首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experiment was conducted in conjunction with the total solar eclipse on 29 March 2006 in Libya to measure both the electron temperature and its flow speed simultaneously at multiple locations in the low solar corona by measuring the visible K-coronal spectrum. Coronal model spectra incorporating the effects of electron temperature and its flow speed were matched with the measured K-coronal spectra to interpret the observations. Results show electron temperatures of (1.10±0.05) MK, (0.70±0.08) MK, and (0.98±0.12) MK, at 1.1 R from Sun center in the solar north, east and west, respectively, and (0.93±0.12) MK, at 1.2 R from Sun center in the solar west. The corresponding outflow speeds obtained from the spectral fit are (103±92) km s−1, (0+10) km s−1, (0+10) km s−1, and (0+10) km s−1. Since the observations were taken only at 1.1 R and 1.2 R from Sun center, these speeds, consistent with zero outflow, are in agreement with expectations and provide additional confirmation that the spectral fitting method is working. The electron temperature at 1.1 R from Sun center is larger at the north (polar region) than the east and west (equatorial region).  相似文献   

2.
Cross correlations between observed and synthetic spectra are used to discover yet another satellite of BM Ori with the following characteristics: effective temperature Teff = 4000 K, radius R = 16R, mass M = 1.8M, spectral type K7 III, absolute bolometric stellar magnitude Mb = + 4m·0, axial rotation velocity V sini = 85 km/s, and relative luminosity 0.005 near the V band. __________ Translated from Astrofizika, Vol. 49, No. 1, pp. 111–120 (February 2006).  相似文献   

3.
Based on data for 102 OB3 stars with known proper motions and radial velocities, we have tested the distances derived by Megier et al. from interstellar Ca II spectral lines. The internal reconciliation of the distance scales using the first derivative of the angular velocity of Galactic rotation Ω′0 and the external reconciliation with Humphreys’s distance scale for OB associations refined by Mel’nik and Dambis show that the initial distances should be reduced by ≈20%. Given this correction, the heliocentric distances of these stars lie within the range 0.6–2.6 kpc. A kinematic analysis of these stars at a fixed Galactocentric distance of the Sun, R 0 = 8 kpc, has allowed the following parameters to be determined: (1) the solar peculiar velocity components (u , v , ω ) = (8.9, 10.3, 6.8) ± (0.6, 1.0, 0.4) km s−1; (2) the Galactic rotation parameters Ω0 = −31.5 ± 0.9 km s−1 kpc−1, Ω′0 = +4.49 ± 0.12 km s−1 kpc−2, Ω″0 = −1.05 ± 0.38 km s−1 kpc−3 (the corresponding Oort constants are A = 17.9 ± 0.5 km s−1 kpc−1, B = −13.6 ± 1.0 km s−1 kpc−1 and the circular rotation velocity of the solar neighborhood is |V 0| = 252 ± 14 km s−1); (3) the spiral density wave parameters, namely: the perturbation amplitudes for the radial and azimuthal velocity components, respectively, f R = −12.5±1.1 km s−1 and f ϑ = 2.0 ± 1.6 km s−1; the pitch angle for the two-armed spiral pattern i = −5.3° ± 0.3°, with the wavelength of the spiral density wave at the solar distance being λ = 2.3 ± 0.2 kpc; the Sun’s phase in the spiral wave x = −91° ± 4°.  相似文献   

4.
Based on currently available observations of 28 maser sources in 25 star-forming regions with measured trigonometric parallaxes, proper motions, and radial velocities, we have constructed the rotation curve of the Galaxy. Taking different distances to the Galactic center R 0, we have estimated the peculiar velocity of the Sun, the angular velocity of Galactic rotation, and its three derivatives. For R 0 = 8 kpc, we have found the circular velocity of the Sun to be V 0 = 243 ± 16 km s−1, which corresponds to a revolution period of 202 ± 10 Myr. We have obtained the Oort constants A = 16.9 ± 1.2 km s−1 kpc−1 and B = −13.5 ± 1.4 km s−1 kpc−1. Our simulation of the influence of a spiral density wave has shown that the peculiar velocity of the Sun with respect to the local standard of rest and the component (V )LSR depend significantly on the Sun’s phase in the spiral wave.  相似文献   

5.
TheUBV light curves obtained by Duerbeck (1975) andHa (wide) and Ha (narrow) light curves obtained by Chambliss & Davan (1987) of the detached eclipsing binary VV Orionis (VV Ori) were analysed using the Wilson-Devinney method fixing the two parametersT h (25,000 K) and q(0.4172), resulting in the following absolute elements:A = 13.605 ± 0.03 LR,R h = 5.03 ±0.03R , Rc = 2.43 ±0.02R ,M bol,h = -5.18 ± 0.11,M bol,c = -1.54 ± 0.06,m h =10.81 + 0.42m andm c = 4.51 ± 0.41m . The de-reddened colours obtained from applying the reddening corrections ofE(B-V) = 0m.05 andE(U-B) = O m .04, and the derived temperatures of the components, gave spectral types ofB 1.5V for the primary and 54-5V with anUV excess of 0 m ·3 for the secondary component. A comparison of the logL and logT e of the components with the observed ZAMS shows the primary component to be a little above and the secondary component to be a little below/or on the ZAMS. A comparison of the properties of the components of VV Ori and a few other detached systems with the normal stars in the logL, logR and logT e versus logm planes, indicated a need for either a readjustment of the scales of the above parameters or modifications in the theoretical models. From the position of the components on the evolutionary tracks of Pop I composition computed by Schaller et al. (1992) it is noticed that while the primary component of W Ori had slightly evolved along the main-sequence, its secondary is still unevolved. The age of VV Ori is found to be 10 ± 1 million years and it is at a distance of 368 ± 10 pc.  相似文献   

6.
Based on two high-dispersion spectra of the close binary BW Boo, we have detected lines of the secondary component whose contribution to the combined spectrum does not exceed 2%. We have determined the rotation velocities of the components and spectroscopic orbital elements. Numerous lines of neutral and ionized iron have been used to determine the effective temperature and surface gravity for the primary component. The photometric light curves for this binary have been solved for the first time. Its primary component is an A2Vm star with a mass of 2 ± 0.1M and a radius of 1.9 ± 0.4R . Its rotation velocity is 2 km s−1, which is a factor of 18 lower than the pseudo-synchronous velocity for this component. The G6 secondary component, a T Tau star, has a rotation velocity of 17 km s−1, amass of 1.1M , and a radius of 1 R . The age of the binary has been estimated to be 107 yr.  相似文献   

7.
We present the results of our infrared observations of WR 140 (=V1687 Cyg) in 2001–2010. Analysis of the observations has shown that the J brightness at maximum increased near the periastron by about 0 m .3; the M brightness increased by ∼2 m in less than 50 days. The minimum J brightness and the minimum L and M brightnesses were observed 550–600 and 1300–1400 days after the maximum, respectively. The JHKLM brightness minimum was observed in the range of orbital phases 0.7–0.9. The parameters of the primary O5 component of the binary have been estimated to be the following: R(O5) ≈ 24.7R , L(O5) ≈ 8 × 105 L , and M bol(O5) ≈ −10 m . At the infrared brightness minimum, T g ∼ 820–880 K, R g ≈ 2.6 × 105 R , the optical depth of the shell at 3.5 μm is ∼5.3 × 10−6, and its mass is ≈1.4 × 10−8 M . At the maximum, the corresponding parameters are ∼1300 K, 8.6 × 104 R , ∼2 × 10−4, and ∼6 × 10−8 M ; the mean rate of dust inflow (condensation) into the dust structure is ∼3.3 × 10−8 M yr−1. The mean escape velocity of the shell from the heating source is ∼103 km s−1 and the mean dispersal rate of the shell is ∼1.1 × 10−8 M yr−1.  相似文献   

8.
Summary In this paper the results of the research of the stars proper motions Trapezium components are reported. They are: the galactic coordinates of the solar aprx and the Sun velocity (L =43±18°,B =+28±13°,V =13±4 km s−1), the dispersion of peculiar velocities in the direction of the galactic coordinates for the above mentioned stars (σ l =±11 km s−1, σ b =±7 km s−1).The attained accuracy of the proper motions (±0.005″ yr−1) is shown to be insufficient to the study of internal space motions in these systems. At present the work to increase the relative proper motions accuracy for multiple system components and to improve reductions from the relative to absolute proper motions, is being carried out in the Main Astronomical Observatory (Academy of Sciences of the Ukrainian SSR). The new catalogue of the AGK3 stars is composed now in the vicinity of the galactic equator in order to improve reductions from the relative to absolute proper motions. The r.m.s. errors of the proper motions, obtained in the AGK3 system, are ±0.005″ yr−1.  相似文献   

9.
Model atmosphere analysis, based on Kurucz models has been applied to study the F6V star π3 Ori (=BS1543=HD30652). The following values of the effective temperature, surface gravity and microturbulence velocity were obtained: = 6270±200 K, log g = 3.80.2, ξt =3.5±0.5 km/s. The abundances of 10 elements were determined. The resulting element abundances for the π3 Ori were found to be about three times lower with respect to the Sun. From evolutionary calculations we derived a mass, radius and luminosity for π3 Ori of M =1.3 M, R =2.38 R, L =7.9 L. Hence this star should be classified F6IV instead of F6 V. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
New ephemeris and the absolute parameters—masses, radii and luminosities—of the contact systems VW LMi and BX Dra have been obtained, by means of the analysis of the minima data available in the literature (for the determination of the ephemeris) and combining the previously published spectroscopic information and the results of the Wilson-Devinney method using photometric data (for the determination of the absolute parameters). The VW LMi OC analysis confirms the multiplicity of the system detected previously from the spectroscopic data. Masses of the VW LMi contact system primary and secondary components are 1.67 ± 0.02M and 0.70 ± 0.02M , respectively. The corresponding radii are 1.709 ± 0.007R and 1.208 ± 0.006R , respectively. For the BX Dra contact system the masses are 2.19 ± 0.13M and 0.63 ± 0.06M , and the radii, 2.13 ± 0.04R and 1.26 ± 0.03R , for the primary and secondary, respectively. In both cases, the estimated luminosities seem to be slightly greater that the values derived from the Hipparcos distances.  相似文献   

11.
Based on high precision measurements of the distances to nearby galaxies with the Hubble telescope, we have determined the radii of the zero velocity spheres for the local group, R0 = 0.96±0.03Mpc, and for the group of galaxies around M 81/M 82, 0.89±0.05Mpc. These yield estimates of MT = (1.29±0.14)· 1012 M and (1.03±0.17)· 1012 M, respectively, for the total masses of these groups. The R0 method allows us to determine the mass ratios for the two brightest members in both groups, as well. By varying the position of the center of mass between the two principal members of a group to obtain minimal scatter in the galaxies on a Hubble diagram, we find mass ratios of 0.8:1.0 for our galaxy and Andromeda and 0.54:1.00 for the M82 and M81 galaxies, in good agreement with the observed ratios of the luminosities of these galaxies. __________ Translated from Astrofizika, Vol. 49, No. 1, pp. 5–22 (February 2006).  相似文献   

12.
The TOPEX/POSEIDON (T/P) satellite altimeter data from January 1, 1993to October 24, 1999 (cycles 11–261) was used for investigating thelong-term variations in the geoidal geopotential W0 and/orin the geopotential scale factor R0 = GM/W0 (GM is theadopted geocentric gravitational constant). The mean valuesdetermined for the whole period covered are: W0 =(62 636 856.161 ± 0.002) m2 s-2, R0 =(6 363 672.5448 ± 0.0002) m. The actual accuracy is limited bythe altimeter calibration error (2–3 cm) and it isestimated to be about ± 0.5 m2 s-2 (± 5 cm).The yearly variations of the above mean values are at the formalerror level. No long-term trend in W0, representing the oceanvolume change, was found for the seven years period 1993–9 on thebasis of T/P altimeter (AVISO) data. No sea surface topography modelwas used in the solution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
We analyse data obtained by different ground-based video camera systems during the 1999 Leonid meteor storm. We observe similar activity profiles at nearby observing sites, but significant differences over distances in the order of 4,000 km. The main peak occured at 02:03 UT (λ=235.286, J2000, corrected for the time of the topocentric stream encounter). At the Iberian peninsula quasi-periodic activity fluctuations with a period of about 7 min were recorded. The camera in Jordan detected a broad plateau of activity at 01:39–01:53 UT, but no periodic variations. The Leonid brightness distribution derived from all cameras shows a lack of faint meteors with a turning point close to +3m, which corresponds to meteoroids of approximately 10-3 g. We find a pin-point radiant at αalpha=153.65 ±0.1, δ=21.80 ±0. (λ=235.290). The radiant positionis identical before and after the storm, and also during the storm no driftis observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The possible cosmological variation of the proton-to-electron mass ratio μ = m p /m e was estimated by measuring the H2 wavelengths in the high-resolution spectrum of the quasar Q 0347-382. Our analysis yielded an estimate for the possible deviation ofμ value in the past, 10 Gyr ago: for the unweighted valueΔ μ / μ = (3.0±2.4)×10-5; for the weightedvalueΔ μ / μ = (5.02±1.82)×10-5.Since the significance of the both results does not exceed3σ, further observations are needed to increase the statistical significance. In any case, this result may be considered as the most stringent estimate on an upper limit of a possible variation of μ (95% C.L.):|Δ μ / μ| < 8× 10-5 .This value serves as an effective tool for selection of models determining a relation between possible cosmological deviations of the fine-structure constant α and the elementary particle masses (mp, me, etc.). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
We present two new luminous blue variable (LBV) candidate stars discovered in the M33 galaxy. We identified these stars as massive star candidates at the final stages of evolution, presumably with a notable interstellar extinction. The candidates were selected from the Massey et al. catalog based on the following criteria: emission in H α , V<18./m 5 and 0.m 35 < (B - V) < 1.m 2. The spectra of both stars reveal a broad and strong H α emission with extended wings (770 and 1000 kms−1). Based on the spectra we estimated the main parameters of the stars. Object N45901 has a bolometric luminosity log(L/L) = 6.0–6.2 with the value of interstellar extinction A V = 2.3 ± 0.1. The temperature of the star’s photosphere is estimated as T⋆ ∼ 13000–15000 K, its probable mass on the Zero Age Main Sequence is M∼ 60–80 M. The infrared excess in N 45901 corresponds to the emission of warm dust with the temperature Twarm ∼ 1000 K, and amounts to 0.1%of the bolometric luminosity. A comparison of stellar magnitude estimates from different catalogs points to the probable variability of the object N45901. Bolometric luminosity of the second object, N125093, is log(L/L) = 6.3 − 6.6, the value of interstellar extinction is A V = 2.75 ± 0.15. We estimate its photosphere’s temperature as T⋆∼ 13000–16000K, the initial mass as M ∼ 90–120 M. The infrared excess in N125093 amounts to 5–6% of the bolometric luminosity. Its spectral energy distribution reveals two thermal components with the temperatures Twarm ∼ 1000K and Tcold ∼ 480 K. The [Ca II] λλ7291, 7323 lines, observed in LBV-like stars Var A and N93351 in M33 are also present in the spectrum of N 125093. These lines indicate relatively recent gas eruptions and dust activity linked with them. High bolometric luminosity of these stars and broad H α emissions allow classifying the studied objects as LBV candidates.  相似文献   

16.
We present multi-colour CCD observations of the low-temperature contact binaries, V453 Mon and V523 Cas. Their light curves are modelled to determine a new set of stellar and orbital parameters. Analysis of mid-eclipse times yields a new linear ephemeris for both systems. A period decrease (dP/dt=2.3×10−7 days/yr) in V453 Mon is discovered. V523 Cas, however, is detected to show a period increase (dP/dt=9.8×10−8 days/yr) because of the mass transfer of a rate of 1.1×10−7 M yr−1, from a less massive donor. Using these findings we can determine the physical parameters of the components of V523 Cas to be M 1=0.76 (3)M , M 2=0.39 (2)M , R 1=0.74 (2)R , R 2=0.55 (2)R , L 1=0.19 (3)L , L 2=0.14 (3)L , and the distance of system as 46(9) pc.  相似文献   

17.
We present the first ever study of the bright star HD 1. The star was chosen arbitrarily just because of its outstanding Henry Draper number. Surprisingly, almost nothing is known about this bright 7.m4 star. Our observations were performed as part of the commissioning of the robotic telescope facility STELLA and its fiber‐fed high‐resolution optical echelle spectrograph SES in the years 2007–2010. We found long‐term radial velocity variations with a full amplitude of 9 km s–1 with an average velocity of –29.8 km s–1 and suggest the star to be a hitherto unknown single‐lined spectroscopic binary. A preliminary orbit with a period of 6.2 years (2279±69 days) and an eccentricity of 0.50±0.01 is given. Its rms uncertainty is just 73 m s–1. HD 1 appears to be a G9‐K0 giant of luminosity class IIIa with Teff = 4850±100 K, logg = 2.0±0.2, L ≈ 155 L, a mass of 3.0±0.3 M, a radius of 17.7 R, and an age of ≈350 Myr. A relative abundance analysis led to a metallicity of [Fe/H] = –0.12 ± 0.09. The α ‐element silicon may indicate an overabundance of +0.13 though. The low strengths of some s‐process lines and a lower limit for the 12C/13C isotope ratio of ≥16 indicate that HD 1 is on the first ascend of the RGB. The absorption spectral lines appear rotationally broadened with a v sin i of 5.5±1.2 km s–1 but no chromospheric activity is evident. We also present photometric monitoring BV (RI)C data taken in parallel with STELLA. The star is likely a small‐amplitude (<10 mmag) photometric variable although no periodicity was found (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We measured the radial velocity of the star θ1 Ori D from IUE spectra and used published observations. Based on these data, we determined the period of its radial-velocity variations, P=20.2675±0.0010 days, constructed the phase radial-velocity curve, and solved it by least squares. The spectroscopic orbital elements were found to be the following: the epoch of periastron passage Ep=JD 2430826.6±0.1, the system's center-of-mass velocity /Gg=32.4±1.0 km s?1, K=14.3±1.5 km s?1, Ω=3.3±0.1 rad, e=0.68±0.09, a1 sin i = 3 × 1010 km, and f1 = 0.0025M. Twice the period, P=40.528±0.002 days, is also consistent with the observations.  相似文献   

19.
Abstract— We describe results of 32 N‐body planetary accretion simulations that investigate the dependence of terrestrial‐planet formation on nebula surface density profile σ and evolution of the eccentricities of Jupiter and Saturn ej,s. Two surface density profiles are examined: a decaying profile with σ ∝ 1/a, where a is orbital semi‐major axis, and a peaked profile in which σ increases for a < 2 AU and decreases for a > 2 AU. The peaked profiles are generated by models of coagulation in an initially hot nebula. Models with initial ej,s = 0.05 (the current value) and 0.1 are considered. Simulations using the decaying profile with ej,s = 0.1 produce systems most like the observed planets in terms of mass‐weighted mean a and the absence of a planet in the asteroid belt. Simulations with doubled σ produce planets roughly twice as massive as the nominal case. Most initial embryos are removed in each simulation via ejection from the solar system or collision with the Sun. The asteroid belt is almost entirely cleared on a timescale of 10–100 Ma that depends sensitively on ej,s. Most initial mass with a < 2 AU survives, with the degree of mass loss increasing with a. Mass loss from the terrestrial region occurs on a timescale that is long compared to the mass loss time for the asteroid belt. Substantial radial mixing of material occurs in all simulations, but is greater in simulations with initital ej,s = 0.05. The degree of mixing is equivalent to a feeding zone of half width 1.5 and 0.9 AU for an Earth mass planet at 1 AU for the cases ej,s = 0.05 and 0.1, respectively. In simulations with ej,s = 0.05, roughly one‐third and 5–10% of the mass contained in final terrestrial planets originated in the region a > 2.5 AU for the decaying and peaked profiles, respectively. In the case ej,s = 0.1, the median mass accreted from a > 2.5 AU is zero for both profiles.  相似文献   

20.
To study the peculiarities of the Galactic spiral density wave, we have analyzed the space velocities of Galactic Cepheids with propermotions from the Hipparcos catalog and line-of-sight velocities from various sources. First, based on the entire sample of 185 stars and taking R 0 = 8 kpc, we have found the components of the peculiar solar velocity (u , v ) = (7.6, 11.6) ± (0.8, 1.1) km s?1, the angular velocity of Galactic rotation Ω0 = 27.5 ± 0.5 km s?1 kpc?1 and its derivatives Ω′0 = ?4.12 ± 0.10 km s?1 kpc?2 and Ω″0 = 0.85 ± 0.07 km s?1 kpc?3, the amplitudes of the velocity perturbations in the spiral density wave f R = ?6.8 ± 0.7 and f θ = 3.3 ± 0.5 km s?1, the pitch angle of a two-armed spiral pattern (m = 2) i = ?4.6° ± 0.1° (which corresponds to a wavelength λ = 2.0 ± 0.1 kpc), and the phase of the Sun in the spiral density wave χ = ?193° ± 5°. The phase χ has been found to change noticeably with the mean age of the sample. Having analyzed these phase shifts, we have determined the mean value of the angular velocity difference Ω p ? Ω, which depends significantly on the calibrations used to estimate the individual ages of Cepheids. When estimating the ages of Cepheids based on Efremov’s calibration, we have found |Ω p ? Ω0| = 10 ± 1stat ± 3syst km s?1 kpc?1. The ratio of the radial component of the gravitational force produced by the spiral arms to the total gravitational force of the Galaxy has been estimated to be f r0 = 0.04 ± 0.01.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号