首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Our survey of type 4–6 ordinary chondrites indicates that gas-poor, melt-rock and/or exotic clast-bearing fragmental breccias constitute 5%, 22% and 23%, respectively, of H, L and LL chondrites. These abundances contrast with the percentages of solar-gas-rich regolith breccias among ordinary chondrites: H (14%), L (3%) and LL (8%) (Crabb and Schultz, 1981). Petrologic study of several melt-rock-clast-bearing fragmental breccias indicates that some acquired their clasts prior to breccia metamorphism and others acquired them after metamorphism of host material. In general, the melt-rock clasts in gas-poor H chondrite fragmental breccias were acquired after breccia metamorphism and were probably formed by impacts into boulders or exposed outcrops of H4-6 material in the H chondrite parent body regolith. In contrast, most of the melt-rock clasts in gas-poor L and LL fragmental breccias were acquired prior to breccia metamorphism. The low abundance of regolith breccias among L chondrites and evidence that at least two-thirds of the L chondrites suffered a major shock event 0.5 Gyr ago, suggest that the L parent body may have been disrupted by a major collision at that time and that the remaining parent body fragments were too small to develop substantial regoliths (e.g., Heymann, 1967; Crabb and Schultz, 1981). Such a disruption would have exposed a large amount of L chondrite bedrock, some of which would consist of fragmental breccias that acquired melt-rock clasts very early in solar system history, prior to metamorphism. The exposed bedrock would serve as a potential target for sporadic meteoroid impacts to produce a few fragmental breccias with unmetamorphosed melt-rock clasts. The high proportion of genomict brecciated LL chondrites reflects a complex collisional history, probably including several episodes of parent body disruption and gravitational reassembly. Differences in the abundances of different kinds of breccias among the ordinary chondrite groups are probably due to the stochastic nature of major asteroidal collisions.  相似文献   

2.
Abstract– Northwest Africa 4859 (NWA 4859) is a meteorite of LL chondrite parentage that shows unusual igneous features and contains widely distributed pentlandite. The most obvious unusual feature is a high proportion of large (≤3 cm diameter) igneous‐textured enclaves (LITEs), interpreted as shock melts that were intruded into an LL chondrite host. One such LITE appears to have been produced by whole rock melting of LL chondrite, initial rapid partial crystallization, and subsequent slow cooling of the residual melt in the host to produce a differentiated object. Other unusual features include mm‐sized “overgrowth objects,” fine‐grained plagioclase‐rich bands, and coarse troilite (≤7 mm across) grains. All these features are interpreted as having crystallized from melts produced by a single transient shock event, followed by slow cooling. A subsequent shock event of moderate (S3) intensity produced veining and transformed some of the pyroxene into the clinoenstatite polytype. Pentlandite (together with associated troilite) in NWA 4859 probably formed by the breakdown of a monosulfide precursor phase at low temperature (≤230 °C) following the second shock event. NWA 4859 is interpreted to be an unusual impact‐melt breccia that contains shock melt which crystallized in different forms at depth within the parent body.  相似文献   

3.
Abstract— Six ordinary chondrite breccias from the Museo Nacional de Ciencias Naturales, Madrid (Spain), are described and classified as follows: the solar gas-rich regolith breccia Oviedo (H5); the pre-metamorphic fragmental breccias Cabezo de Mayo (type 6, L-LL), and Sevilla (LL4); the fragmental breccias Cañellas (H4) and Gerona (H5); and the impact melt breccia, Madrid (L6). We confirm that chondrites with typical light-dark structures and petrographic properties typical of regolith breccias may (Oviedo) or may not (Cañellas) be solar gas-rich. Cabezo de Mayo and Sevilla show convincing evidence that they were assembled prior to peak metamorphism and were equilibrated during subsequent reheating. These meteorites contain small melt rock clasts that were incorporated into the host chondrite while still molten and/or plastic and cooled rapidly and, yet, are totally equilibrated with their hosts. Compositions of olivine and low-Ca pyroxene in host chondrite and breccia clasts in Cabezo de Mayo are transitional between groups L and LL. It is suggested, based on mineralogic and oxygen isotopic compositions of host and clasts, that the rock formed on the L parent body by mixing, prior to peak metamorphism. This was followed by partial equilibration of two different materials: the indigenous L chondrite host and exotic LL melt rock clasts.  相似文献   

4.
Abstract— Hadley Rille is a millimeter-size EH chondrite containing euhedral and acicular enstatite grains, kamacite globules and preferentially aligned silicate aggregates separated by elongated kamacite-rich patches. The Hadley Rille chondrite was significantly impact melted when it accreted to the lunar regolith at relative velocities of ~>3 km s?1; ~65–75% of the chondrules present initially were melted. During the impact, portions of the local regolith were melted and an agglutinate-like rim formed around the chondritic projectile; the rim consists of flow-banded vesicular glass, blebs of troilite and low-Ni metallic Fe, rock fragments, glass(?) shards, and mineral grains. The mineral grains include enstatite (which is otherwise absent from the Moon and must have been derived from the projectile) and poorly characterized, micrometer-size phases enriched in light rare-earth-elements (LREE), which probably formed during the impact. Several of the rock fragments contain <33 mg/g Cl, which was probably derived through impact-induced volatilization of Cl from chondrule mesostases in the EH projectile.  相似文献   

5.
Ordinary chondrite meteorites contain silicates, Fe,Ni‐metal grains, and troilite (FeS). Conjoined metal‐troilite grains would be the first phase to melt during radiogenic heating in the parent body, if temperatures reached over approximately 910–960 °C (the Fe,Ni‐FeS eutectic). On the basis of two‐pyroxene thermometry of 13 ordinary chondrites, we argue that peak temperatures in some type 6 chondrites exceeded the Fe,Ni‐FeS eutectic and thus conjoined metal‐troilite grains would have begun to melt. Melting reactions consume energy, so thermal models were constructed to investigate the effect of melting on the thermal history of the H, L, and LL parent asteroids. We constrained the models by finding the proportions of conjoined metal‐troilite grains in ordinary chondrites using high‐resolution X‐ray computed tomography. The models show that metal‐troilite melting causes thermal buffering and inhibits the onset of silicate melting. Compared with models that ignore the effect of melting, our models predict longer cooling histories for the asteroids and accretion times that are earlier by 61, 124, or 113 kyr for the H, L, and LL asteroids, respectively. Because the Ni/Fe ratio of the metal and the bulk troilite/metal ratio is higher in L and LL chondrites than H chondrites, thermal buffering has the greatest effect in models for the L and LL chondrite parent bodies, and least effect for the H chondrite parent. Metal‐troilite melting is also relevant to models of primitive achondrite parent bodies, particularly those that underwent only low degrees of silicate partial melting. Thermal models can predict proportions of petrologic types formed within an asteroid, but are systematically different from the statistics of meteorite collections. A sampling bias is interpreted to explain these differences.  相似文献   

6.
Polymict chondritic breccias—rocks composed of fragments originating from different chondritic parent bodies—are of particular interest because they give insights into the mixing of asteroids in the main asteroid belt (occurrence, encounter velocity, transfer time). We describe Northwest Africa (NWA) 5764, a brecciated LL6 chondrite that contains a >16 cm3 L4 clast. The L clast was incorporated in the breccia through a nondestructive, low‐velocity impact. Identical cosmic‐ray exposure ages of the L clast and the LL host (36.6 ± 5.8 Myr), suggest a short transfer time of the L meteoroid to the LL parent body of 0.1 ± 8.1 Myr, if that meteoroid was no larger than a few meters. NWA 5764 (together with St. Mesmin, Dimmitt, and Glanerbrug) shows that effective mixing is possible between ordinary chondrite parent bodies. In NWA 5764 this mixing occurred after the peak of thermal metamorphism on the LL parent body, i.e., at least several tens of Myr after the formation of the solar system. The U,Th‐He ages of the L clast and LL host, identical at about 2.9 Ga, might date the final assembly of the breccia, indicating relatively young mixing in the main asteroid belt as previously evidenced in St. Mesmin.  相似文献   

7.
Abstract— Northwest Africa (NWA) 428 is an L chondrite that was successively thermally metamorphosed to petrologic type‐6, shocked to stage S4–S5, brecciated, and annealed to approximately petrologic type‐4. Its thermal and shock history resembles that of the previously studied LL6 chondrite, Miller Range (MIL) 99301, which formed on a different asteroid. The petrologic type‐6 classification of NWA 428 is based on its highly recrystallized texture, coarse metal (150 ± 150 μm), troilite (100 ± 170 μm), and plagioclase (20–60 μm) grains, and relatively homogeneous olivine (Fa24.4 ± 0.6), low‐Ca pyroxene (Fs20.5 ± 0.4), and plagioclase (Ab84.2 ± 0.4) compositions. The petrographic criteria that indicate shock stage S4–S5 include the presence of chromite veinlets, chromite‐plagioclase assemblages, numerous occurrences of metallic Cu, irregular troilite grains within metallic Fe‐Ni, polycrystalline troilite, duplex plessite, metal and troilite veins, large troilite nodules, and low‐Ca clinopyroxene with polysynthetic twins. If the rock had been shocked before thermal metamorphism, low‐Ca clinopyroxene produced by the shock event would have transformed into orthopyroxene. Post‐shock brecciation is indicated by the presence of recrystallized clasts and highly shocked clasts that form sharp boundaries with the host. Post‐shock annealing is indicated by the sharp optical extinction of the olivine grains; during annealing, the damaged olivine crystal lattices healed. If temperatures exceeded those approximating petrologic type‐4 (?600–700°C) during annealing, the low‐Ca clinopyroxene would have transformed into orthopyroxene. The other shock indicators, likewise, survived the mild annealing. An impact event is the most plausible source of post‐metamorphic, post‐shock annealing because any 26Al that may have been present when the asteroid accreted would have decayed away by the time NWA 428 was annealed. The similar inferred histories of NWA 428 (L6) and MIL 99301 (LL6) indicate that impact heating affected more than 1 ordinary chondrite parent body.  相似文献   

8.
The Ko?ice meteorite was observed to fall on 28 February 2010 at 23:25 UT near the city of Ko?ice in eastern Slovakia and its mineralogy, petrology, and geochemistry are described. The characteristic features of the meteorite fragments are fan‐like, mosaic, lamellar, and granular chondrules, which were up to 1.2 mm in diameter. The fusion crust has a black‐gray color with a thickness up to 0.6 mm. The matrix of the meteorite is formed mainly by forsterite (Fo80.6); diopside; enstatite (Fs16.7); albite; troilite; Fe‐Ni metals such as iron and taenite; and some augite, chlorapatite, merrillite, chromite, and tetrataenite. Plagioclase‐like glass was also identified. Relative uniform chemical composition of basic silicates, partially brecciated textures, as well as skeletal taenite crystals into troilite veinlets suggest monomict breccia formed at conditions of rapid cooling. The Ko?ice meteorite is classified as ordinary chondrite of the H5 type which has been slightly weathered, and only short veinlets of Fe hydroxides are present. The textural relationships indicate an S3 degree of shock metamorphism and W0 weathering grade. Some fragments of the meteorite Ko?ice are formed by monomict breccia of the petrological type H5. On the basis of REE content, we suggest the Ko?ice chondrite is probably from the same parent body as H5 chondrite Morávka from Czech Republic. Electron‐microprobe analysis (EMPA) with focused and defocused electron beam, whole‐rock analysis (WRA), inductively coupled plasma mass and optical emission spectroscopy (ICP MS, ICP OES), and calibration‐free laser induced breakdown spectroscopy (CF‐LIBS) were used to characterize the Ko?ice fragments. The results provide further evidence that whole‐rock analysis gives the most accurate analyses, but this method is completely destructive. Two other proposed methods are partially destructive (EMPA) or nondestructive (CF‐LIBS), but only major and minor elements can be evaluated due to the significantly lower sample consumption.  相似文献   

9.
Abstract— Richfield is a moderately shocked (shock stage S4) LL3.7 genomict breccia find consisting mainly of light-colored recrystallized clasts and dark clasts exhibiting significant silicate darkening; a few impact-melt-rock clasts and LL5 chondrite clasts also occur. The cosmic-ray exposure age of 14.5 Ma is indistinguishable from the main exposure peak for LL chondrites (15 Ma). Although the exposure ages indicate little He loss, the gas-retention ages indicate high gas losses that must have occurred prior to or during ejection from the LL parent body.  相似文献   

10.
Abstract– LaPaz Icefield (LAP) 04581 is a shock‐stage S2 LL5 chondrite that initially consisted of unrecrystallized LL3 material with a moderately abundant fine‐grained porous matrix (on the order of 15 vol%). A rare oblique impact created shearing stresses that produced a petrofabric in the rock, induced frictional melting of troilite (thereby forming a large troilite vein), and caused chondrule flattening. The latter process was facilitated by impact‐induced collapse of matrix pores. Chondrule flattening could not have occurred if the rock had been impacted after it had been metamorphosed to type 5 levels because the fine‐grained matrix would have previously recrystallized and developed low porosity. Ar‐Ar dating of LAP 04581 yields an age of 4175 Ma. This date is long after 26Al had decayed away and most likely reflects the timing of a second impact event that shocked the rock to S4–S5 levels. The troilite vein became polycrystalline at this time and the whole rock was annealed to petrologic type 5, perhaps by being buried beneath hot ejecta of low thermal diffusivity. After annealing, the rock was weakly shocked to S2 levels. LAP 04581 serves as an example of impact‐induced heating being a viable mechanism for chondrite metamorphism.  相似文献   

11.
Three masses of the Chelyabinsk meteorite have been studied with a wide range of analytical techniques to understand the mineralogical variation and thermal history of the Chelyabinsk parent body. The samples exhibit little to no postentry oxidation via Mössbauer and Raman spectroscopy indicating their fresh character, but despite the rapid collection and care of handling some low levels of terrestrial contamination did nonetheless result. Detailed studies show three distinct lithologies, indicative of a genomict breccia. A light‐colored lithology is LL5 material that has experienced thermal metamorphism and subsequent shock at levels near S4. The second lithology is a shock‐darkened LL5 material in which the darkening is caused by melt and metal‐troilite veins along grain boundaries. The third lithology is an impact melt breccia that formed at high temperatures (~1600 °C), and it experienced rapid cooling and degassing of S2 gas. Portions of light and dark lithologies from Chel‐101, and the impact melt breccias (Chel‐102 and Chel‐103) were prepared and analyzed for Rb‐Sr, Sm‐Nd, and Ar‐Ar dating. When combined with results from other studies and chronometers, at least eight impact events (e.g., ~4.53 Ga, ~4.45 Ga, ~3.73 Ga, ~2.81 Ga, ~1.46 Ga, ~852 Ma, ~312 Ma, and ~27 Ma) are clearly identified for Chelyabinsk, indicating a complex history of impacts and heating events. Finally, noble gases yield young cosmic ray exposure ages, near 1 Ma. These young ages, together with the absence of measurable cosmogenic derived Sm and Cr, indicate that Chelyabinsk may have been derived from a recent breakup event on an NEO of LL chondrite composition.  相似文献   

12.
Abstract— The Leedey, Oklahoma, meteorite shower fell on 1943 November 25, following a fireball which was visible across much of southwestern Oklahoma and northcentral Texas. The shower produced 24 stones with a total mass of ~51.5 kg. The stones formed a strewnfield ~18 km in length in the same direction as the observed path of the meteor (N50°W). Leedey is classified as an L6(S3) ordinary chondrite. We report bulk major element chemical analyses from four separate laboratories. Leedey contains an unusual 6 by 8 mm composite Fe,Ni-FeS grain, which is composed of a 3 mm kamacite grain adjacent to a 5 mm troilite grain. A 50–100 μm rim of high-Ni (45–55 wt%) taenite (tetrataenite) occurs at the boundary between kamacite and troilite. A single, zoned pyrophanite grain is observed at the boundary between the inclusion troilite and host silicates. An origin as a foreign particle incorporated after metamorphism or during impact melting appears unlikely. This particle likely formed by a complex set of processes, including melting in the nebula, parent body metamorphism and reheating by later shock, mirroring the history of the host chondrite.  相似文献   

13.
The Gao‐Guenie H5 chondrite that fell on Burkina Faso (March 1960) has portions that were impact‐melted on an H chondrite asteroid at ~300 Ma and, through later impact events in space, sent into an Earth‐crossing orbit. This article presents a petrographic and electron microprobe analysis of a representative sample of the Gao‐Guenie impact melt breccia consisting of a chondritic clast domain, quenched melt in contact with chondritic clasts, and an igneous‐textured impact melt domain. Olivine is predominantly Fo80–82. The clast domain contains low‐Ca pyroxene. Impact melt‐grown pyroxene is commonly zoned from low‐Ca pyroxene in cores to pigeonite and augite in rims. Metal–troilite orbs in the impact melt domain measure up to ~2 mm across. The cores of metal orbs in the impact melt domain contain ~7.9 wt% of Ni and are typically surrounded by taenite and Ni‐rich troilite. The metallography of metal–troilite droplets suggest a stage I cooling rate of order 10 °C s?1 for the superheated impact melt. The subsolidus stage II cooling rate for the impact melt breccia could not be determined directly, but was presumably fast. An analogy between the Ni rim gradients in metal of the Gao‐Guenie impact melt breccia and the impact‐melted H6 chondrite Orvinio suggests similar cooling rates, probably on the order of ~5000–40,000 °C yr?1. A simple model of conductive heat transfer shows that the Gao‐Guenie impact melt breccia may have formed in a melt injection dike ~0.5–5 m in width, generated during a sizeable impact event on the H chondrite parent asteroid.  相似文献   

14.
We examined H4 chondrites Beaver Creek, Forest Vale, Quenggouk, Ste. Marguerite, and Sena with the electron backscatter diffraction (EBSD) techniques of Ruzicka and Hugo (2018) to determine if there is evidence for shock metamorphism consistent with the previously inferred histories of their early impact excavation or lack thereof. We find that all samples have EBSD data consistent with a history of synmetamorphic impact shock (i.e., shock during thermal metamorphism), followed by postshock annealing. Petrographic analysis of Sena, Quenggouk, and Ste. Marguerite found exsolved Cu and irregular troilite within Fe metal, features consistent with shock metamorphism. All samples have a spatial variability in grain deformation consistent with shock processes, though Forest Vale, Quenggouk, and Ste. Marguerite may have relict signatures of accretional deformation as indicated by variability in their olivine deformation metrics. Within the context of previous workers' geochemical observations, a more complex history is inferred for each sample. The “slow-cooled” samples, Quenggouk and Sena, were subject to synmetamorphic shock without excavation and annealed at depth. The same is true of the “fast-cooled” samples, Beaver Creek, Forest Vale, and Ste. Marguerite. However, after annealing, these rocks were excavated by a secondary impact or impacts around 5.2–6.5 Ma post-CAI formation and were left to cool rapidly on the surface of the H chondrite parent body. These interpreted histories are best compatible with a model of an impact-battered but intact onion shell for the earliest history of the H parent body. However, the EBSD evidence does not preclude a parent body disruption after 7 Ma post-CAI formation.  相似文献   

15.
Microtextural study of a single troilite‐metal nodule (TMN) from the Katol L6‐7 chondrite, a recent fall (May, 2012) in India suggests that the TMN is primarily an aggregate of submicron‐scale intergrowth of troilite and kamacite (mean Ni: 6.18 wt%) juxtaposed with intensely fractured silicates, mainly olivine (Fa: 25 mole%), low‐Ca pyroxene (Fs: 21.2 mole%), and a large volume of maskelynite. Evidence of shock textures in the TMN indicates a high degree of shock metamorphism that involves plagioclase‐maskelynite and olivine‐wadsleyite/ringwoodite transformations and formation of quenched metal‐sulfide melt textures due to localized shear‐induced frictional melting. It is inferred that the TMN formation is an independent, localized event by a high energy impact and its subsequent incorporation in the ejected chondritic fragment of the parent body. Katol chondrite has been calibrated with a peak shock pressure of S5 (~45 GPa) after Stöffler et al. (1991), whereas peak shock pressure within the TMN exceeds the shock facies S6 (>45 GPa) following Bennett and McSween (1996) and Stöffler et al. (1991). Overall, the shock‐thermal history of the Katol TMN is dissimilar as compared to the host chondrite.  相似文献   

16.
Abstract— Age patterns observed in meteorite groups reflect the different thermal or impact histories experienced by their parent bodies. To assess the number of ordinary chondrite (OC) parent bodies rare-gas data in the Schultz and Kruse (1989) data base were used to calculate U,Th-He gas-retention ages. Most H- and LL-chondrite ages are high; ~81% are >2.2 Ga. In contrast, most L-chondrite ages are low; ~69% are ≤2.2 Ga, and ~35% are ≤0.9 Ga. The latter fraction is substantially lower than the value of 44% given by Heymann (1967). The difference is attributed to the preferential inclusion of shocked L chondrites in early studies. Broad age peaks in the H and LL groups near 3.4 Ga probably reflect thermal loss during metamorphism, but in the H distribution there is a hint of minor outgassing “events” near 1 Ga. The L/LL chondrites have chemical properties intermediate between and unresolvable from L and LL chondrites. The high ages of most L/LL chondrites are evidence against these originating on the L parent body; the L/LL age distribution is consistent with an origin on the LL parent body or on an independent body.  相似文献   

17.
Abstract— Opaque minerals in the Qingzhen (EH3) and MacAlpine Hills (MAC) 88136 (EL3) enstatite chondrites were studied and compared with other EH and EL chondrites. All opaque minerals usually occur in multi‐sulfide‐metal clasts and nodules in the matrix between chondrules (El Goresy et al., 1988). The higher abundance of opaque minerals, the occurrence of niningerite and various alkali‐sulfides (e.g., caswellsilverite, phases A and B, djerfisherite) are diagnostic criteria for EH chondrites, while alabandite is characteristic for EL chondrites. In addition, EH chondrites are characterized by enrichments of Si in both kamacite and perryite, and alkali elements in sphalerite and chalcopyrite. The Mn contents of daubreelite and sphalerite are lower in EH than in EL chondrites. These are consistent with lower oxygen fugacity and higher H2S fugacity of EH than EL chondrites. In contrast, the discovery of sphalerite and Zn‐rich daubreelite in MAC 88136 indicates that their absence in EL6 chondrites is probably related to thermal metamorphism in the parent body. Schreibersite microspherules are commonly enclosed in most sulfides in Qingzhen, but are absent in MAC 88136. They were once molten, and probably predated all sulfide host phases. The petrographic setting and chemical compositions of the sulfide hosts of the schreibersite microspherules in EH3 chondrites are consistent with formation by condensation. The earliest sulfide condensates oldhamite and niningerite occupy the interiors of the clasts and nodules, whereas the rims consist of troilite and djerfisherite. In addition, in Qingzhen, some other troilite, djerfisherite and sphalerite assemblages coexist with perryite. They were produced by sulfurization of metallic Fe‐Ni in the nebula. In MAC 88136, sulfurization of Si‐bearing Fe‐Ni metal is less pronounced, and it produced troilite, schreibersite and less abundant perryite. Two kinds of normal zoning and a reverse zoning trends of niningerite, and both normal and reverse zoning of sphalerite were found in clasts and nodules in Qingzhen. The coexistence of normal and reverse zoning profiles in niningerite grains in the same meteorite strongly suggests that they formed before accretion in the parent body, because an asteroidal metamorphic or an impact event in the parent body would have erased these contrasting profiles and destroyed the textural settings. In contrast, alabandite in MAC 88136 shows only normal zoning, with the FeS content decreasing to 9.3 mol% toward troilite, indicating very slow cooling at low temperature.  相似文献   

18.
Abstract— NWA 2526 is a coarse‐grained, achondritic rock dominated by equigranular grains of polysynthetically twinned enstatite (?85 vol%) with frequent 120° triple junctions and ?10–15 vol% of kamacite + terrestrial weathering products. All other phases including troilite, daubreelite, schreibersite, and silica‐normative melt areas make up 相似文献   

19.
Abstract— –Literature data show that, among EH chondrites, the Abee impact‐melt breccia exhibits unusual mineralogical characteristics. These include very low MnO in enstatite (<0.04 wt%), higher Mn in troilite (0.24 wt%) and oldhamite (0.36 wt%) than in EH4 Indarch and EH3 Kota‐Kota (which are not impact‐melt breccias), low Mn in keilite (3.6–4.3 wt%), high modal abundances of keilite (11.2 wt%) and silica (~7 wt%, but ranging up to 16 wt% in some regions), low modal abundances of total silicates (58.8 wt%) and troilite (5.8 wt%), and the presence of acicular grains of the amphibole, fluor‐richterite. These features result from Abee's complex history of shock melting and crystallization. Impact heating was responsible for the loss of MnO from enstatite and the concomitant sulfidation of Mn. Troilite and oldhamite grains that crystallized from the impact melt acquired relatively high Mn contents. Abundant keilite and silica also crystallized from the melt; these phases (along with metallic Fe) were produced at the expense of enstatite, niningerite and troilite. Melting of the latter two phases produced a S‐rich liquid with higher Fe/Mg and Fe/Mn ratios than in the original niningerite, allowing the crystallization of keilite. Prior to impact melting, F was distributed throughout Abee, perhaps in part adsorbed onto grain surfaces; after impact melting, most of the F that was not volatilized was incorporated into crystallizing grains of fluor‐richterite. Other EH‐chondrite impact‐melt breccias and impact‐melt rocks exhibit some of these mineralogical features and must have experienced broadly similar thermal histories.  相似文献   

20.
Cover          下载免费PDF全文
X‐ray map of a thin section of a sample of the Chelyabinsk meteorite from the study of Righter et al. (pp. 1790–1819). Sample Chel‐102 contains roughly 50 modal% of a dark lithology that is shock‐darkened LL5 chondrite (left side of image). There is heavy veining of this portion, and very little original equilibrated chondritic texture remaining. The other 50% of Chel‐102 (right side of image) is a very fi ne‐grained melt breccia comprised of mesostasis (85%), metal‐troilite droplets (5%), and chondritic fragments of similar mineralogy to the light lithology of Chel‐101. Image produced by Eve. L. Berger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号