首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— If Vesta is the parent body of the howardite, eucrite, and diogenite (HED) meteorites, then geo-chemical and petrologic constraints for the meteorites may be used in conjunction with astronomical constraints for the size and mass of Vesta to (1) determine the size of a possible metal core in Vesta and (2) model the igneous differentiation and internal structure of Vesta. The density of Vesta and petrologic models for HED meteorites together suggest that the amount of metal in the parent body is <25 mass%, with a best estimate of ~5%, assuming no porosity. For a porosity of up to 5% in the silicate fraction of the asteroid, the permissible metal content is <30%. These results suggest that any metal core in the HED parent body and Vesta is not unusually large. A variety of geochemical and other data for HED meteorites are consistent with the idea that they originated in a magma ocean. It appears that diogenites formed by crystal accumulation in a magma ocean cumulate pile and that most noncumulate eucrites (excepting such eucrites as Bouvante and Statinem) formed by subsequent crystallization of the residual melts. Modelling results suggest that the HED parent body is enriched in rare earth elements by a factor of ~2.5–3.5 relative to CI-chondrites and that it has approximately chondritic Mg/Si and Al/Sc ratios. Stokes settling calculations for a Vesta-wide, nonturbulent magma ocean suggest that early-crystallizing magnesian olivine, orthopyroxene, and pigeonite would have settled relatively quickly, permitting fractional crystallization to occur, but that later-crystallizing phases would have settled (or floated) an order of magnitude more slowly, allowing, instead, a closer approach to equilibrium crystallization for the more evolved (eucritic) melts. This would have inhibited the formation of a plagioclase-flotation crust on Vesta. Plausible models for the interior of Vesta, which are consistent with the data for HED meteorites and Vesta, include a metal core (<130 km radius), an olivine-rich mantle (~65–220 km thick), a lower crustal unit (~12–43 km thick) composed of pyroxenite, from which diogenites were derived, and an upper crustal unit (~23–42 km thick), from which eucrites originated. The present shape of Vesta (with ~60 km difference in the maximum and minimum radius) suggests that all of the crustal materials, and possibly some of the underlying olivine from the mantle, could have been locally excavated or exposed by impact cratering.  相似文献   

2.
Abstract— Spectra of asteroid 4 Vesta and 21 small (estimated diameters less than 10 km) asteroids with Vesta‐like spectral properties (Vestoids) were measured at visible and near‐infrared wavelengths (~0.44 to ~1.65 μm). All of the measured small asteroids (except for 2579 Spartacus) have reflectance spectra consistent with surface compositions similar to eucrites and howardites and consistent with all being derived from Vesta. None of the observed asteroids have spectra similar to diogenites. We find no spectral distinction between the 15 objects tabulated as members of the Vesta dynamical family and 6 of the 7 sampled “non‐family” members that reside just outside the semi‐major axis (a), eccentricity (e), and inclination (i) region of the family. The spectral consistency and close orbital (a‐e‐i) match of these “non‐family” objects to Vesta and the Vesta family imply that the true bounds of the family extend beyond the subjective cut‐off for membership. Asteroid 2579 Spartacus has a spectrum consistent with a mixture of eucritic material and olivine. Spartacus could contain olivine‐rich material from Vesta's mantle or may be unrelated to Vesta altogether. Laboratory measurements of the spectra of eucrites show that samples having nearly identical compositions can display a wide range of spectral slopes. Finer particle sizes lead to an increase in the slope, which is usually referred to as reddening. This range of spectral variation for the best‐known meteoritic analogs to the Vestoids, regardless of whether they are actually related to each other, suggests that the extremely red spectral slopes for some Vestoids can be explained by very fine‐grained eucritic material on their surfaces.  相似文献   

3.
Abstract— We determined the cosmic-ray exposure age of 20 diogenites from measured cosmogenic noble gas isotopes and calculated production rates of 3He, 21Ne and 38Ar. The production rates were calculated on the basis of the measured chemical composition and the cosmogenic 22Ne/21Ne ratio of each sample. The shielding conditions of each sample were also checked on the basis of the measured 10Be and 26AI concentrations. The exposure ages range from 6 to 50 Ma but do not form a continuous distribution: ten ages cluster at 21–25 Ma and four at 35–42 Ma. The two diogenite clusters coincide with the 22 Ma and 38 Ma peaks in the exposure age distribution of eucrites and howardites. After the selection from literature data of 32 eucrites and 11 howardites with reliable ages, we find a total of 23 howardite, eucrite and diogenite (HED) group meteorites at 20–25 Ma and 10 at 35–42 Ma. The shape of the two peaks is consistent with single impact events, and random number statistics show that they are statistically significant at the 99% level. Altogether, this provides strong evidence for two major impact events 22 Ma and 39 Ma ago. Although these two events can explain more than half of all HED exposure ages, it takes at least five impact events to explain all ages <50 Ma. An impact frequency of one per 10 Ma corresponds to projectiles of at least 2–4 km in diameter for Vesta and of 60–300 m for the 100× smaller Vesta-derived “vestoids.” Based on the HED exposure-age distribution, the size distribution of the main-belt asteroids and the difference in size between Vesta and the kilometer size vestoids, we favor Vesta as the major source of HED meteorites, although some of the meteorites may have been ejected from the vestoids rather than directly from Vesta.  相似文献   

4.
Abstract— A large body of evidence, including the presence of a dynamical family associated with 4 Vesta, suggests that this asteroid might be the ultimate source of both the V-type near-Earth asteroids (NEAs) and howardite, eucrite and diogenite (HED) meteorites. Dynamical routes from Vesta to the inner regions of the solar system are provided by both the 3:1 mean-motion resonance with Jupiter and the V6, secular resonance. For this reason, numerical integrations of the orbits of fictitious Vesta fragments injected in both of these resonances have been performed. At the same time, the orbital evolution of the known V-type NEAs has been investigated. The results indicate that the dynamical half lifetimes of Vesta fragments injected in both the 3:1 and the V6, resonances are rather short ('2 Ma). The present location of the seven known V-type NEAs is better explained by orbital evolutions starting from the v6 secular resonance. The most important result of the present investigation, however, is that we now face what we call the “Vesta paradox.” Roughly speaking, the paradox consists of the fact that the present V-type NEAs appear to be too dynamically young to have originated in the event that produced the family, but they are too big to be plausible second-generation fragments from the family members. The cosmic-ray exposure (CRE) age distribution of HED meteorites also raises a puzzle, since we would expect an overabundance of meteorites with short CRE ages. We propose different scenarios to explain these paradoxes.  相似文献   

5.
Carbon and nitrogen data from stepped combustion analysis of eight angrites, seven eucrites, and two diogenites, alongside literature data from a further nine eucrites and two diogenites, have been used to assess carbon and nitrogen incorporation and isotope fractionation processes on the angrite parent body (APB), for comparison with volatile behavior on the HED parent body (4 Vesta). A subset of the angrite data has been reported previously (Abernethy et al. 2013 ). Two separate families of volatile components were observed. They were (1) moderately volatile material (MVM), mostly combusting between ~500 and 750 °C and indistinguishable from terrestrial contamination and (2) refractory material (RM), mainly released above 750 °C and thought to be carbon (as ) and nitrogen (as N2 or ) dissolved within the silicate lattice, fitting with the slightly oxidized (~IW to IW+2) angrite fO2 conditions. Isotopic fractionation trends for carbon and nitrogen within the plutonic and basaltic (quenched) angrites suggest that the behavior of the two volatile elements is loosely coupled, but that the fractionation process differs between the two angrite subgroups. Comparison with results from eucrites and diogenites implies similarities between speciation of carbon and nitrogen on 4 Vesta and the APB, with the latter being more enriched in volatiles than the former.  相似文献   

6.
Numerous petrologic and geochemical studies so far on the howardite, eucrite, and diogenite (HED) meteorites have produced various crystallization scenarios for their parent body, believed to be the differentiated asteroid 4 Vesta. Structural analyses of diogenites can reveal important insights into postcrystallization deformation on the parent body. Recently published results (Tkalcec et al. 2013 ) of structural analysis on the olivine‐rich diogenite NWA 5480 reveal that it underwent solid‐state plastic deformation, although not at the base of a magma chamber. Dynamic mantle downwelling has been proposed as a plausible deformation mechanism (Tkalcec et al. 2013 ). The purpose of this study is to investigate whether the plastic deformation found in NWA 5480 is an isolated case. We expand the structural analysis on NWA 5480 and extend it to NWA 5784 and MIL 07001,6, two other samples of rare olivine‐rich diogenites, using electron‐backscattered‐diffraction (EBSD) techniques. Our EBSD results show that the diogenites analyzed in this study underwent solid‐state plastic deformation, confirming that the observed deformation of NWA 5480 was not an isolated case on the diogenite parent body. The lattice‐preferred orientations (LPOs) of olivine in NWA 5784 and NWA 5480 are clearly distinct from that typical for cumulate rocks at the base of magma chambers, indicating a different stress environment and a different deformation mechanism. The LPO of olivine in MIL 07001 is less conclusive. The structural results of this study suggest that plastic deformation occurred on the diogenite parent body at high temperatures (1273 < T ≤ 1573 K) in the solid state, i.e., after crystallization of the diogenites themselves, in a dynamic environment with active stress fields.  相似文献   

7.
Records of space weathering are important for understanding the formation and evolution of surface regolith on airless celestial bodies. Current understanding of space weathering processes on asteroids including asteroid‐4 Vesta, the source of the howardite–eucrite–diogenite (HED) meteorites, lags behind what is known for the Moon. In this study, we studied agglutinates, a vesicular glass‐coating lithic clast, and a fine‐grained sulfide replacement texture in the polymict breccia Northwest Africa (NWA) 1109 with electron microscopy. In agglutinates, nanophase grains of FeNi and FeS were observed, whereas npFe0 was absent. We suggested that the agglutinates in NWA 1109 formed from fine‐grained surface materials of Vesta during meteorite/micrometeorite bombardment. The fine‐grained sulfide replacement texture (troilite + hedenbergite + silica) should be a result of reaction between S‐rich vapors and pyroxferroite. The unique Fe/Mn values of relict pyroxferroite indicate a different source from normal HED pyroxenes, arguing that the reaction took place on or near the surface of Vesta. The fine‐grained sulfide replacement texture could be a product of nontypical space weathering on airless celestial bodies. We should pay attention to this texture in future returned samples by asteroid exploration missions.  相似文献   

8.
Abstract— A large hand sample and numerous polished thin sections, made from the hand sample, of the Kapoeta howardite and its many diverse lithic clasts were studied in detail by optical microscopy and electron microprobe techniques in an attempt to understand the surface processes that operated on the howardite-eucrite-diogenite (HED) parent body (most likely the asteroid 4 Vesta). Four unique, unusually large clasts, designated A (mafic breccia), B (granoblastic eucrite), D (howardite) and H (melt-coated breccia), were selected for detailed study (modal analysis, mineral microprobe analysis, and noble gas measurements). Petrographic studies reveal that Kapoeta consists of a fine-grained matrix made mostly of minute pyroxene and plagioclase fragments, into which are embedded numerous different lithic and mineral clasts of highly variable sizes. The lithic clasts include pyroxene-plagioclase (eucrite), orthopyroxenite (diogenite), howardite, impact-melt, metal-sulfide-rich, and carbonaceous chondrite clasts. The howardite clasts include examples of lithic clasts that constitute breccias-within-breccias, suggesting that at least two regolith generations are represented in the Kapoeta sample we studied. The clast assemblage suggests that repeated shock lithification was an important process during regolith evolution. Noble gas analyses of clast samples fall into two populations: (a) solar-gas-rich clasts H (rim only) and D and (b) clasts A and B, which are essentially free of solar gases. The concentrations of solar noble gases in the two matrix samples differ by a factor of ~40. It appears that clast D is a true regolith breccia within the Kapoeta howardite (breccia-within-breccia), while clast H is a regolith breccia that has been significantly impact reworked. Our data indicate that the Kapoeta howardite is an extraordinarily heterogeneous rock in modal mineral and lithic clast abundances, grain size distributions, solar-wind noble gas concentrations and cosmic-ray exposure ages. These results illustrate the repetitive nature of impact comminution and lithification in the regolith of the HED parent body.  相似文献   

9.
Abstract— We present a petrographic and petrologic analysis of 21 olivine‐pigeonite ureilites, along with new experimental results on melt compositions predicted to be in equilibrium with ureilite compositions. We conclude that these ureilites are the residues of a partial melting/smelting event. Textural evidence preserved in olivine and pigeonite record the extent of primary smelting. In pigeonite cores, we observe fine trains of iron metal inclusions that formed by the reduction of olivine to pigeonite and metal during primary smelting. Olivine cores lack metal inclusions but the outer grain boundaries are variably reduced by a late‐stage reduction event. The modal proportion of pigeonite and percentage of olivine affected by late stage reduction are inversely related and provide an estimation of the degree of primary smelting during ureilite petrogenesis. In our sample suite, this correlation holds for 16 of the 21 samples examined. Olivine‐pigeonite‐liquid phase equilibrium constraints are used to obtain temperature estimates for the ureilite samples examined. Inferred smelting temperatures range from ~1150°C to just over 1300°C and span the range of estimates published for ureilites containing two or more pyroxenes. Temperature is also positively correlated with modal percent pigeonite. Smelting temperature is inversely correlated with smelting depth—the hottest olivine‐pigeonite ureilites coming from the shallowest depth in the ureilite parent body. The highest temperature samples also have oxygen isotopic signatures that fall toward the refractory inclusion‐rich end of the carbonaceous chondrite‐anhydrous mineral (CCAM) slope 1 mixing line. These temperature‐depth variations in the ureilite parent body could have been created by a heterogeneous distribution of heat producing elements, which would indicate that isotopic heterogeneities existed in the material from which the ureilite parent body was assembled.  相似文献   

10.
Northwest Africa (NWA) 869 is the largest sample of chondritic regolith breccia, making it an ideal source for research on accretionary processes and primordial chemical mixing. One such process can be seen in detail through the first identification of a eucrite impactor clast in an L chondrite breccia. The ~7 mm diameter clast has oxygen isotope compositions (Δ17O = ?0.240, ?0.258‰) and pigeonite and augite compositions typical for eucrites, but with high areal abundance of silica (9.5%) and ilmenite (1.5%). The rim around the clast is a mixture of breccia and igneous phases, the latter due to either impactor‐triggered melting or later metamorphism. The rim has an oxygen isotope composition falling on a mixing line between known eucrite and L chondrite compositions (Δ17O = 0.326‰) and, coincidentally, on the Mars fractionation line. Pyroxene grains from the melt component in the rim have compositions that fall on a mixing line between the average eucrite pyroxene composition and equilibrated L chondrite composition. The margins of chondritic olivine crystal clasts in the rim are enriched in Fe as a result of diffusion from the Fe‐rich melt and suggest cooling on the scale of hours. The textures and chemical mixing observed provide evidence for an unconsolidated L chondrite target material, differing from the current state of NWA 869 material. The heterogeneity of oxygen isotope and chemical signatures at this small length scale serve as a cautionary note when extrapolating from small volumes of materials to deduce planetesimal source characteristics.  相似文献   

11.
Abstract— Diogenites are recognized as a major constituent of the howardite, eucrite and diogenite (HED) meteorite group. Recently, several papers (Mittlefehldt, 1994; Fowler et al, 1994, 1995) have identified trace-element systematics in diogenites that appeared to mimic simple magmatic processes that involved large degrees of crystallization (up to 95% orthopyroxene) of basalt with extremely high normative hypersthene. Such a crystallization scenario linking all the diogenites is highly unlikely. The purpose of this study is to explore other possible models relating the diogenites. Computational major-element melting models of a variety of different potential bulk compositions for the eucrite parent body (EPB) mantle indicate that these compositions show a similar sequence in residuum mineral assemblage with increasing degrees of partial melting. Numerous bulk compositions would produce melts with Mg# appropriate for diogenitic parent magmas at low to moderate degrees of partial melting (15% to 30%). These calculations also show that melts with similar Mg# and variable incompatible element concentrations may be produced during small to moderate degrees of EPB mantle melting. The trace-element characteristic of the orthopyroxene in diogenites does not support a model for large amounts of fractional crystallization of a single “hypersthene normative” basaltic magma following either small-scale or large-scale EPB mantle melting. Small degrees of fractional crystallization of a series of distinct basaltic magmas are much more likely. Only two melting models that we considered hold any promise for producing different batches of “diogenitic magmas.” The first model involves the fractional melting of a homogeneous source that produces parental magmas to diogenites with an extensive range of incompatible elements and limited variations in Mg#. There are several requirements for this model to work. The first requirement of this model is that the Dorthopyroxene/melt must change during melting or crystallization to compress the range of incompatible elements in the calculated diogenitic magmas. The second prerequisite is that either some of the calculated diogenitic magmas are parental to eucrites or the Mg# in diogenitic magmas are influenced by slight changes in oxygen fugacity during partial melting. The second model involves batch melting of a source that reflects accretional heterogeneities capable of generating diogenitic magmas with the calculated Mg# and incompatible element contents. Both of these models require small to moderate degrees of partial melting that may limit the efficiency of core separation.  相似文献   

12.
Abstract— Previous studies have shown that the Kapoeta howardite, as well as several other meteorites, contains excess concentrations of cosmogenic Ne in the darkened, solar-irradiated phase compared to the light, non-irradiated phase. The two explanations offered for the nuclear production of these Ne excesses in the parent body regolith are either from galactic cosmic-ray proton (GCR) irradiation or from a greatly enhanced flux of energetic solar “cosmic-ray” protons (SCR), as compared to the recent solar flux. Combining new isotopic data we obtained on acid-etched, separated feldspar from Kapoeta light and dark phases with literature data, we show that the cosmogenic 21Ne/22Ne ratio of light phase feldspar (0.80) is consistent with only GCR irradiation in space for ~3 Ma. However, the 21Ne/22Ne ratio (0.68) derived for irradiation of dark phase feldspar in the Kapoeta regolith indicates that cosmogenic Ne was produced in roughly equal proportions from galactic and solar protons. Considering a simple model of an immature Kapoeta parent body regolith, the duration of this early galactic exposure was only ~3–6 Ma, which would be an upper limit to the solar exposure time of individual grains. Concentrations of cosmogenic 21Ne in pyroxene separates and of cosmogenic 126Xe in both feldspar and pyroxene are consistent with this interpretation. The near-surface irradiation time of individual grains in the Kapoeta regolith probably varied considerably due to regolith mixing to an average GCR irradiation depth of ~10 cm. Because of the very different depth scales for production of solar ~Fe tracks, SCR Ne, and GCR Ne, the actual regolith exposure times for average grains probably differed correspondingly. However, both the SCR 21Ne and solar track ages appear to be longer because of enhanced production by early solar activity. The SCR/GCR production ratio of 21Ne inferred from the Kapoeta data is larger by a at least a factor of 10 and possibly as much as a factor of ~50 compared to recent solar particle fluxes. Thus, this study indicates that our early Sun was much more active and emitted a substantially higher flux of energetic (>10 MeV/nucleon) protons.  相似文献   

13.
Abstract– To investigate the effect of parent body processes on the abundance, distribution, and enantiomeric composition of amino acids in carbonaceous chondrites, the water extracts from nine different powdered CI, CM, and CR carbonaceous chondrites were analyzed for amino acids by ultra performance liquid chromatography‐fluorescence detection and time‐of‐flight mass spectrometry (UPLC‐FD/ToF‐MS). Four aqueously altered type 1 carbonaceous chondrites including Orgueil (CI1), Meteorite Hills (MET) 01070 (CM1), Scott Glacier (SCO) 06043 (CM1), and Grosvenor Mountains (GRO) 95577 (CR1) were analyzed using this technique for the first time. Analyses of these meteorites revealed low levels of two‐ to five‐carbon acyclic amino alkanoic acids with concentrations ranging from approximately 1 to 2,700 parts‐per‐billion (ppb). The type 1 carbonaceous chondrites have a distinct distribution of the five‐carbon (C5) amino acids with much higher relative abundances of the γ‐ and δ‐amino acids compared to the type 2 and type 3 carbonaceous chondrites, which are dominated by α‐amino acids. Much higher amino acid abundances were found in the CM2 chondrites Murchison, Lonewolf Nunataks (LON) 94102, and Lewis Cliffs (LEW) 90500, the CR2 Elephant Moraine (EET) 92042, and the CR3 Queen Alexandra Range (QUE) 99177. For example, α‐aminoisobutyric acid (α‐AIB) and isovaline were approximately 100 to 1000 times more abundant in the type 2 and 3 chondrites compared to the more aqueously altered type 1 chondrites. Most of the chiral amino acids identified in these meteorites were racemic, indicating an extraterrestrial abiotic origin. However, nonracemic isovaline was observed in the aqueously altered carbonaceous chondrites Murchison, Orgueil, SCO 06043, and GRO 95577 with l ‐isovaline excesses ranging from approximately 11 to 19%, whereas the most pristine, unaltered carbonaceous chondrites analyzed in this study had no detectable l ‐isovaline excesses. These results are consistent with the theory that aqueous alteration played an important role in amplification of small initial left handed isovaline excesses on the parent bodies.  相似文献   

14.
Analysis of the NWA 2086 CV3 chondrite showed a matrix/chondrule ratio of 52%, similar to Bali, Mokoia, and Grosanaja. Nearly twice as many chondrule fragments as intact ones demonstrate that an early fragmentation phase occurred prior to final accretion. After this event, no substantial mechanical change or redeposition is evident. Rims with double‐layered structures were identified around some chondrules, which, in at least one case, is attributed to an accretionary origin. The rim's outer parts with a diffuse appearance were formed by in situ chemical alteration. During this later process, Mg content decreased, Fe content increased, and olivine composition was homogenized, producing a rim composition close to that of the matrix. This alteration occasionally happened along fractures and at confined locations, and was probably produced by fluid interactions. Iron oxides are the best candidate for a small grain‐sized alteration product; however, technical limitations in the available equipment did not allow exact phase identification. These results suggest that NWA 2086 came from a location (possible more deeply buried) in the CV parent body than Mokoia or Bali, and suffered less impact effects—although there is no evidence of sustained thermal alteration. This meteorite may represent a sample of the CV parent asteroid interior and provide a useful basis for comparison with other CV meteorites in the future.  相似文献   

15.
Abstract— We report the results of an extensive study of the Fountain Hills chondritic meteorite. This meteorite is closely related to the CBa class. Mineral compositions and O‐isotopic ratios are indistinguishable from other members of this group. However, many features of Fountain Hills are distinct from the other CB chondrites. Fountain Hills contains 23 volume percent metal, significantly lower than other members of this class. In addition, Fountain Hills contains porphyritic chondrules, which are extremely rare in other CBa chondrites. Fountain Hills does not appear to have experienced the extensive shock seen in other CB chondrites. The chondrule textures and lack of fine‐grained matrix suggests that Fountain Hills formed in a dust‐poor region of the early solar system by melting of solid precursors. Refractory siderophiles and lithophile elements are present in near‐CI abundances (within a factor of two, related to the enhancement of metal). Moderately volatile and highly volatile elements are significantly depleted in Fountain Hills. The abundances of refractory siderophile trace elements in metal grains are consistent with condensation from a gas that is reduced relative to solar composition and at relatively high pressures (10?3bars). Fountain Hills experienced significant thermal metamorphism on its parent asteroid. Combining results from the chemical gradients in an isolated spinel grain with olivine‐spinel geothermometry suggests a peak temperature of metamorphism between 535 °C and 878 °C, similar to type‐4 ordinary chondrites.  相似文献   

16.
We examined H4 chondrites Beaver Creek, Forest Vale, Quenggouk, Ste. Marguerite, and Sena with the electron backscatter diffraction (EBSD) techniques of Ruzicka and Hugo (2018) to determine if there is evidence for shock metamorphism consistent with the previously inferred histories of their early impact excavation or lack thereof. We find that all samples have EBSD data consistent with a history of synmetamorphic impact shock (i.e., shock during thermal metamorphism), followed by postshock annealing. Petrographic analysis of Sena, Quenggouk, and Ste. Marguerite found exsolved Cu and irregular troilite within Fe metal, features consistent with shock metamorphism. All samples have a spatial variability in grain deformation consistent with shock processes, though Forest Vale, Quenggouk, and Ste. Marguerite may have relict signatures of accretional deformation as indicated by variability in their olivine deformation metrics. Within the context of previous workers' geochemical observations, a more complex history is inferred for each sample. The “slow-cooled” samples, Quenggouk and Sena, were subject to synmetamorphic shock without excavation and annealed at depth. The same is true of the “fast-cooled” samples, Beaver Creek, Forest Vale, and Ste. Marguerite. However, after annealing, these rocks were excavated by a secondary impact or impacts around 5.2–6.5 Ma post-CAI formation and were left to cool rapidly on the surface of the H chondrite parent body. These interpreted histories are best compatible with a model of an impact-battered but intact onion shell for the earliest history of the H parent body. However, the EBSD evidence does not preclude a parent body disruption after 7 Ma post-CAI formation.  相似文献   

17.
W.-H. Ip 《Icarus》1976,29(3):435-436
A short account of the correlation of heliocentric planetary alignments and the earthquake activities in Northern China is given. It appears that such arrangement of planetary orbital positions has no effect on the triggering of earthquakes.  相似文献   

18.
19.
Abstract– Aubrites exhibit a wide range of highly siderophile element (HSE—Re, Os, Ir, Ru, Rh, Pt, Pd, Au) concentrations and 187Os/188Os compositions. Their HSE concentrations are one to three orders of magnitude less than chondrites, with the exception of the Shallowater and Mt. Egerton samples. While most aubrites show chondritic HSE abundance ratios, significant enrichments of Pd and Re relative to Os, Ir, and Ru are observed in 12 of 16 samples. Present‐day 187Os/188Os ratios range from subchondritic values of 0.1174 to superchondritic values of up to 0.2263. Half of the samples have 187Os/188Os ratios of 0.127 to 0.130, which is in the range of enstatite chondrites. Along with the brecciated nature of aubrites, the HSE and Re‐Os isotope systematics support a history of extensive postaccretion processing, including core formation, late addition of chondritic material and/or core material and potential breakup and reassembly. Highly siderophile element signatures for some aubrites are consistent with a mixing of HSE‐rich chondritic fragments with a HSE‐free aubrite matrix. The enrichments in incompatible HSE such as Pd and Re observed in some aubrites, reminiscent of terrestrial basalts, suggest an extensive magmatic and impact history, which is supported by both the 187Re‐187Os isotope system and silicate‐hosted isotope systems (Rb‐Sr, K‐Ar) yielding young formation ages of 1.3–3.9 Ga for a subset of samples. Compared with other differentiated achondrites derived from small planetary bodies, aubrites show a wide range in HSE concentrations and 187Os/188Os, most similar to angrites. While similarities exist between the diverse groups of achondrites formed early in solar system history, the aubrite parent body(ies) clearly underwent a distinct evolution, different from angrites, brachinites, ureilites, howardites, eucrites, and diogenites.  相似文献   

20.
Abstract— Two rare, spinel-bearing, Al-rich chondrules have been identified in new chondrite finds from Roosevelt County, New Mexico—RC 071 (L4) and RC 072 (L5). These chondrules have unusual mineralogies, dominated by highly and asymmetrically zoned, Al-Cr-rich spinels. Two alternatives exist to explain the origin of this zoning—fractional crystallization or metamorphism. It appears that fractional crystallization formed the zoning of the trivalent cations (Al, Cr) and caused a localized depletion in chromites around the large Al-Cr-rich spinels. The origin of the zoning of the divalent cations (Fe, Mg, Zn) is less certain. Diffusive exchange and partitioning of Fe and Mg between olivine and spinel during parent body metamorphism can explain the asymmetric zoning of these elements. Unfortunately, appropriate studies of natural and experimental systems to evaluate the formation of zoning of the divalent cations by fractional crystallization have not yet been conducted. The bulk compositions of the chondrules suggest affinities with the Na-Al-Cr-rich chondrules, as would be expected from the abundance of Al-Cr-rich spinels. Melting of rare and unusual precursors produced the compositions of Na-Al-Cr-rich chondrules, possibly including a spinel-rich precursor enriched in Cr2O3 and ZnO. The two chondrules we studied have larger modal abundances of Al-Cr-rich spinels than reported in other Na-Al-Cr-rich chondrules of similar composition, and Al-rich chondrules even more enriched in spinel are reported in the literature. These differences indicate that factors other than bulk composition control the mineralogy of the chondrules. The most important of these factors are the temperature to which the molten chondrule was heated and the cooling rate during crystallization. These two chondrules cooled rapidly from near the liquidus, as indicated by the zoning, occurrence and sizes of spinels, radiating chondrule textures and localized chromite depletions. The range of mineralogies in other Al-rich chondrules of similar composition reflect a range of peak temperatures and cooling rates. We see no reason to believe that this range is fundamentally different from the range of thermal histories experienced by “normal” Fe-Mg-rich chondrules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号