首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mini-Sodar Observations of Drainage Flows in the Rocky Mountains   总被引:1,自引:0,他引:1  
Summary  Vertical profiles of drainage winds were monitored continuously by a Doppler-Mini-Sodar during case studies in two valleys, on both sides of the U. S. Continental Divide. A tethered balloon provided additional information on the vertical temperature and wind structure up to the Divide level. Ambient wind data were collected by a radar wind profiler on the west side, and a tower on the crest of the Divide. The onset, evolution and breakup of the drainage flow were studied on two nights, when the ridge-top winds were westerly and skies were clear. To study the influence of the ambient flow on drainage winds, changes in drainage wind speed, direction and depth, along with the volume flux were examined. It was found that, on the leeward side, the drainage was strongly influenced by the ambient winds (King, 1995b), which led to interruption and erosion of the locally generated valley flow. The drainage on the windward side of the Divide was almost undisturbed. A comparison of balloon and sodar wind profiles showed very good agreement during steady drainage conditions. Received October 21, 1996 Revised November 30, 1998  相似文献   

2.
Wind speed profiles above a forest canopy relate to scalar exchange between the forest canopy and the atmosphere. Many studies have reported that vertical wind speed profiles above a relatively flat forest can be classified by a stability index developed assuming wind flow above a flat plane. However, can such a stability index be used to classify vertical wind speed profiles observed above a sloping forest at nighttime, where drainage flow often occurs? This paper examines the use of the bulk Richardson number to classify wind speed profiles observed above a sloping forest at nighttime. Wind speed profiles above a sloping forest were classified by the bulk Richardson number Ri B . Use of Ri B distinguished between drainage flow, shear flow, and transitional flow from drainage flow to shear flow. These results suggest that Ri B is useful to interpret nighttime CO2 and energy fluxes above a sloping forest. Through clear observational evidence, we also show that the reference height should be high enough to avoid drainage-flow effects when calculating Ri B .  相似文献   

3.
The numerical drainage wind model of Wonget al. (1987) is used together with a Lagrangian particle model in the simulation of carbon monoxide (CO) dispersion within a small urban valley in Edmonton, Alberta, Canada. The conditions studied are those of strong static stability when vertical mixing is suppressed. These are conditions with the Richardson number exceeding its critical value (hereafter referred to as supercritical conditions). Observations showed that under such conditions, vertical turbulence is suppressed but horizontal turbulence still exists. The effects of turbulence in the dispersion and transport of pollutants under such conditions are small. However, in the present simulation, a simple turbulence parameterization based on observations is used for supercritical conditions. Some field experiments were performed and the observations are compared with model results. For a location downwind of the CO source, two peaks can be observed during the course of the drainage flow regime. The model results suggest that these represent an initial flux from the drainage flow and a second flux later from drainage wind recirculation. Another main feature of the model-predicted concentration field is zones of maximum concentration at and above the valley floor. There is a drainage wind cell on each side of the valley slope and the cells are effectively decoupled from the prevailing wind above. The present modelling results show that when the prevailing wind exists before the development of the drainage wind, it can be instrumental in transporting CO from one drainage wind cell to the other. Otherwise, the CO released within one drainage wind cell is well contained.  相似文献   

4.
5.
Acoustic sounders and in-situ meteorological sensors were used to record the boundary-layer flow structure along the eastern slopes of the Altamont Hills in central California during a wind energy field program. Oscillating speeds in this area suggest the development of quasi-stationary lee waves and rotors under certain atmospheric conditions. Data averaging of 15 minutes or less is needed to study these phenomena.  相似文献   

6.
A two-dimensional, time-dependent flow model coupled with a radiative transfer module has been applied to examine the characteristics of nocturnal flow in a steep canyon in the Rocky Mountains in Colorado. The effect of nighttime surface cooling on drainage flow is examined and compared with observations. In a complementary study, tracer data have been analyzed to estimate the mass flux from a tributary canyon and to examine processes of transport and diffusion. Simulations indicate that the strength and structure of the drainage wind are controlled mainly by terrain features, ambient wind conditions, and effective radiative cooling rates. The transport of tracer from a lower secondary vortex to an upper primary vortex is largely controlled by diffusional processes; removal of tracer from the canyon is controlled by the primary vortex and its interaction with the ambient wind. Differences between mass fluxes from model simulations and those calculated from experiments involve uncertainties in both the structure of the model and the analysis of data.  相似文献   

7.
Summary Numerical simulations of increasing complexity are conducted to investigate topographic controls and ambient wind effects upon drainage flows along a portion of the Colorado Front Range in the central Rocky Mountains. A series of two-dimensional simulations show the effects upon the drainage flow of changing slope gradient at the mountain-plain interface. For a given mountain slope, a decrease in the slope of the plain decelerates the mountain drainage jet as it approaches the plain and causes the jet to elevate. The integrated effects of slope and valley drainage are presented with particle trajectories for a particular drainage basin along the Front Range. A nested grid simulation of drainage flow from multiple basins along the Front Range shows that basin area is an important factor in the strength of the drainage flow and that canyon topography variations greatly affect the behavior of the drainage jet as it flows through the canyon mouth onto the plain. Strong drainage winds developed on each of four case night simulations due to the presence of only weak ambient wind below mountaintop. The weak winds represent a decoupling of the near-surface from stronger winds above mountaintop. The canyon drainage exhibited substantial temporal variability in wind speed with the inclusion of ambient winds, due to interactions between ambient and drainage winds.With 11 Figures  相似文献   

8.
Dense observations and numerical experiments were carried out to estimate the modification of mesoscale circulation, particularly cold drainage wind. It was confirmed that nocturnal drainage flow can develop on clear calm summer day and change due to orographical forcing and the heterogeneity of heat flux induced by the discontinuity of land-use. The temperature of nocturnal drainage flow at Sungji Valley, Busan Korea, tended to increase as it passed over the urban surface due to anthropogenic heat. The increase in temperature reached 2.9 K at night. The roughness associated with the exchange of momentum flux alone and the pass of nocturnal drainage flow is important for modifying the characteristics of flow Numerical simulations carried out under various surface conditions showed good agreement with the observations. Urban heat fluxes from the surface during the day are fundamental causes of the changes in the urban mesoscale circulation. In addition, the impact of a discontinuity of surface heat flux on mesoscale flow modification tends to be greater at night than during the day because the direction of urban surface heat fluxes at night is different from that in rural areas. In addition, the criterion to estimate the increase in temperature nocturnal drainage flow was also proposed, and provided results that generally agreed with the numerical results.  相似文献   

9.
A three-dimensional model for wind prediction over rough terrain has been developed for practical use. It is a compromise between hydrodynamic and objective wind models. The proposed model includes: (1) a statistical model to predict the wind velocity and potential temperature at anemometer height at observing stations, (2) the drainage wind model expressed by Prandtl's analytic solution for the slope wind, (3) the Businger-Dyer surface-layer formulation which considers the surface energy budget and (4) the model for three-dimensional boundary-layer solutions to the stationary flow. In this model, mass consistency is guaranteed by using flow fields that satisfy the continuity equation. Model predictions show good agreement with the observations.  相似文献   

10.
Instrumented wind towers are used to measure the three components of wind about a simulated block building. The mean horizontal wind profiles over the building are compared with wind profiles measured in the absence of the building and the wind speed deficit in the wake of the building is correlated.Horizontal mean wind speeds measured in the natural atmospheric boundary layer with and without the presence of a simulated building show excellent reproducibility and agreement with fundamental concepts of fluid mechanics. The data possess all the characteristic features reported from wind-tunnel studies of building flows. In the present study the turbulence intensity is of the order of 20% in the undisturbed flow whereas the free stream turbulence intensity of wind-tunnel studies is generally not more than 5%. The effect of smaller averaging periods and the structure of the turbulence will be reported at a later time.The velocity profiles measured in the undisturbed flow zones support the representation of a neutrally stable atmospheric boundary layer with a logarithmic wind profile.  相似文献   

11.
Observations of nocturnal slope flow have been made at two sites with quite different topography and vegetation. In both cases, continuous measurements of wind and temperature profiles were made from towers that extended through the depth of the katabatic flow. At the simpler site, which approximates a tilted plane, three towers were located at different distances down the slope to measure the development of slope flow with downslope distance.Slope flow depth, downslope wind speed, and temperature deficit are found to change with downslope distance at rates that are consistent with the predictions of Manins and Sawford's (1979) layer-averaged model of slope flow, while measured entrainment rates are found to be comparable to those predicted by Ellison and Turner's (1959) laboratory experiments. The depth of slope flow is found to be roughly 0.05 times the vertical drop from the top of the slope, a relationship that also follows from combining Manins and Sawford's model and Ellison and Turner's laboratory data. Analysis of the wind spectra and a simple numerical model suggest that the turbulent kinetic energy profiles in slope flow are dependent on the speed and direction of the ambient wind and can differ substantially from those found over flat terrain. At the more complex of the two measurement sites, the occurrence of slope flow was found to correlate well with a dimensionless number 5 that is a function of the ridge-top wind speed and of the strength and depth of the inversion and that is an estimate of the ratio of the buoyancy deficit to the external horizontal pressure gradient.Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830  相似文献   

12.
风沙流中风速廓线的数值模拟与实验验证   总被引:2,自引:0,他引:2  
如何描述风沙流中被风沙运动改变了的风速廓线是风沙相互作用研究中的关键问题之一.该文中将跃移风沙流视为一种颗粒拟流体,将跃移颗粒对气流产生的阻力用颗粒流的阻力系数来表达,建立了描写两场相互作用的数学模型.颗粒流的阻力系数采用了前人在液态流化床研究中得出的阻力系数表达形式,通过引入一个修正系数,使其适用于风沙流(气-固两相流).将风沙边界层划分为跃移颗粒所产生的阻力不可忽略的内边界层和跃移颗粒阻力可以忽略但受内边界层影响的外边界层,分别建立了内边界层和外边界层的风速廓线表达式.应用所建立的数学模型,根据由风洞实验测定的跃移风沙流的浓度分布和速度分布资料,计算了跃移风沙流中的风速廓线,并与风洞实测结果进行了对比.结果表明,计算风速廓线与实测风速廓线吻合得比较好,在半对数图上均为上凸的曲线,有别于无风沙运动时的直线.跃移边界层外风速分布可较好地用对数函数来描述.对风沙流中风速廓线的进一步分析证实了风沙物理学奠基人Bagnold在其早期观测风沙流中的风速廓线时提出的"结点现象"(Bagnold结),该结点的高度随风速的增大而升高,随颗粒粒径的增大而降低.根据数值模拟和模拟实验,可以认为有风沙运动的动床剪切风速是综合反映风场与跃移层以及地表之间相互作用的物理量.  相似文献   

13.
Summary The local wind system in the upper Isar Valley (Bavarian Alps) near Mittenwald has the peculiarity that regularly strong foehn-like nocturnal flows occur, mainly during clear nights in autumn and winter. We will refer to this phenomenon as “Minifoehn”, as its properties are similar to the classical deep foehn in the sense that its breakthrough into the Isar Valley usually brings a striking increase in temperature and a concomitant decrease in relative humidity. Numerical simulations with the MM5 model reveal that this phenomenon is related to a nocturnal drainage flow originating from a plateau south of Mittenwald. This flow is driven by the temperature difference between this plateau (1180 m) and the free atmosphere above Mittenwald (920 m, 15 km north of the plateau) at the same level. The air masses flow through two different valleys that merge again further downstream. The upper part of one of the two drainage currents goes over a small mountain ridge (1180 m) south-west of Mittenwald and then descends into the Isar Valley, leading to an advection of potentially warm air towards Mittenwald. This branch of the drainage current constitutes the Minifoehn. The remaining part of the drainage current flows through a narrow gap towards the Isar Valley and then joins the drainage flow of this valley. As these air masses are significantly cooler than the Minifoehn branch, large horizontal temperature gradients can be found around Mittenwald. The dynamical behaviour of the cold air flow turns out to be qualitatively consistent with shallow-water theory only in the absence of a forcing by large-scale winds. Otherwise, gravity-wave induced pressure perturbations interact with the drainage flow and modify the low-level flow field. The simulations show that the gravity waves are excited by the mountain range that separates the two valleys mentioned above. Moreover, the simulations indicate that the structure of this nocturnal wind system is not very sensitive to the direction of synoptic-scale winds as long as they come from the southern sector. On the other hand, ambient northerly winds are able to prevent the drainage flow and therefore the local foehn effects in the Isar Valley provided that synoptic winds are strong enough. The results of the MM5 simulations are in good agreement with the measurements and observations described in part 1 of this study.  相似文献   

14.
Two different Doppler acoustic sounders have been operated at the Kernforschungszentrum Karlsruhe (KfK) since 1982. It has been investigated whether meteorological data from these sounders can be used for dispersion modeling and monitoring in the environment of pollutant-emitting plants. Data from the sounders and from a 200 m high meteorological tower have been sampled continuously for intercomparison.Two schemes of stability classification are presented. They are based on 30-min mean values of the following meteorological data measured by the acoustic sounders: (a) standard deviation σw of the vertical wind speed and horizontal wind speed u, at a height of 100 m; and (b) standard deviation σφ of the vertical wind direction at a height of 100 m and vertical profile of the backscattered amplitude Aw.The class limits applied in these schemes are determined by “statistical equivalence” with a standard classification scheme. This standard scheme is based on σφ, measured by a vector vane at the 100 m level of the tower. Statistical equivalence in this context means that the frequency distributions of the classes are approximately equal at the same site and during the same period.The reliability of these schemes is investigated and compared to the standard scheme by correlation analysis. Finally, the schemes are compared with other commonly applied classification methods.  相似文献   

15.
利用经济省时的降维投影四维变分同化方法(DRP-4DVar),在2009年7月22~23日江淮流域的一次大暴雨过程中同化晴空条件下高光谱大气红外探测仪(AIRS)反演温度、湿度廓线,改进此次强降水过程的模拟。试验结果分析显示,同化AIRS反演的温度及湿度场后,基于四维变分同化系统的模式约束,能够改进湿度场、高度场、高低层散度场。从累积降水量偏差图及同化试验增量图可以看到,正降水量偏差对应于正湿度增量、负位势高度增量及低层负散度高层正散度增量,负降水量偏差则与之相反。同化试验较参照试验可更好地模拟出暴雨的天气形势、对暴雨的落区及强度有更好的反映。此外,从单次同化与连续同化的试验对比结果看出,连续同化试验结果较单次同化结果有进一步的改进,说明不断加入新的观测资料可以更好地模拟强降水过程。  相似文献   

16.
In this study, a detailed model of an urban landscape has been re-constructed inthe wind tunnel and the flow structure inside and above the urban canopy has beeninvestigated. Vertical profiles of all three velocity components have been measuredwith a Laser-Doppler velocimeter, and an extensive analysis of the measured meanflow and turbulence profiles carried out. With respect to the flow structure inside thecanopy, two types of velocity profiles can be distinguished. Within street canyons,the mean wind velocities are almost zero or negative below roof level, while closeto intersections or open squares, significantly higher mean velocities are observed.In the latter case, the turbulent velocities inside the canopy also tend to be higherthan at street-canyon locations. For both types, turbulence kinetic energy and shearstress profiles show pronounced maxima in the flow region immediately above rooflevel.Based on the experimental data, a shear-stress parameterization is proposed, inwhich the velocity scale, us, and length scale, zs, are based on the level and magnitude of the shear stress peak value. In order to account for a flow region inside the canopy with negligible momentum transport, a shear stress displacement height, ds, is introduced. The proposed scaling and parameterization perform well for the measured profiles and shear-stress data published in the literature.The length scales derived from the shear-stress parameterization also allowdetermination of appropriate scales for the mean wind profile. The roughnesslength, z0, and displacement height, d0, can both be described as fractions of the distance, zs - ds, between the level of the shear-stress peak and the shear-stress displacement height. This result can be interpreted in such a way that the flow only feels the zone of depth zs - ds as the roughness layer. With respect to the lower part of the canopy (z < ds) the flow behaves as a skimming flow. Correlations between the length scales zs and ds and morphometric parameters are discussed.The mean wind profiles above the urban structure follow a logarithmic windlaw. A combination of morphometric estimation methods for d0 and z0 with wind velocity measurements at a reference height, which allow calculation of the shear-stress velocity, u*, appears to be the most reliable and easiest procedure to determine mean wind profile parameters. Inside the roughnesssublayer, a local scaling approach results in good agreement between measuredand predicted mean wind profiles.  相似文献   

17.
We analyse single-point velocity statistics obtained in a wind tunnel within and above a model of a waving wheat crop, consisting of nylon stalks 47 mm high and 0.25 mm wide in a square array with frontal area index 0.47. The variability of turbulence measurements in the wind tunnel is illustrated by using a set of 71 vertical traverses made in different locations, all in the horizontally-homogeneous (above-canopy) part of the boundary layer. Ensemble-averaged profiles of the statistical moments up to the fourth order and profiles of Eulerian length scales are presented and discussed. They are consistent with other similar experiments and reveal the existence of large-scale turbulent coherent structures in the flow. The drag coefficient in this canopy as well as in other reported experiments is shown to exhibit a characteristic height-dependency, for which we propose an interpretation. The velocity spectra are analysed in detail; within and just above the canopy, a scaling based on fixed length and velocity scales (canopy height and mean horizontal wind speed at canopy top) is proposed. Examination of the turbulent kinetic energy and shear stress budgets confirms the role of turbulent transport in the region around the canopy top, and indicates that pressure transport may be significant in both cases. The results obtained here show that near the top of the canopy, the turbulence properties are more reminiscent of a plane mixing layer than a wall boundary layer.  相似文献   

18.
Summary Profile measurements of wind and temperature have been performed at the Agricultural University of Norway on a routine basis since 1997. 10-min. averages are stored in a database together with other relevant meteorological parameters. The database can be used to determine the seasonal variation of surface aerodynamic roughness, showing the growth of grass between cutting during the growing season, the effect of snowfall and the melting of snow etc. However, careful screening of the data must be conducted before reliable estimates can be made. The main objective of this study is to establish simple practical rules for filtering out unreliable datasets for the evaluation of the surface roughness parameter z0, and to present its annual variation. The resulting values for the summer period agree well with values found in the literature for homogenous grass covered surfaces. In the transition periods during autumn and spring, and during wintertime in mild weather conditions, the surface is generally non-homogenous with a mixture of snow patches, ponds of melting water and shrubs of withered grass. The results show that the mechanical interaction between a non-homogeneous land surface and the boundary layer flow can be described by one roughness parameter, with a numeric value somewhere in between the ideal values for the different surface characteristics. Another use of the database is to investigate drainage flow and the relationship between drainage flow, prevailing wind direction and the mean vertical velocity of the air. Most micrometeorological studies of the fluxes of heat and water vapour in the surface layer, assume the mean vertical velocity to be zero, focusing on eddy fluxes and thereby excluding any transport in the mean flow. In certain situations, this may lead to serious errors. This work shows that convergence of horizontal flow leads to an upward movement of air, which is enhanced if the prevailing direction of the wind opposes the outflow of the cold drainage winds from the area.  相似文献   

19.
The formation of cold air drainage flows in a shallow gully is studied during CASES-99 (Cooperative Atmosphere-Surface Exchange Study). Fast and slow response wind and temperature measurements were obtained on an instrumented 10-m tower located in the gully and from a network of thermistors and two-dimensional sonic anemometers, situated across the gully. Gully flow formed on clear nights even with significant synoptic flow. Large variations in surface temperature developed within an hour after sunset and in situ cooling was the dominant factor in wind sheltered locations. The depth of the drainage flow and the height of the down-gully wind speed maximum were found to be largest when the external wind speed above the gully flow is less than 2 m s-1. The shallow drainage current is restricted to a depth of a few metres, and is deepest when the stratification is stronger and the external flow is weaker. During the night the drainage flow breaks down, sometimes on several occasions, due to intermittent turbulence and downward fluxes of heat and momentum. The near surface temperature may increase by 6 ° C in less than 30 min due to the vertical convergence of downward heat flux. The mixing events are related to acceleration of the flow above the gully flow and decreased Richardson number. These warming events also lead to warming of the near surface soil and reduction of the upward soil heat flux. To examine the relative importance of different physical mechanisms that could contribute to the rapid warming, and to characterize the turbulence generated during the intermittent turbulent periods, the sensible heat budget is analyzed and the behaviour of different turbulent parameters is discussed.  相似文献   

20.
Canopy wind profiles can often be represented by an exponential function such that wind-speeds in these vegetative canopies are a function of height and the attenuation coefficient of this wind profile relationship. To be more precise, canopy flow is a function of canopy density, element flexibility, and height. An index of canopy flow, therefore, can be defined as a conservative measure of the gross flow response to the presence of various types of roughness elements. For this study, windspeed profile data of two quite different canopy density experiments — field and wind tunnel - have been analyzed based on least-square fittings. The results indicate that the two sets of index values of canopy flow behave in a similar manner with maxima occurring for optimum densities of one-third the potential full array of roughness elements. These index values also differ by some 0.2, but are still compatible when one accounts for the respective levels of turbulence within these dissimilar canopies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号