), CV3, CO3, CM2 and EH3 chondrites were compiled in a search for mineral compositional differences among chondrules of different chondrite groups. Such differences are demonstrated. A few elements occur in silicic phases in amounts proportional to their bulk chondrule concentrations: e.g., Mn in OC chondrules, Ti in CV chondrules, Cr in EH chondrules. However, OC chondrules have higher bulk Cr than CM-CO chondrules, higher Cr in mesostasis, but lower Cr in olivine and low-Ca pyroxene. The higher oxidation state of OC chondrules implies that Cr is more likely to be trivalent, and thus, less likely to enter the olivine crystal structure and more likely to concentrate in pyroxene and mesostasis. CV and OC chondrules have similar high bulk Fe and mesostasis Fe, but OC chondrules have much more FeO in olivine and low-Ca pyroxene. The remaining Fe in CV chondrules is reduced and occurs as metal blebs in the mesostasis. Relative to OC chondrules, EH chondrules have lower bulk Ca, lower Ca in pyroxene and mesostasis, but higher (by a factor of 2) Ca in olivine. EH chondrules may have been incompletely melted, preserving relict refractory lithophile-rich olivine nuclei. OC chondrules are richer than EH chondrules in FeO; they have a lower melting temperature and may have been more completely melted during chondrule formation.  相似文献   

11.
Abstract— The timing and processes of alteration in the CV parent body are investigated by the analysis of Sr isotopes, major and trace elements, and petrographic type and distribution of the secondary minerals (nepheline and sodalite) in 22 chondrules from the Allende (CV3) chondrite. The Sr isotopic compositions of the chondrules are scattered around the 4.0 Ga reference line on the 87Sr/86Sr evolution diagram, indicating that the chondrules have been affected by late thermal alteration event(s) in the parent body. The degree of alteration, determined for individual chondrules based on the distribution of nepheline and sodalite, is unrelated to the disturbance of the Rb‐Sr system, suggesting that the alteration process that produced nepheline and sodalite is different from the thermal process that disturbed the Rb‐Sr system of the chondrules. Considering the geochemical behavior of Rb and Sr, the main host phase of Sr in chondrules is likely to be mesostasis, which could be most susceptible to late thermal alteration. As there is a poor connection between the alteration degree determined from abundances of nepheline and sodalite and the disturbance of Rb‐Sr isotopic system, we consider the mesostasis to provide a constraint on the late parent body alteration process. From this point of view, 23 mesostasis‐rich chondrules, including those from literature data, were selected. The selected chondrules are closely correlated on the 87Sr/86Sr evolution diagram, with an inferred age of 4.36 ± 0.08 Ga. This correlation would represent an age of the final major Sr isotopic redistribution of the chondrules in the parent body.  相似文献   

12.
Abstract— We have studied the I‐Xe system in chondrules and clasts from ordinary chondrites. Cristobalite‐bearing clasts from Parnallee (LL3.6) closed to Xe loss 1–4 Ma after Bjurböle. Feline (a feldspar‐ and nepheline‐rich clast also from Parnallee) closed at 7.04 ± 0.15 Ma. Two out of three chondrules from Parnallee that yielded well‐defined initial I ratios gave ages identical to Bjurböle's within error. A clast from Barwell (L6) has a well‐defined initial I ratio corresponding to closure 3.62 ± 0.60 Ma before Bjurböle. Partial disturbance and complete obliteration of the I‐Xe system by shock are revealed in clasts from Julesburg (L3.6) and Quenggouk (H4), respectively. Partial disturbance by shock is capable of generating anomalously high initial I ratios. In some cases, these could be misinterpreted, yielding erroneous ages. A macrochondrule from Isoulane‐n‐Amahar contains concentrations of I similar to “ordinary” chondrules but, unlike most ordinary chondrules, contains no radiogenic 129Xe. This requires resetting 50 Ma or more later than most chondrules. The earliest chondrule ages in the I‐Xe, Mn‐Cr, and Al‐Mg systems are in reasonable agreement. This, and the frequent lack of evidence for metamorphism capable of resetting the I‐Xe chronometer, leads us to conclude that (at least) the earliest chondrule I‐Xe ages represent formation. If so, chondrule formation took place at a time when sizeable parent bodies were present in the solar system.  相似文献   

13.
Abstract— We measured the sizes and textural types of 719 intact chondrules and 1322 chondrule fragments in thin sections of Semarkona (LL3.0), Bishunpur (LL3.1), Krymka (LL3.1), Piancaldoli (LL3.4) and Lewis Cliff 88175 (LL3.8). The mean apparent diameter of chondrules in these LL3 chondrites is 0.80 φ units or 570 μm, much smaller than the previous rough estimate of ~900 μm. Chondrule fragments in the five LL3 chondrites have a mean apparent cross‐section of 1.60 φ units or 330 μm. The smallest fragments are isolated olivine and pyroxene grains; these are probably phenocrysts liberated from disrupted porphyritic chondrules. All five LL3 chondrites have fragment/ chondrule number ratios exceeding unity, suggesting that substantial numbers of the chondrules in these rocks were shattered. Most fragmentation probably occurred on the parent asteroid. Porphyritic chondrules (porphyritic olivine + porphyritic pyroxene + porphyritic olivine‐pyroxene) are more readily broken than droplet chondrules (barred olivine + radial pyroxene + cryptocrystalline). The porphyritic fragment/chondrule number ratio (2.0) appreciably exceeds that of droplet‐textured objects (0.9). Intact droplet chondrules have a larger mean size than intact porphyritic chondrules, implying that large porphyritic chondrules are fragmented preferentially. This is consistent with the relatively low percentage of porphyritic chondrules within the set of the largest chondrules (57%) compared to that within the set of the smallest chondrules (81%). Differences in mean size among chondrule textural types may be due mainly to parent‐body chondrule‐fragmentation events and not to chondrule‐formation processes in the solar nebula.  相似文献   

14.
Abstract— The Julesburg chondrite, a single stone weighing 57.9 kg, was found in 1983 in Sedgewick County, Colorado, USA. It contains abundant chondrules and chondrule fragments but little fine-grained matrix. The olivine composition ranges from Fa1 to Fa25 but a frequency plot of olivine compositions is strongly peaked at Fa23. The low-Ca pyroxenes range from Fs3 to Fs28 and show no dominant composition. The abundance of clearly defined chondrules, the heterogeneity of the silicates and the presence of glass within chondrules indicate a type 3 chondrite, refined by thermoluminescence data to 3.6. The total iron content of 20.46% is indicative of an L-group stone. The low noble gas retention ages indicate that this meteorite was outgassed late in its history. This is supported by petrographic evidence of brecciation and shock. Aluminum-rich spinels within chondrules and inclusions contain up to 2.6% ZnO which suggests that they formed in a volatile-rich environment.  相似文献   

15.
The CB (Bencubbin-like) metal-rich carbonaceous chondrites are subdivided into the CBa and CBb subgroups. The CBa chondrites are composed predominantly of ~cm-sized skeletal olivine chondrules and unzoned Fe,Ni-metal ± troilite nodules. The CBb chondrites are finer grained than the CBas and consist of chemically zoned and unzoned Fe,Ni-metal grains, Fe,Ni-metal ± troilite nodules, cryptocrystalline and skeletal olivine chondrules, and rare refractory inclusions. Both subgroups contain exceptionally rare porphyritic chondrules and no interchondrule fine-grained matrix, and are interpreted as the products of a gas–melt impact plume formed by a high-velocity collision between differentiated planetesimals about 4562 Ma. The anomalous metal-rich carbonaceous chondrites, Fountain Hills and Sierra Gorda 013 (SG 013), have bulk oxygen isotopic compositions similar to those of other CBs but contain coarse-grained igneous clasts/porphyritic chondrule-like objects composed of olivine, low-Ca-pyroxene, and minor plagioclase and high-Ca pyroxene as well as barred olivine and skeletal olivine chondrules. Cryptocrystalline chondrules, zoned Fe,Ni-metal grains, and interchondrule fine-grained matrix are absent. In SG 013, Fe,Ni-metal (~80 vol%) occurs as several mm-sized nodules; magnesiochromite (Mg-chromite) is accessory; daubréelite and schreibersite are minor; troilite is absent. In Fountain Hills, Fe,Ni-metal (~25 vol%) is dispersed between chondrules and silicate clasts; chromite and sulfides are absent. In addition to a dominant chondritic lithology, SG 013 contains a chondrule-free lithology composed of Fe,Ni-metal nodules (~25 vol%), coarse-grained olivine and low-Ca pyroxene, interstitial high-Ca pyroxene and anorthitic plagioclase, and Mg-chromite. Here, we report on oxygen isotopic compositions of olivine, low-Ca pyroxene, and ±Mg-chromite in Fountain Hills and both lithologies of SG 013 measured in situ using an ion microprobe. Oxygen isotope compositions of olivine, low-Ca pyroxene, and Mg-chromite in these meteorites are similar to those of magnesian non-porphyritic chondrules in CBa and CBb chondrites: on a three-isotope oxygen diagram (δ17O vs. δ18O), they plot close to a slope-1 (primitive chondrule mineral) line and have a very narrow range of Δ17O (=δ17O–0.52 × δ18O) values, −2.5 ± 0.9‰ (avr ± 2SD). No isotopically distinct relict grains have been identified in porphyritic chondrule-like objects. We suggest that magnesian non-porphyritic (barred olivine, skeletal olivine, cryptocrystalline) chondrules in the CBas, CBbs, and porphyritic chondrule-like objects in SG 013 and Fountain Hills formed in different zones of the CB impact plume characterized by variable pressure, temperature, cooling rates, and redox conditions. The achondritic lithology in SG 013 represents fragments of one of the colliding bodies and therefore one of the CB chondrule precursors. Fountain Hills was subsequently modified by impact melting; Fe,Ni-metal and sulfides were partially lost during this process.  相似文献   

16.
Feldspar in ordinary chondrites (OCs) is often associated with thermal metamorphism, as a secondary mineral that forms from the crystallization of matrix and chondrule mesostasis. However, studies of feldspar in equilibrated OCs show that there is a range of plagioclase compositions within chondrules, some of which may be primary products of chondrule crystallization. It is important to recognize primary feldspar within chondrules because it can be used to help understand the secondary effects of thermal metamorphism and aqueous alteration. The presence of primary feldspar also provides important petrologic constraints on chondrule formation time scales. We undertook a careful study of Semarkona (LL3.00) and observed feldspar in 18% of chondrules. The feldspar is plagioclase covering a wide range of compositions (An2–An99) with little K‐feldspar component (<Or3). We show that plagioclase is a primary igneous phase, based on grain morphology and compositions consistent with growth from a melt having the bulk compositions of the host chondrules. Based on experimental studies, the presence of plagioclase suggests chondrules cooled slowly at temperatures close to the solidus. We also observed several secondary features consistent with the aqueous alteration. These features include zoning of Na and Ca in plagioclase, heterogeneity in plagioclase compositions in altered chondrules, development of porosity from the dissolution of chondrule glass, and alteration of glass to phyllosilicates. Alteration of major Al‐bearing phases, like plagioclase and glass, has important implications for interpretations of ages derived from Al‐Mg dating of chondrules, if they have been affected by secondary processes.  相似文献   

17.
Cluster chondrites are characterized by close‐fit textures of deformed and indented chondrules, taken as evidence for hot chondrule accretion (Metzler 2012 ). We investigated seven cluster chondrite clasts from six brecciated LL3 chondrites and measured their bulk oxygen isotopic and chemical composition, including REE, Zr, and Hf. The same parameters were measured in situ on 93 chondrules and 4 interchondrule matrix areas. The CI‐normalized REE patterns of the clasts are flat, showing LL‐chondritic concentrations. The mean chemical compositions of chondrules in clasts and other LL chondrites are indistinguishable and we conclude that cluster chondrite chondrules are representative of the normal LL chondrule population. Type II chondrules are depleted in MgO, Al2O3 and refractory lithophiles (REE, Zr, Hf) by factors between 0.65 and 0.79 compared to type I chondrules. The chondrule REE patterns are basically flat with slight LREE < HREE fractionations. Many chondrules exhibit negative Eu anomalies while matrix shows a complementary pattern. Chondrules scatter along a correlation line with a slope of 0.63 in the oxygen 3‐isotope diagram, interpreted as the result of O‐isotope exchange between chondrule melts and 18O‐rich nebular components. In one clast, a distinct anticorrelation between chondrule size and δ18O is found, which may indicate a more intense oxygen isotope exchange by smaller chondrules. In some clasts the δ18O values of type I chondrules are correlated with concentrations of SiO2 and MnO and anticorrelated with MgO, possibly due to the admixture of a SiO2‐ and MnO‐rich component to chondrule melts during oxygen isotope exchange. Two chondrules with negative anomalies in Sm, Eu, and Yb were found and may relate their precursors to refractory material known from group III CAIs. Furthermore, three chondrules with strong LREE > HREE and Zr/Hf fractionations were detected, whose formation history remains to be explained.  相似文献   

18.
Abstract— We report the results of a mineralogical and O‐isotopic study of 362 chondrules disaggregated from the Bo Xian chondrite. The range of mineral compositions (Fa = 0.8–31.2%, mean = 23.5%, mode = 27–28%) are consistent with a reclassification of this meteorite from LL4 to LL3.9. Chondrule diameters range from 0.20 to 3.40 mm (mean = 0.74 mm) in the disaggregated population. A lower mean diameter (0.64 mm) calculated from thin‐section measurements partly reflects the high proportion of chondrule fragments. The chondrule size distribution, which is approximately log‐normal, is consistent with size‐sorting mechanisms. This sorting could be linked to the fragmentation of many chondrules on the parent body. However, in detail, the variation in diameter of different chondrule types and a hiatus in the size distribution at 0.6 mm indicate that there may have been complex controls perhaps partly being determined by the chondrule formation mechanism. Seven percent of the sectioned chondrules (102) contain chemically fractionated mineral assemblages: cristobalite‐bearing and Al‐rich. This significant degree of chemical heterogeneity probably resulted from both igneous and volatility controls. Oxygen‐isotopic compositions were determined on mineral separates and 16 of the sectioned chondrules. Three separate isotopic exchange events have been identified. The dominant one is a low‐temperature hydrous gas‐solid exchange event between 16O‐rich solid and 16O‐poor gas reservoirs that lay along a slope 1.0 line on three‐isotope plots. Partial equilibration with the gas by feldspar and cristobalite, which exchanged more rapidly than olivine or pyroxene, led to formation of a slope 0.77 mixing line for Bo Xian and other LL chondrites. Mineralogy is the dominant control on the extent of this exchange; no relationship between isotopic composition and chondrule texture or size was identified. The feldspar separate and cristobalite‐rich chondrules have the most 16O‐poor compositions. Subsequently, thermal metamorphism in the parent body led to partial isotopic equilibration between the different mineral phases. A third exchange event, predating the other two events, is probably shown by one of the Al‐rich chondrules. This has an 16O‐rich composition, lying below the terrestrial fractionation line. Another Al‐rich chondrule has a normal ordinary chondrite isotopic composition. It is not clear whether the isotopic fractionation recorded in some Al‐rich chondrules can be achieved by the dominant gas‐solid exchange. Instead, the precursor O to the mineral phases may have become 16O‐rich during an earlier phase of mass‐independent fractionation.  相似文献   

19.
Abstract— Whole‐chondrule Mn‐Cr isochrons are presented for chondrules separated from the Chainpur (LL3.4) and Bishunpur (LL3.1) meteorites. The chondrules were initially surveyed by instrumental neutron activation analysis. LL‐chondrite‐normalized Mn/Cr, Mn/Fe, and Sc/Fe served to identify chondrules with unusually high or low Mn/Cr ratios, and to correlate the abundances of other elements to Sc, the most refractory element measured. A subset of chondrules from each chondrite was chosen for analysis by a scanning electron microscope equipped with an energy dispersive x‐ray spectrometer prior to high‐precision Cr‐isotopic analyses. 53Cr/52Cr correlates with 55Mn/52Cr to give initial (53Mn/55Mn)I = (9.4 ± 1.7) × 10?6 for Chainpur chondrules and (53Mn/55Mn)I = (9.5 ± 3.1) × 10?6 for Bishunpur chondrules. The corresponding chondrule formation intervals are, respectively, ΔtLEW = ?10 ± 1 Ma for Chainpur and ?10 ± 2 Ma for Bishunpur relative to the time of igneous crystallization of the Lewis Cliff (LEW) 86010 angrite. Because Mn/Sc correlates positively with Mn/Cr for both the Chainpur and Bishunpur chondrules, indicating dependence of the Mn/Cr ratio on the relative volatility of the elements, we identify the event dated by the isochrons as volatility‐driven elemental fractionation for chondrule precursors in the solar nebula. Thus, our data suggest that the precursors to LL chondrules condensed from the nebula 5.8 ± 2.7 Ma after the time when initial (53Mn/55Mn)I = (2.8 ± 0.3) × 10?5 for calcium‐aluminum‐rich inclusions (CAIs), our preferred value, determined from data for (a) mineral separates of type B Allende CAI BR1, (b) spinels from Efremovka CAI E38, and (c) bulk chondrites. Mn‐Cr formation intervals for meteorites are presented relative to average I(Mn) = (53Mn/55Mn)Ch = 9.46 × 10?6 for chondrules. Mn/Cr ratios for radiogenic growth of 53Cr in the solar nebula and later reservoirs are calculated relative to average (I(Mn), ?(53Cr)I) = ((9.46 ± 0.08) × 10?6, ?0.23 ± 0.08) for chondrules. Inferred values of Mn/Cr lie within expected ranges. Thus, it appears that evolution of the Cr‐isotopic composition can be traced from condensation of CAIs via condensation of the ferromagnesian precursors of chondrules to basalt generation on differentiated asteroids. Measured values of ?(53Cr) for individual chondrules exhibit the entire range of values that has been observed as initial ?(53Cr) values for samples from various planetary objects, and which has been attributed to radial heterogeneity in initial 53Mn/55Mn in the early solar system. Estimated 55Mn/52Cr = 0.42 ± 0.05 for the bulk Earth, combined with ?(53Cr) = 0 for the Earth, plots very close to the chondrule isochrons, so that the Earth appears to have the Mn‐Cr systematics of a refractory chondrule. Thus, the Earth apparently formed from material that had been depleted in Mn relative to Cr contemporaneously with condensation of chondrule precursors. If, as seems likely, the Earth's core formed after complete decay of 53Mn, there must have been little differential partitioning of Mn and Cr at that time.  相似文献   

20.
Abstract Melnikovo is a relatively unweathered 545.6-g LL6 chondrite that was found in 1983. Only a few poorly defined chondrules are discernable in the examined sections; two of these are enriched in chromite. The meteorite contains olivine (Fa27,8), low-Ca pyroxene (Fs24,4), plagioclase, rare clinopyroxene, chlorapatite, merrillite and opaque minerals, which have a modal abundance (in wt%) of troilite (3.9%), kamacite (0.4%), taenite plus tetrataenite (0.7%), chromite (0.8%), and trace amounts of ilmenite and Mn-ilmenite. The meteorite appears unbrecciated on a centimeter scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号