首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exhumation of high-pressure rocks of the Kokchetav massif: facts and models   总被引:1,自引:0,他引:1  
The exhumation of ultrahigh-pressure (UHP) metamorphic units from depths more than 100-120 km is one of the most intriguing questions in modern petrology and geodynamics. We use the diamondiferous Kumdy-Kol domain in the Kokchetav Massif to show that exhumation models should take into consideration initially high uplift velocities (from 20 down to 6 cm/year) and the absence of the deformation of UHP assemblages. The high rate of exhumation are indicated by ion microprobe (SHRIMP) dating of zircons from diamondiferous rocks and supported by the low degree of nitrogen aggregation in metamorphic diamonds.Diamondiferous rocks in the Kumdy-Kol domain occur as steeply dipping (60°-80°) thin slices (few hundred metres) within granite-gneiss. Using geological, petrological and isotopic-geochemical data, we show that partial melting of diamondiferous metamorphic rocks occurred; a very important factor which has not been taken into account in previous models.Deformation of diamondiferous rocks at Kumdy-Kol is insignificant; diamond inclusions in garnet are often intergrown with mica crystals carrying no traces of deformation. All these facts could be explained by partial melting of metapelites and granitic rocks in the Kumdy-Kol domain. The presence of melt is responsible for an essential reduction of viscosity and a density difference (Δρ) between crustal rocks and mantle material and reduced friction between the upwelling crustal block, the subducting and overriding plates. Besides Δρ, the exhumation rate seems to depend on internal pressure in the subducting continental crustal block which can be regarded as a viscous layer between subducting continental lithosphere and surrounding mantle.We construct different models for the three stages of exhumation: a model similar to “corner flow” for the first superfast exhumation stage, an intermediate stage of extension (most important from structural point of view) and a very low rate of exhumation in final diapir+erosional uplift.  相似文献   

2.
哈萨克斯坦北部Kumdy-Kol金刚石矿床地质与变质金刚石成因   总被引:1,自引:0,他引:1  
哈萨克斯坦北部Kokchetav地区的Kumdy Kol金刚石矿床是世界上惟一的变质金刚石矿床。对该金刚石矿床成因以及相关岩石的诸多研究成果不仅深化了对超高压变质岩的研究 ,而且推动了大陆动力学研究的进展。在该金刚石矿床中找到的岩相学证据证明 ,该金刚石矿床的主要含矿岩石大理岩曾经在俯冲带中循环到 >2 4 0km的深部。文章在介绍Kokchetav变质金刚石矿床的地质特征和大地构造背景的基础上 ,讨论了该变质金刚石矿床的形成过程以及变质金刚石的成因。Kokchetav变质金刚石主要表现出蜂窝状或草莓状的特征外形。这种蜂窝状或草莓状金刚石是快速生长条件下结晶的结果。结合最近的研究成果 ,笔者认为Kokchetav金刚石矿床中金刚石的形成与深俯冲大理岩中的白云石分解作用密切相关。白云石分解反应形成文石和菱镁矿组合 ,菱镁矿继续分解形成金刚石 (MgCO3 =金刚石 +MgO +O2 )。基于这个认识 ,Kokchetav金刚石矿床中碳 (金刚石和石墨 )的来源应该是碳酸盐岩  相似文献   

3.
The volcanogenic Kuuspek Formation is a well-defined part of the succession of the Pre-Vendian complexes of the Kokchetav massif (Northern Kazakhstan). The formation is built up of mildly metamorphosed acid lavas, tuffs, and tuffaceous sandstones. At the reference site to the west of the Kokchetav Mountains, the rocks of the Kuuspek Formation compose hinges of small anticlinal folds with sericite-quartz schists of the Late Riphean Sharyk Formation forming the limbs. The Kuuspek Formation lavas are high-alumina rhyolites of high-potassium calc-alkaline series. The U-Pb zircon age of the rhyolites is 1136 ± 4 Ma, thus referring to the Middle Riphean. The Kuuspek rhyolites form the basal part of the Precambrian sedimentary cover of the Kokchetav massif. The cover also comprises schists, limestones, and dolomites of the Sharyk Formation, and quartzites and quartzitic schists of the Late Riphean Kokchetav Formation.  相似文献   

4.
A representative sample of microdiamonds in calc-silicate and garnet-pyroxene-quartz rocks and gneisses from the cross section of an adit driven at the Kumdy-Kol’ deposit (Northern Kazakhstan) has been analyzed. Microdiamonds from these rocks were studied by Fourier-transform infrared spectroscopy for the first time. It has been established that nitrogen impurity content (300–3000 ppm) and nitrogen aggregation degree (14–75%) vary widely and do not correlate with each other. The variation is probably due to the uneven distribution of nitrogen in crystals and to their specific internal structures.The results of the study show that in most diamondiferous rocks, diamonds crystallized from a fluid/melt of composition varying between aqueous-carbonate and aqueous-silicate end-members. Spectroscopy studies partly disagree with literature data on individual nanoinclusions in diamonds. The cause of this discrepancy may be the evolution of the fluid/melt during diamond crystallization.  相似文献   

5.
We consider the structural position and petrology of eclogites in the North Kokchetav accretion-collision zone located north of the Kokchetav metamorphic belt formed by high- and ultrahigh-pressure rocks. In the Early Ordovician North Kokchetav tectonic zone, thin sheets of mylonite and diaphthoric gneisses with eclogites are tectonically conjugate with the volcanic and sedimentary rocks of the Stepnyak paleoisland-arc zone. Eclogites have been revealed at two sites of the North Kokchetav tectonic zone—Chaikino and Borovoe. The Chaikino eclogites formed at 800–850 °C and 18–20 kbar, and the Borovoe eclogites, at 750–800 °C and 17–18 kbar. Study of pyroxene-plagioclase symplectite replacing omphacite of the eclogites at both sites has recognized three stages of regressive magmatism: (1) formation of coarse-grained clinopyroxene-plagioclase symplectite at 760–790 °C and 11–12 kbar, (2) formation of fine-grained clinopyroxene-plagioclase symplectite at 700–730 °C and 7–8 kbar, and (3) amphibolization of pyroxene at 570–600 °C and 5–6 kbar. The Ar-Ar age of muscovite from the Borovoe mica schists hosting eclogites is 493 ± 5 Ma, which corresponds to the time of cooling of metamorphic rocks to <370 °C. Hence, the peak of high-pressure metamorphism and all recognized stages of retrograde changes are dated to the Cambrian. The geological data evidence that eclogite-schist-gneiss sheets were localized in the accretion-collision zone and became conjugate with sedimentary and volcanic rocks no later than in the Middle Ordovician.  相似文献   

6.
胶东地区的荆山群呈近东西向环绕太古宙TTG花岗质片麻岩展布,主要由成熟度高的含石墨变泥砂质岩石、钙硅酸岩和大理岩组成,变质程度达高角闪岩相-麻粒岩相,具孔兹岩系性质.变质中-基性岩侵入到荆山群.它们的侵位时代对于探讨华北克拉通东部元古宙构造演化以及对荆山群沉积时代的制约,都有重要意义.锆石SHRIMP U-Pb定年结果...  相似文献   

7.
This work presents the data on the structure, geochronology, and formation settings of the Ordovician sedimentary and volcanogenic-sedimentary complexes of the Sterlitamak, Mariev, and Imanburluk structural and formational zones located in the western and northwestern frames of the Kokchetav massif (Northern Kazakhstan). In addition, the results of detailed stratigraphic, geochemical, and geochronological studies of the reference section of the Ordovician deposits of the Mariev Zone are given. The studied section is composed of carbonate, terrigenous, and less commonly volcanogenic-sedimentary deposits, confined to a wide stratigraphic interval from Tremadocian Stage of the Lower Ordovician to the lower Sandbian Stage of the Upper Ordovician. For the first time, the study of conodont assemblages made it possible to establish the Early to Middle Ordovician age of the most ancient limestone–dolomite sequence, which was previously conventionally attributed to the Cambrian. The above-lying tuffaceous–terrigenous Kupriyanovka Formation is now attributed to the Middle Ordovician. On the basis of compositional features of the lithoclastic tuffs composing the middle part of the formation, we assume that it was formed within the island arc zone. Limestones from the base of the youngest terrigenous–carbonate Kreshchenovka Formation are attributed to the lower part of the Sandbian Stage of the Upper Ordovician. The study of the geochronology of detrital zircons from terrigenous rocks of the limestone–dolomite sequence has shown that the Early Neoproterozoic quartzite–schist sequences of the Kokchetav massif were the most probable provenance area during its deposition. It was established that there was the change of sedimentation environments from closed lagoons to a relatively deep sea basin with normal salinity and intense circulation of water masses in the northwestern frame of the Kokchetav massif during the Ordovician. During this period of time, there was a sufficiently high level of erosion of provenance areas that resulted in the deposition of thick strata of terrigenous material. A general tendency of the deepening of sedimentation environments from the Early to Late Ordovician was interrupted by sea level rises in the Dapingian and early Darriwilian ages.  相似文献   

8.
The Kokchetav and Dabie Shan complexes are typical examples of ultrahigh-pressure metamorphic complexes (UHPM) and are important units of the largest suture zones within the Eurasian continent. The Dabie Shan complex is located in the center of a long Permian-Triassic high-pressure (HP) belt between the Sino-Korean and Yangtze cratons. Other members of this belt are the Sulu region of of NE China, the Imjingang belt in Korea, the Sangun and Marginal Hida belts in Kyushu, the Spassk zone in the Sikhote-Alin of the Russian Far East, and the Bikou, Animaqing, Ailaoshan, and Lancang belts in China bounding the western margin of the Yangtze craton. The Kokchetav complex is located in the center of the largest Early Paleozoic HP belt in Asia, which includes the North Qilian complex, the Kekesu and Atbashi zones of the Tien Shan, and the Aktyuz and Makbal areas in the North Kyrgyz Range.

The structure of the Kokchetav complex is interpreted as a mega-melange zone that consists of seven tectonic units separated by tectonic thrusts or faults. There are many similarities between the Kokchetav and Dabie Shan tectonic units. Principal differences relate to the rocks of coeval island-arc series abundantly exposed in the Kokchetav area, but absent in the Dabie Shan, and to the ongoing subduction and island-arc magmatism in Kokchetav after the collision and UHP metamorphism compared to the final collision after UHP metamorphism in the Dabie Shan.

The Caledonian Kokchetav complex formed in the Early Paleozoic, whereas the Indosinian Dabie Shan complex formed in the Early Mesozoic; however, both complexes are characterized by a close succession of events and the occurrence of a Late Proterozoic protolith. In both cases magmatic events occurred in 150-m.y. intervals. Retrograde stages, cooling histories, and exhumation processes are similar for both complexes.

Comparison of mineral assemblages in those complexes indicates higher temperature and pressure in the Kokchetav peak assemblages. The best containers for preserved UHP mineral assemblages are metacarbonate rocks and zircon and garnet from metapelites and felsic rocks in both regions. The Dabie Shan UHP assemblages are better preserved than the Kokchetav ones, which has to do either with their higher temperature or with specific kinetics. Oxidation conditions deduced from mineral distributions, mineral chemistry, and composition of fluid inclusions indicate the higher oxygen potential in the Dabie Shan than in the Kokchetav rocks.

The comparison allows us to conclude the following:

1. The small size of sheets and blocks of UHPM rocks supports a model for reverse flows within a subduction-accretionary wedge or tectonic exhumation of thin sheets, but not uplifting of large blocks.

2. The preservation of coesite and diamond, and the presence of thin reactionary rims (primarily in the Dabie Shan), provides evidence for a very short time of retrograde reactions and high velocity of block uplifting. Thus, three exhumation stages are accepted: (1) superfast uplifting; (2) rapid uplifting up to the sole of the continental crust; and (3) slow uplifting within the continental crust. In the Kokchetav complex, the first stage is absent.

3. For the Dabie Shan we suggest a complex scenario implying two-stage subduction and subsequent collision. Comparison with the Kokchetav complex shows that UHP metamorphism is not likely to have resulted from a collision, but the latter was responsible for the superfast exhumation of thin sheets of UHPM rocks from depths of over 100 km.  相似文献   

9.
The geochemical and Sm–Nd isotope characteristics of Late Precambrian and Early Cambrian sandstones previously related to the sedimentary cover of the Dzabkhan continental block are reported. It is established that the Riphean and Vendian sedimentary rocks of the Ul’zitgol’skaya and Tsaganolomskaya Formations were accumulated within the Dzabkhan continental block as a result of recycling of the terrigenous deposits formed at the expense of destruction of basement rocks and younger granite. The formation of terrigenous rocks of the Bayangol’skaya Formation after a gap in sedimentation occurred in the sedimentary basin, where only the Late Riphean formations of the juvenile crust, probably of the Dzabkhan–Mandal block were the sources, without the contribution of the ancient crustal material. The Tsaganolomskaya and Bayangol’skaya Formations were formed in different sedimentary basins and cannot be related to the same complex.  相似文献   

10.
This paper reports isotopic and geochemical studies of eclogites from the western ultrahigh pressure (UHP) and eastern high-pressure (HP) blocks of the Kokchetav subduction-collision zone. These HP and UHP eclogites exhumed in two stages: (1) The rocks of the western block metamorphosed within the field of diamond stability (e.g., Kumdy-Kol and Barchy); (2) In contrast, the metamorphic evolution of the eastern block reached the pressure peak within the stability field of coesite (e.g., Kulet, Chaglinka, Sulu-Tyube, Daulet, and Borovoe). The eclogites vary widely in the ratios of incompatible elements and in the isotope ratios of Nd (143Nd/144Nd = 0.51137-0.513180) and Sr (87Sr/86Sr = 0.703930.78447). The Sulu-Tyube eclogites display isotope-geochemical features close to N-MORB, while those from the other sites are compositionally similar to E-type MORB or island arc basalts (IAB). The model ages TNd(DM) of eclogites vary between 1.95 and 0.67 Ga. The Sulu-Tyube eclogite yields the youngest age; it has the values of εNd(T) (7.2) and 87Sr/86Sr (0.70393) close to the depleted mantle values. The crustal input to the protolith of the Kokchetav eclogites is evident on the εNd(T)-86Sr/87Sr and εNd(T)-T plots. The eclogites make up a trend from DM to country rocks. Some eclogites from the Kulet, Kumdy-Kol, and Barchy localities display signs of partial melting, such as high Sm/Nd (0.65-0.51) and low (La/Sm)N (0.34-0.58) values. The equilibrium temperatures of these eclogites are higher than 850 °C. The geochemical features of eclogites testify to the possibility of the eclogite protolith formation in the tectonic setting of passive continental rift margin subducted to depths over 120 km.  相似文献   

11.
作为华北克拉通周缘三条石墨成矿带之一的东部带,胶-辽-吉古元古代石墨成矿带是研究早前寒武纪石墨成矿机制及地球早期气候特征的天然实验室.本文对胶-辽-吉造山带辽河群石墨矿(甜水乡马沟石墨矿)进行了详细的岩相学、地球化学、拉曼光谱学以及碳同位素等方面的研究.研究结果表明辽河群含石墨矿岩石主要为含石墨变质杂砂岩、含石墨黑云母...  相似文献   

12.
M Ohta  T Mock  Y Ogasawara  D Rumble   《Lithos》2003,70(3-4):77-90
Diamond-bearing carbonate rocks from Kumdy-Kol, Kokchetav massif, Kazakhstan, were strongly altered by fluids flowing through fractures and infiltrating along grain boundaries during exhumation. Alteration includes retrogradation of high-grade silicate assemblages by hydrous minerals, replacement of diamond by graphite and of dolomite by calcite. Diamond-bearing carbonate rocks are among the most intensely altered isotopically with δ18OVSMOW values as low as +9‰, δ13CVPDB=−9‰, and 87Sr/86Sr as high as 0.8050. Evidence of isotopic equilibration between coexisting dolomite and high-Mg calcite during ultrahigh-pressure metamorphism (UHPM) is preserved only rarely in samples isolated from infiltrating fluids by distance from fractures. Isotopic heterogeneity and isotopic disequilibrium are widespread on a hand-specimen scale. Because of this lack of homogeneity, bulk analyses cannot provide definitive measurements of 13C/12C fractionation between coexisting diamond and carbonate. Our study adequately documents alteration on a scale commensurate with observed vein structures. But, testing the hypothesis of metamorphic origin of microdiamonds has not fully succeeded because our analytical spatial resolution, limited to 0.5 mm, is not small enough to measure individual dolomite inclusions or individual diamond crystals.  相似文献   

13.
Calcsilicate and garnet-pyroxene rocks with dolomite and Mg-calcite matrices occur with UHPM diamondiferous biotite gneisses and schists of the Kokchetav Massif. The calcsilicates are characterized by high diamond grade, K-bearing diopside, and very high Mg-garnets (Mg# > 77) with variable Ca contents (Ca# = 42.5–80). A rare calcsilicate sample with alternating layers of different bulk compositions was selected for oxygen isotope and electron probe microanalysis of garnets and pyroxenes. A grain of fresh garnet with a brownish-yellow luminescent inner domain (Mg# 94) and a non-luminescent outer part (Mg# 88) was selected for in situ analysis of δ18O by ion microprobe (10 μm spot). The profile demonstrates a δ18O gradient of 1.5‰/200 μm, from 11.3 (rim) to 12.8‰ (core) VSMOW. Additional 2 mg samples of hand-picked garnet and clinopyroxene fragments from different parts of the same sample (selected by color and chemical differences) were analyzed for δ18O by laser fluorination, yielding even larger differences in δ18O: 6.3–10.6‰ in garnets and 6.1–8.1 in clinopyroxenes. The zonation in δ18O among grains of the same mineral in different lithologies may in part reflect initial heterogeneities of the finely layered sedimentary precursors. The δ18O values for the garnets are among the highest observed for UHP-origin (both for crustal or mantle rocks), confirming a sedimentary origin for these carbonate-bearing rocks, and ruling out a primitive mantle-derived protolith. Oxygen diffusion in garnet at peak metamorphism temperature (1,000°C) was arrested by rapid cooling.  相似文献   

14.
The formational and metallogenic affiliation of the alkaline ultramafic rocks of the Arkhangel’sk diamondiferous province and the adjacent areas of the northern East European platform were analyzed using recent concepts on the structure of the formational and metallogenic family of kimberlites and related rocks, petrogeochemical criteria, and discriminant diagrams based on reference associations. It was shown that the alkaline ultramafic magmatism of the Arkhangel’sk province belongs to various formations, which is typical of the provinces of ancient craton margins. In addition to diamondiferous kimberlites, the area hosts abundant low-grade diamondiferous kimpicrites and alpicrites, which are typically associated with rare-metal carbonatites. Significant petrogeochemical differences were detected between the diamondiferous kimberlites of the Arkhangel’sk province and the kimberlites of the classic Central Yakutian diamondiferous province. This allowed us to consider the rocks of the Arkhangel’sk province as a specific geochemical type of diamondiferous kimberlites. Original Russian Text ? A.V. Lapin, E.M. Verichev, 2006, published in Geokhimiya, 2006, No. 8, pp. 834–854.  相似文献   

15.
430 chemical analyses of rocks and their diamondiferous potential are used to identify correlations between the diamondiferous potential of rocks and their petrochemical parameters. Samples for this research were collected from selected intervals of core materials, which were also examined for diamond content (a few samples from each interval), from the Nyurbinskaya, Botuobinskaya, Internatsional??naya, Mir, Aikhal, Yubileinaya, Satykanskaya, Udachnaya-West, and Udachnaya-East pipes. Typochemical indications of diamondiferous potential are TiO2 and K2O concentrations and the CaO/MgO ratio. System models developed for diamondiferous kimberlites allowed distinguishing two trends of their compositional variability. One of the trends is defined by the negatively correlated TiO2 and K2O concentrations of the rocks. This trend is discrete and can be statistically justifiably subdivided into seven segments, each of which represents a population of compositions produced under similar physicochemical conditions. Experimental data confirm that this trend can be closely related to the diamondiferous potential. Diamond richest kimberlites are practically free of TiO2, whereas diamond poorest ones contain as much as 3% of this oxide. The former and the latter rocks were produced at the greatest and shallowest depths, respectively. The other trend is exhibited in all populations and subdivides them into discrete groups (varieties of the populations) with systematically decreasing CaO/MgO ratio. This parameter is nonlinearly correlated with the diamondiferous potential, and its increase corresponds to a systematic increase in the melting temperature of the source material. Certain kimberlite populations contain anomalously high K2O concentrations, perhaps, because of mantle metasomatism or the presence of fragments of oceanic crustal material in the magma generation region. In these instances, numerous diamonds could crystallize in the parental melts under high pressures (>100 kbar). The paper presents statistical analysis of pair regressions of the contents of indicative oxides and diamondiferous potential and a graphical multiple-link model for correlations between concentrations of major oxides and diamondiferous potential. Tests of the predictions of diamondiferous potential on the basis of chemical parameters confirm that these predictions are accurate in 85?C90% of the instances.  相似文献   

16.
鄂湘黔桂地区大隆组的沉积特征及与烃源岩的关系   总被引:3,自引:0,他引:3  
根据鄂湘黔桂地区大隆组的岩性组合特征, 大隆组可以划分7种沉积类型, 它们的岩性、岩相在纵、横向上往往表现为突变.大隆组是晚二叠世海侵期的产物, 其沉积物与烃源岩关系非常密切, 尤其是厌氧、缺氧环境下的沉积物与烃源岩关系更为紧密.海侵期的沉积物、古斜坡沉积环境及低沉积速率使大隆组具有烃源岩发育和形成的潜力.   相似文献   

17.
占王忠  谭富文 《沉积学报》2020,38(4):876-885
羌塘盆地晚三叠世古地理格局是研究其沉积演化史和油气资源评价关键基础。通过地层划分对比、沉积相分析、沉积序列等方法,结合最新的地质调查及其研究结果,对羌塘盆地晚三叠世岩相古地理环境进行恢复,并讨论了上三叠统烃源岩基本特征。羌塘盆地晚三叠世受北侧碰撞造山挤压和南侧班公湖—怒江中特提斯洋盆打开双重影响,北羌塘前陆盆地逐渐萎缩消亡,南羌塘则经历走滑作用开始接受沉积。盆地北部的可可西里造山带、东部的岛链状隆起带和中部的中央隆起带为该时期盆地内三个物源区。北部边缘、中央隆起带东部边缘和盆地的中、东部地区,形成滨岸—三角洲相沉积。盆地中西部沉积较稳定的缓坡相碳酸盐岩。南羌塘坳陷的南部,沉积了向上水体逐渐变深的浅海陆棚相沉积物。此时期碳酸盐岩缓坡相区发育的烃源岩,具有高残余有机碳,高成熟度,低残余生烃潜量等基本特征,综合评价属于中等—较好烃源岩,以生气为主。推测多格错仁地区是今后油气勘探的优选目标和首选地区。  相似文献   

18.
在阿拉善和华北陆块南缘结合部位的牛首山地区,出露一套连续的中—上泥盆统陆相沉积组合。该套沉积组合的沉积相和沉积物源区的变化特征,可帮助理解阿拉善和华北陆块及相邻地区晚古生代构造演化。根据野外研究结果,该套沉积组合在牛首山南麓石峡沟地区呈现河流相、湖泊相和小型冲积扇相共同发育的沉积面貌,可分为河道、堤岸、河漫平原、滨湖、浅湖、扇根、扇中和扇端共8个沉积亚相。其中,中泥盆统石峡沟组总体呈现由河流沉积向湖泊沉积过渡,而上泥盆统老君山组则呈现下部为扇根、扇中、扇端亚相与河道亚相的粗碎屑沉积,上部由滨湖沉积向浅湖沉积过渡的沉积组合变化特征。牛首山地区老君山组砾岩层数、厚度及砾石砾径分别呈现向南逐渐减少、减薄和减小的特征。古水流分析结果显示,石峡沟组下部碎屑沉积物来自于北东东—东向物源区,上部沉积物主要来自于南东向物源区,而老君山组沉积物主要来自于北东向物源区。结合前人对老君山组古水流的系统测量、石峡沟组和老君山组砂岩碎屑锆石研究结果以及区域地质资料综合分析,认为中—晚泥盆世时期阿拉善地块东南缘总体具有北高南低的古地理格局,且该时期的沉积物为一套具有向南水体逐渐加深的陆相沉积组合,沉积物源区主要位...  相似文献   

19.
对西昆仑北缘山前盆地新生代沉积特征的研究结果表明,沿西昆仑山前发育的各沉积序列的垂向特征相似:古新世—中新世早期为石膏层、含瓣腮化石的石灰岩和紫红色较细粒的碎屑岩沉积,指示了海相和海陆过渡相较平静的沉积环境;中新世晚期—上新世初期开始出现陆相磨拉石,指示了陆相非平静的沉积环境,砾石的直径由下至上呈增大趋势,可能反映了西昆仑山体不断隆升,其间相对稳定的层段可能是构造运动间歇期或平稳期的沉积,指示了脉动式的隆升模式;磨拉石底部砾石的成分以沉积岩为主,向上火成岩和变质岩砾石逐渐增多,表明剥蚀程度不断加深。根据磨拉石建造的特征,判断剥蚀量和剥蚀强度自西向东有减小和变弱的趋势,可能暗示了西昆仑山晚新生代隆升有自西向东由强变弱的过渡特征。该结论与本区构造地貌学的研究结果一致。  相似文献   

20.
This paper describes the volcanosedimentary complexes of different ages (Late Cretaceous-Early Paleocene, Paleocene-Eocene (?), Oligocene-Early Miocene, and Pliocene-Pleistocene) that compose the basement and sedimentary cover of the submarine Vityaz Ridge. It was found that the Upper Cretaceous sedimentary rocks from the basement of the Vityaz Ridge (felsic) and the Lesser Kuril Ridge (mafic) have different compositions. Matrix mineral assemblages corresponding to the smectite and corrensite stages of epigenesis of Cenozoic rocks were distinguished, and a scheme of the Late Cretaceous-Pleistocene geological evolution of the region was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号