首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Abstract– To better understand the impact cratering process and its environmental consequences at the local to global scale, it is important to know when in the geological record of an impact crater the impact‐related processes cease. In many instances, this occurs with the end of early crater modification, leaving an obvious sedimentological boundary between impactites and secular sediments. However, in marine‐target craters the transition from early crater collapse (i.e., water resurge) to postimpact sedimentation can appear gradual. With the a priori assumption that the reworked target materials of the resurge deposits have a different chemical composition to the secular sediments we use chemostratigraphy (δ13Ccarb, %Corg, major elements) of sediments from the Chesapeake Bay, Lockne, and Tvären craters, to define this boundary. We show that the end of impact‐related sedimentation in these cases is fairly rapid, and does not necessarily coincide with a visual boundary (e.g., grain size shift). Therefore, in some cases, the boundary is more precisely determined by chemostratigraphy, especially carbonate carbon isotope variations, rather than by visual inspection. It is also shown how chemostratigraphy can confirm the age of marine‐target craters that were previously determined by biostratigraphy; by comparing postimpact carbon isotope trends with established regional trends.  相似文献   

2.
Abstract— The Lockne impact event took place in a Middle Ordovician (455 Ma) epicontinental sea. The impact resulted in an at least 13.5 km wide, concentric crater in the sea floor. Lockne is one of very few locations where parts of an ejecta layer have been preserved outside the crater structure. The ejecta from the Lockne impact rests on progressively higher stratigraphic levels with increasing distance from the crater, hence forming a slightly inclined discontinuity surface in the pre‐impact strata. We report on a ~30 cm thick sandy layer at Hallen, 45 km south of the crater centre. This layer has a fining upward sequence in its lower part, followed by low‐angle cross‐laminations indicating two opposite current directions. It is rich in quartz grains with planar deformation features and contains numerous, up to 15 cm large, granite clasts from the crystalline basement at the Lockne impact site. The layer is within a sequence dated to the Baltoniodus gerdae conodont subzone. The dating is corroborated by chitinozoans indicating the latest Kukruse time below and the late Idavere above the impact layer. According to the chitinozoans biostratigraphy, some erosion may have occurred because of deposition of the impact layer. The Hallen outcrop, today 45 km from the centre of the Lockne crater, is at present the most distant accessible occurrence of ejecta from the Lockne impact. It is also the most distant location so far found where the resurge of water towards the crater has affected the bottom sediments. A greater crater diameter than hitherto assumed, thus representing greater impact energy, might explain the extent of the ejecta blanket. Fluidisation of ejecta, to be expected at a marine‐target impact, might furthermore have facilitated the wide distribution of ejecta.  相似文献   

3.
Abstract— Microscopic planar deformation features (PDFs) in quartz grains are diagnostic of shock meta-morphism during hypervelocity impact cratering. Measurements of the poles of sets of PDFs and the optic axis of 25 quartz grains were carried out for a sample of the Loftarsten deposit from the Lockne area, Sweden. The most abundant PDFs observed in the sample from the Lockne area correspond to those found at known impact craters (i.e., ω (1013} and π (1012). This study confirms the previous suggestion that the Lockne structure is an impact crater. The Loftarsten is, therefore, interpreted as the final stage of resurge deposition after a marine impact at Lockne in the Middle Ordovician.  相似文献   

4.
The Målingen structure is an approximately 700 m wide, rimmed, sediment‐filled, circular depression in Precambrian crystalline basement approximately 16.2 km from the concentric, marine‐target Lockne crater (inner, basement crater diameter approximately 7.5 km, total diameter in sedimentary strata approximately 13.5 km). We present here results from geologic mapping, a 148.8 m deep core drilling from the center of the structure, detailed biostratigraphic dating of the structure's formation and its age correlation with Lockne, chemostratigraphy of the sedimentary infill, and indication for shock metamorphism in quartz from breccias below the crater infill. The drill core reveals, from bottom to the top, approximately 33 m of basement rocks with increased fracturing upward, approximately 10 m of polymict crystalline breccia with shock features, approximately 97 m of slumped Cambrian mudstone, approximately 4.7 m of a normally graded, polymict sedimentary breccia that in its uppermost part grades into sandstone and siltstone (cf. resurge deposits), and approximately 1.6 m of secular sediments. The combined data set shows that the Målingen structure formed in conjunction with the Lockne crater in the same marine setting. The shape and depth of the basement crater and the cored sequence of crystalline breccias with shocked quartz, slumped sediments, and resurge deposits support an impact origin. The stratigraphic and geographic relationship with Lockne suggests the Lockne and Målingen craters to be the first described doublet impact structure by a binary asteroid into a marine‐target setting.  相似文献   

5.
The Kamenetsk impact structure is a deeply eroded simple crater that formed in crystalline rocks of the Ukrainian Shield. This study presents structural, lithologic, and shock metamorphic evidence for an impact origin of the Kamenetsk structure, which was previously described as a paleovolcano. The Kamenetsk structure is an oval depression that is 1.0–1.2 km in diameter and 130 m deep. The structure is deeply eroded, and only the lower part of the sequence of lithic breccia has been preserved in the deepest part of the crater to recent time, while the predominant part of impact rocks and postimpact sediments was eroded. Manifestations of shock metamorphism of minerals, especially planar deformation features in quartz and feldspars, were determined by petrographic investigations of lithic breccia that allowed us to determine the impact origin of the Kamenetsk structure. The erosion of the crater and surrounding target to a minimal depth of 220 m preceded the deposition of the postimpact sediments. The time of the formation of the Kamenetsk structure is bracketed within a wide interval from 2.0 to 2.1 Ga, the age of the crystalline target rocks, to the Late Miocene age of the sediments overlaying the crater. The deep erosion of the structure suggests it is probably Paleozoic in age.  相似文献   

6.
Abstract— The Marquez Dome, Leon County, Texas represents a 13 km diameter Paleocene/Eocene impact structure formed in largely unconsolidated sediments in a near-shore environment. The present study is an analysis of samples from cores taken from boreholes drilled separately on the edge of the central uplift and in the surrounding annular basin. The borehole drilled in the annular basin of the structure penetrated a sequence of interbedded sands, silts, and shales that is typical of the stratigraphy of the surrounding area. In contrast, the borehole drilled on the edge of the central uplift penetrated material that is relatively homogeneous in chemical composition and texture and may represent a mixture of sand, silt, clay, and minor carbonate derived from deeper levels in the preimpact stratigraphy. Veins containing pseudotachylitic breccias are not found and are not expected in this environment because low-strength target materials are not conducive to frictional melting. Similarly, the low strength and unconsolidated nature of these target materials are not conducive to the formation of other types of typical impact breccias (e.g., melt rocks or suevites). The absence of such lithologies results either from explosive ejection of these materials caused by the water-rich character of the target sediments or, more probably, from removal of these materials by deeper postimpact erosion than has been suggested previously. Planar deformation features (PDFs) were not found in quartz grains from any of these samples. The scarcity of quartz grains with PDFs, which have only been reported in rare impact breccias from the central uplift, and the large amount of vertical displacement indicated for the central uplift of this structure may also be a consequence of the low strength of target materials.  相似文献   

7.
Recent discoveries of microtektite and related crystal bearing microspherule layers in deep-sea sediments of the west equatorial Pacific DSDP Sites 292, 315A and 462, off-shore New Jersey in Site 612 and in southern Spain have confirmed the presence of at least three microspherule layers in Late Eocene sediments. Moreover, these discoveries have extended the North American strewn field from the Caribbean and Gulf of Mexico region to the northwest Atlantic, and have established a third strewn field in western equatorial Pacific and Indian Ocean which may extend to the Mediterranean. Stratigraphically the oldest microspherule layer occurs in the planktonic foraminifer Globigerapsis semiinvoluta Zone about 0.5 m.y. prior to the closely spaced crystal bearing microspherule layer and North American microtektite layer in the Globorotalia cerroazulensis Zone. Major element composition of the G. semiinvoluta Zone layer and the crystal bearing microspherule layer overlap, but there is a clear trend towards higher Al2O3 and FeO values in SiO2 equivalent microspherules of the latter layer. The G. semiinvoluta Zone microspherules also contain a higher percentage of non-crystalline spherules (microtektites) than the crystal bearing microspherule layer, but lower than the North American microtektite layer. Excess iridium due to an abrupt increase in supply is associated with the middle crystal bearing microspherule layer and to a lesser extent with the other two layers. But, Ir excess due to concentration as a result of carbonate loss was also observed at two sites (462, 612). The three late Eocene microspherule layers do not precisely coincide with planktonic foraminiferal species extinctions, but a major faunal assemblage change is associated with the G. semiinvoluta Zone layer. Abundant pyrite is present in the North American microtektite layer of DSDP Site 612 suggesting reducing conditions possibly due to a sudden influx of biologic matter (dead bodies) to the ocean floor, and the crystal bearing microspherule layer coincides with five radiolarian extinctions. All three microspherule layers are associated with decreased carbonate possibly due to sudden productivity changes, increased dissolution as a result of sea-level and climate fluctuations, or the impact events.  相似文献   

8.
Abstract— The Lockne and Tvären craters formed in the Late Ordovician Baltoscandian epicontinental sea. Both craters demonstrate similarities concerning near‐synchronous age, target seabed, and succeeding resurge deposits; however, the water depths at the impact sites and the sizes of the craters were not alike. The post‐impact sedimentary succession of carbonates, i.e., the Dalby Limestone, deposited on top of the resurge sediments in the two craters, is nevertheless similar. At least three main facies of the Dalby Limestone were established in the Lockne crater, depending on sea‐floor topography, location with respect to the crater, and local water currents. The dominating nodular argillaceous facies, showing low values of inorganic carbon (IC), was distributed foremost in the deeper and quiet areas of the crater floor and depressions. At the crater rim, consisting of crushed crystalline basement ejecta, a rim facies with a reef‐like fauna was established, most certainly due to topographical highs and substrate‐derived nutrients. Between these facies are occurrences of a relatively thick‐bedded calcilutite rich in cephalopods (cephalopod facies). In Tvären, the lower part of the succession consists of an analogous argillaceous facies, also showing similar low IC values as in Lockne, followed by calcareous mudstones with an increase of IC. Occasionally biocalcarenites with a distinctive fauna occur in the Tvären succession, probably originating as detritus from a facies developed on the rim. They are evident as peaks in IC and lows in organic carbon (Corg). The fauna in these biocalcarenites corresponds very well with those of erratic boulders derived from Tvären; moreover, they correspond to the rim facies of Lockne except for the inclusion of photosynthesizing algae, indicating shallower water at Tvären than Lockne. Consequently, we suggest equivalent distribution patterns for the carbonates of the Dalby Limestone in Lockne and Tvären.  相似文献   

9.
The Målingen structure in Sweden has for a long time been suspected to be the result of an impact; however, no hard evidence, i.e., shock metamorphic features or traces of the impactor, has so far been presented. Here we show that quartz grains displaying planar deformation features (PDFs) oriented along crystallographic planes typical for shock metamorphism are present in drill core samples from the structure. The shocked material was recovered from basement breccias, below the sediment infill, and the distribution of the orientation of the shock‐produced PDFs indicates that the studied material experienced low shock pressures. Based on our findings, we can exclude that the material is transported from the nearby Lockne impact structure, which means that the Målingen structure is a separate impact structure, the seventh confirmed impact structure in Sweden. Furthermore, sedimentological and biostratigraphic aspects of the deposits that fill the depression at Målingen are very similar to features at the Lockne impact structure. This implies a coeval formation age and thus also the confirmation of the first known marine target doublet impact craters on Earth (i.e., the Lockne–Målingen pair).  相似文献   

10.
The Paleoproterozoic Dhala structure with an estimated diameter of ~11 km is a confirmed complex impact structure located in the central Indian state of Madhya Pradesh in predominantly granitic basement (2.65 Ga), in the northwestern part of the Archean Bundelkhand craton. The target lithology is granitic in composition but includes a variety of meta‐supracrustal rock types. The impactites and target rocks are overlain by ~1.7 Ga sediments of the Dhala Group and the Vindhyan Supergroup. The area was cored in more than 70 locations and the subsurface lithology shows pseudotachylitic breccia, impact melt breccia, suevite, lithic breccias, and postimpact sediments. Despite extensive erosion, the Dhala structure is well preserved and displays nearly all the diagnostic microscopic shock metamorphic features. This study is aimed at identifying the presence of an impactor component in impact melt rock by analyzing the siderophile element concentrations and rhenium‐osmium isotopic compositions of four samples of impactites (three melt breccias and one lithic breccia) and two samples of target rock (a biotite granite and a mafic intrusive rock). The impact melt breccias are of granitic composition. In some samples, the siderophile elements and HREE enrichment observed are comparable to the target rock abundances. The Cr versus Ir concentrations indicate the probable admixture of approximately 0.3 wt.% of an extraterrestrial component to the impact melt breccia. The Re and Os abundances and the 187Os/188Os ratio of 0.133 of one melt breccia specimen confirm the presence of an extraterrestrial component, although the impactor type characterization still remains inconclusive.  相似文献   

11.
The ICDP–USGS Eyreville drill cores in the Chesapeake Bay impact structure reached a total depth of 1766 m and comprise (from the bottom upwards) basement‐derived schists and granites/pegmatites, impact breccias, mostly poorly lithified gravelly sand and crystalline blocks, a granitic slab, sedimentary breccias, and postimpact sediments. The gravelly sand and crystalline block section forms an approximately 26 m thick interval that includes an amphibolite block and boulders of cataclastic gneiss and suevite. Three gravelly sands (basal, middle, and upper) are distinguished within this interval. The gravelly sands are poorly sorted, clast supported, and generally massive, but crude size‐sorting and subtle, discontinuous layers occur locally. Quartz and K‐feldspar are the main sand‐size minerals and smectite and kaolinite are the principal clay minerals. Other mineral grains occur only in accessory amounts and lithic clasts are sparse (only a few vol%). The gravelly sands are silica rich (~80 wt% SiO2). Trends with depth include a slight decrease in SiO2 and slight increase in Fe2O3. The basal gravelly sand (below the cataclasite boulder) has a lower SiO2 content, less K‐feldspar, and more mica than the higher sands, and it contains more lithic clasts and melt particles that are probably reworked from the underlying suevite. The middle gravelly sand (below the amphibolite block) is finer‐grained, contains more abundant clay minerals, and displays more variable chemical compositions than upper gravelly sand (above the block). Our mineralogical and geochemical results suggest that the gravelly sands are avalanche deposits derived probably from the nonmarine Potomac Formation in the lower part of the target sediment layer, in contrast to polymict diamictons higher in the core that have been interpreted as ocean‐resurge debris flows, which is in agreement with previous interpretations. The mineralogy and geochemistry of the gravelly sands are typical for a passive continental margin source. There is no discernible mixing with marine sediments (no glauconite or Paleogene marine microfossils noted) during the impact remobilization and redeposition. The unshocked amphibolite block and cataclasite boulder might have originated from the outer parts of the transient crater.  相似文献   

12.
Abstract— The Ordovician Lockne impact structure is located in central Sweden. The target lithology consisted of limestone and black unconsolidated shale overlaying a Precambrian crystalline basement. The Precambrian basement is uranium‐rich, and the black shale is both uranium‐ and organic‐rich. This circumstance makes Lockne a good candidate for testing the occurrence of U‐Th‐rich bitumen nodules in an impact structure setting. U‐Th‐rich bitumen nodules are formed through irradiation; hence the increase in the complexity of organic matter by a radioactive (uranium‐ and thorium‐rich) mineral phase. U‐Th‐rich bitumen nodules were detected in crystalline impact breccia and resurge deposits from the impact structure, but samples of non‐impact‐affected rocks from outside the impact structure do not contain any U‐Th‐rich bitumen nodules. This implies that in the Lockne impact structure, the nodules are associated with impact‐related processes. U‐Th‐rich bitumen nodules occur throughout the geological record and are not restricted to an impact structure setting, but our studies at Lockne show that this process of irradiation can readily occur in impact structures where fracturing of rocks and a post‐impact hydrothermal system enhances fluid circulation. The irradiation of organic matter by radioactive minerals has previously been proposed as a process for concentration of carbon on the early Earth. Impact structures are suggested as sites for prebiotic chemistry and primitive evolution, and irradiation by radioactive minerals could be an important mechanism for carbon concentration at impact sites.  相似文献   

13.
The Puchezh‐Katunki impact structure, 40–80 km in diameter, located ~400 km northeast of Moscow (Russia), has a poorly constrained age between ~164 and 203 Ma (most commonly quoted as 167 ± 3 Ma). Due to its relatively large size, the Puchezh‐Katunki structure has been a prime candidate for discussions on the link between hypervelocity impacts and extinction events. Here, we present new 40Ar/39Ar data from step‐heating analysis of five impact melt rock samples that allow us to significantly improve the age range for the formation of the Puchezh‐Katunki impact structure to 192–196 Ma. Our results also show that there is not necessarily a simple relationship between the observed petrographic features of an impact melt rock sample and the obtained 40Ar/39Ar age spectra and inverse isochrons. Furthermore, a new palynological investigation of the postimpact crater lake sediments supports an age significantly older than quoted in the literature, i.e., in the interval late Sinemurian to early Pliensbachian, in accordance with the new radioisotopic age estimate presented here. The new age range of the structure is currently the most reliable age estimate of the Puchezh‐Katunki impact event.  相似文献   

14.
A Paleoarchean impact spherule‐bearing interval of the 763 m long International Continental Scientific Drilling Program (ICDP) drill core BARB5 from the lower Mapepe Formation of the Fig Tree Group, Barberton Mountain Land (South Africa) was investigated using nondestructive analytical techniques. The results of visual observation, infrared (IR) spectroscopic imaging, and micro‐X‐ray fluorescence (μXRF) of drill cores are presented. Petrographic and sedimentary features, as well as major and trace element compositions of lithologies from the micrometer to kilometer‐scale, assisted in the localization and characterization of eight spherule‐bearing intervals between 512.6 and 510.5 m depth. The spherule layers occur in a strongly deformed section between 517 and 503 m, and the rocks in the core above and below are clearly less disturbed. The μXRF element maps show that spherule layers have similar petrographic and geochemical characteristics but differences in (1) sorting of two types of spherules and (2) occurrence of primary minerals (Ni‐Cr spinel and zircon). We favor a single impact scenario followed by postimpact reworking, and subsequent alteration. The spherule layers are Al2O3‐rich and can be distinguished from the Al2O3‐poor marine sediments by distinct Al‐OH absorption features in the short wave infrared (SWIR) region of the electromagnetic spectrum. Infrared images can cover tens to hundreds of square meters of lithologies and, thus, may be used to search for Al‐OH‐rich spherule layers in Al2O3‐poor sediments, such as Eoarchean metasediments, where the textural characteristics of the spherule layers are obscured by metamorphism.  相似文献   

15.
Abstract– The Ritland structure is a newly discovered impact structure, which is located in southwestern Norway. The structure is the remnant of a simple crater 2.5 km in diameter and 350 m deep, which was excavated in Precambrian gneissic rocks. The crater was filled by sediments in Cambrian times and covered by thrust nappes of the Caledonian orogen in the Silurian–Devonian. Several succeeding events of uplift, erosion, and finally the Pleistocene glaciations, disclosed this well‐preserved structure. The erosion has exposed brecciated rocks of the original crater floor overlain by a thin layer of melt‐bearing rocks and postimpact crater‐filling breccias, sandstones, and shales. Quartz grains with planar deformation features occur frequently within the melt‐bearing unit, confirming the impact origin of the structure. The good exposures of infilling sediments have allowed a detailed reconstruction of the original crater morphology and its infilling history based on geological field mapping.  相似文献   

16.
Lockne is a concentric impact structure due to a layered target where weak sediments and seawater covered a crystalline basement. A matrix‐supported, sedimentary breccia is interlayered between the crystalline breccia lens and the resurge deposits in the crater infill. As the breccia is significantly different from the direct impact breccia and the resurge deposit, we propose a separate unit name, Tramsta Breccia, based on the type locality (i.e., the LOC02 drilling at Tramsta). We use granulometry and a novel matrix line‐log method to characterize the sedimentology of the Tramsta Breccia. The obliquity of impact combined with the layered target caused an asymmetric, concentric transient crater, which upon its collapse controlled the deposition of the breccia. On the wide‐brimmed downrange side of the crater where the sedimentary target succession was removed during crater excavation, wide, overturned basement crater ejecta flaps prevented any slumping of exterior sediments. Instead, the sediments most likely originated from the uprange side where the brim was narrow and the basement crater rim was poorly developed, sediment‐rich, and relatively unstable. Here, the water cavity wall remained in closer proximity to the basement crater and, aided by the pressure of the collapsing water wall, unconsolidated black mud would flow back into the crater. The absence of interlayered resurge deposits in the Tramsta Breccia and the evidence for reworking at the contact between the overlying resurge deposits and the Tramsta Breccia indicate that the slumping was a rapid process (<75 s) terminating well before the resurge entered the crater.  相似文献   

17.
Abstract– Ejecta from the large subsurface Tookoonooka impact structure have been found in the Lower Cretaceous strata of the extensive Eromanga Basin of central Australia. Observations from 31 wells spanning 400,000 km2 of the basin provide compelling evidence for the presence of a marine impact horizon of regional extent. Drill core was examined to determine the sedimentary context of the Tookoonooka impact event, the presence of ejecta, and the nature of the impact horizon. The base of the Wyandra Sandstone Member of the Cadna‐owie Formation is an unconformity commonly overlain by very poorly sorted sediment with imbricated pebbles, exotic clasts, and occasional boulders. The basal Wyandra Sandstone Member is bimodal: a fine sand mode reflects an ambient sediment contribution and a coarse mode is interpreted to be impact‐derived. Wells Thargomindah‐1 and Eromanga‐1, within four crater radii of Tookoonooka, contain distinctive clast‐supported breccia‐conglomerate beds at the base of the Wyandra Sandstone Member. Clasts in these beds include altered accretionary and melt impactoclasts, as well as lithic and mineral grains corresponding to the Tookoonooka target rock sequence, including basement. Petrographic evidence includes shock metamorphosed quartz and lithic grains with planar deformation features. These breccia‐conglomerates are in stark contrast to the underlying, laterally persistent, unimodal Cadna‐owie sediments and overlying shales deposited in an epeiric sea. The base of the Wyandra Sandstone Member is therefore interpreted to be the Tookoonooka impact horizon. The timing of the impact event is confirmed to be the Barremian‐Aptian boundary, at 125 ± 1 Ma. The Wyandra Sandstone Member preserves both impact ejecta and postimpact marine sediments.  相似文献   

18.
Field investigations in the eroded central uplift of the ≤30 km Keurusselkä impact structure, Finland, revealed a thin, dark melt vein that intersects the autochthonous shatter cone‐bearing target rocks near the homestead of Kirkkoranta, close to the center of the impact structure. The petrographic analysis of quartz in this melt breccia and the wall rock granite indicate weak shock metamorphic overprint not exceeding ~8–10 GPa. The mode of occurrence and composition of the melt breccia suggest its formation as some kind of pseudotachylitic breccia. 40Ar/39Ar dating of dark and clast‐poor whole‐rock chips yielded five concordant Late Mesoproterozoic miniplateau ages and one plateau age of 1151 ± 10 Ma [± 11 Ma] (2σ; MSWD = 0.11; = 0.98), considered here as the statistically most robust age for the rock. The new 40Ar/39Ar age is incompatible with ~1.88 Ga Svecofennian tectonism and magmatism in south‐central Finland and probably reflects the Keurusselkä impact, followed by impact‐induced hydrothermal chloritization of the crater basement. In keeping with the crosscutting relationships in the outcrop and the possible influence of postimpact alteration, the Late Mesoproterozoic 40Ar/39Ar age of ~1150 Ma should be treated as a minimum age for the impact. The new 40Ar/39Ar results are consistent with paleomagnetic results that suggested a similar age for Keurusselkä, which is shown to be one of the oldest impact structures currently known in Europe and worldwide.  相似文献   

19.
Abstract— The late Eocene Chesapeake Bay impact structure (CBIS) on the Atlantic margin of Virginia is one of the largest and best‐preserved “wet‐target” craters on Earth. It provides an accessible analog for studying impact processes in layered and wet targets on volatile‐rich planets. The CBIS formed in a layered target of water, weak clastic sediments, and hard crystalline rock. The buried structure consists of a deep, filled central crater, 38 km in width, surrounded by a shallower brim known as the annular trough. The annular trough formed partly by collapse of weak sediments, which expanded the structure to ?85 km in diameter. Such extensive collapse, in addition to excavation processes, can explain the “inverted sombrero” morphology observed at some craters in layered targets. The distribution of crater‐fill materials in the CBIS is related to the morphology. Suevitic breccia, including pre‐resurge fallback deposits, is found in the central crater. Impact‐modified sediments, formed by fluidization and collapse of water‐saturated sand and silt‐clay, occur in the annular trough. Allogenic sediment‐clast breccia, interpreted as ocean‐resurge deposits, overlies the other impactites and covers the entire crater beneath a blanket of postimpact sediments. The formation of chaotic terrains on Mars is attributed to collapse due to the release of volatiles from thick layered deposits. Some flat‐floored rimless depressions with chaotic infill in these terrains are impact craters that expanded by collapse farther than expected for similar‐sized complex craters in solid targets. Studies of crater materials in the CBIS provide insights into processes of crater expansion on Mars and their links to volatiles.  相似文献   

20.
Abstract— The Lockne crater in Sweden is a marine‐target crater, formed in a shelf sea, approximately 460 Ma ago. The crater structure consists of an inner crater surrounded by an outer, inclined surface that extends to almost 12 km from the center. Marine craters differ in several respects from craters formed on land. One special feature is the formation of resurge gullies excavated by the erosional force of the resurging sea water after the impact. The formation of these gullies strongly depends on the ratio crater‐rim height to water depth, as well as on the size of the impact structure. Such gullies are known from very few marine‐target craters. At the Lockne impact site, four gullies are identified, each of which cuts radially through the rim of the outer crater. The rapid collapse of that part of the crater cavity, which formed in the seawater, resulted in forceful flooding of the crater. The resurging seawater not only contained fallback‐ejecta; on its way towards the cavity on the sea‐bottom it incorporated fractured lithologies from the sea‐bottom as well. This entrained material disintegrated during transport and constitutes today the dominantly monomict lower part of the resurge sequence. The resurge flood was highly turbulent, highly erosive, and developed to a probable hyperconcentrated flow or a possible water flood. The erosion in the gullies proceeded as headward erosion down to the transition zone between the brecciated and the less disintegrated crystalline basement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号