首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
The global semi-numerical perturbation method proposed by Henrard and Lemaître (1986) for the 2/1 resonance of the planar elliptic restricted three body problem is applied to the 3/1 resonance and is compared with Wisdom's perturbative treatment (1985) of the same problem. It appears that the two methods are comparable in their ability to reproduce the results of numerical integration especially in what concerns the shape and area of chaotic domains. As the global semi-numerical perturbation method is easily adapted to more general types of perturbations, it is hoped that it can serve as the basis for the analysis of more refined models of asteroidal motion. We point out in our analysis that Wisdom's uncertainty zone mechanism for generating chaotic domains (also analysed by Escande 1985 under the name of slow Hamiltonian chaotic layer) is not the only one at work in this problem. The secondary resonance p = 0 plays also its role which is qualitatively (if not quantitatively) important as it is closely associated with the random jumps between a high eccentricity mode and a low eccentricity mode.  相似文献   

2.
The utilization of chaotic dynamics approaches allowed the identification of many modes of motion in resonant asteroidal dynamics. As these dynamical systems are not integrable, the motion modes are not separated and one orbit may transit from one mode to another. In some cases, as in the \31 resonance, these transitions may lead, in a relatively short time scale, to eccentricities so high that the asteroid may approach the Sun and be destroyed. In the \21 and \32 resonances these transitions are much slower and only indirect estimations of the time which is needed for a generic asteroid to leave the resonance are possible. It may reach hundreds of million years in the more robust regions of the \21 resonance and a time of the order of billions of years in those of the \32 resonance. These values are consistent with the observed depletion of the \21 resonance (only a few asteroids known while almost 60 asteroids are known in the \32 resonance).  相似文献   

3.
The effects of the "great inequality" (the quasi-resonance between Jupiter and Saturn) on the motion in the 2/1 mean motion resonance with Jupiter (the Hecuba gap) is investigated. We confirm the proposition made by Ferraz-Mello and collaborators that the great inequality generates secondary resonances which are likely to produce the slow diffusion observed in numerical investigations. We identify, in the restricted three body problem, the frequencies responsible for these secondary resonances. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The dynamical behavior of asteroids inside the 2:1 and 3:2 commensurabilities with Jupiter presents a challenge. Indeed most of the studies, either analytical or numerical, point out that the two resonances have a very similar dynamical behavior. In spite of that, the 3:2 resonance, a little outside the main belt, hosts a family of asteroids, called the Hildas, while the 2:1, inside the main belt, is associated to a gap (the Hecuba gap) in the distribution of asteroids.In his search for a dynamical explanation for the Hecuba gap, Wisdom (1987) pointed out the existence of orbits starting with low eccentricity and inclination inside the 2:1 commensurability and going to high eccentricity, and thus to possible encounters with Mars. It has been shown later (Henrard et al.), that these orbits were following a path from the low eccentric belt of secondary resonances to the high eccentric domain of secular resonances. This path crosses a bridge, at moderate inclination and large amplitude of libration, between the two chaotic domains associated with these resonances.The 3:2 resonance being similar in many respects to the 2:1 resonance, one may wonder whether it contains also such a path. Indeed we have found that it exists and is very similar to the 2:1 one. This is the object of the present paper.  相似文献   

5.
6.
A comparative study is made between the 2/1 and the 3/2 resonant asteroid motion, with the aim to understand their different behaviour (gap in the 2/1 resonance, group in the 3/2 resonance). A symplectic mapping model is used, for each of these two resonances, assuming the asteroid is moving in the three-dimensional space under the gravitational perturbation of Jupiter. It is found that these resonances differ in several points, and although there is, in general, more chaos in the phase space close to the 3/2 resonance, even in the model of circular orbit of Jupiter, there are regions, close to the secondary resonances, which are less chaotic in the 3/2 resonance compared to the 2/1 resonance, and consequently trapping can take place.  相似文献   

7.
An enlarged averaged Hamiltonian is introduced to compute several families of periodic orbits of the planar elliptic 3-body problem, in the Sun–Jupiter–Asteroid system, near the 4:1 resonance. Four resonant critical point families are found and their stability is studied. The families of symmetric periodic orbits of the elliptic problem appear near the corresponding fixed points computed in this model. There is a good agreement for moderate eccentricity of the asteroid for three of these families, whereas the remaining family cannot be considered as a family of periodic orbits of the real model. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We present a 3-D symplectic mapping model that is valid at the 2:1 mean motion resonance in the asteroid motion, in the Sun-Jupiter-asteroid model. This model is used to study the dynamics inside this resonance and several features of the system have been made clear. The introduction of the third dimension, through the inclination of the asteroid orbit, plays an important role in the evolution of the asteroid and the appearance of chaotic motion. Also, the existence of the secondary resonances is clearly shown and their role in the appearance of chaotic motion and the slow diffusion of the elements of the orbit is demonstrated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The classical problem of the dynamics in the asteroids belt is revisited in the light of recently developed perturbation methods. We consider the spatial problem of three bodies both in the circular and in the elliptic case, looking for families of periodic or quasi periodic orbits. Some criteria for deciding the stability of these families are also indicated.  相似文献   

10.
(903) Nealley moves on an orbit of low eccentricity with a mean motion that is slightly larger than the 2/1 value of resonance. This orbit and some related fictious orbits are studied by numerical integrations of the four-body problem Sun-Jupiter-Saturn-asteroid over an interval of 110000 yr. The author's experience on related cases of resonance allows a study of the variation of suitably defined orbital parameters. The long-term evolution of the orbits is compared with earlier predictions. Some of the librating orbits are temporarily captured in a secondary resonance that refers to three-dimensional motion and is demonstrated by a special example.  相似文献   

11.
By using theD-criterion Lindblad (1992) has identified 14 asteroid families from a sample of 4100 numbered asteroids with proper elements from Milani and Kneevi (1990). Taxonomic types and other physical properties for a significant number of objects in five of the families show strong homogeneity within each family, further strengthening their internal relationship.To test the hypothesis of a common origin in, e.g., a catastrophic collision event, we have set out to integrate the orbits of the members of the Maria, Dora and Oppavia-Gefion families over some 106 years. The mean distance for the Maria family is close to the 3:1 mean-motion resonance with Jupiter, while the other two families lie close to the 5:2 resonance.We used a simplified solar system model which included the perturbations by Jupiter and Saturn only and implemented Everhart's variable stepsize integrator RA15. All close encounters between the family members (within 0.1 AU) were recorded as well. Preliminary results from integrations over 4×105 years are presented here.The statistics of close encounters show pronounced peaks for several members within each family, while for others no significant levels above the background of random encounters or even very low frequencies were found. This indicates a subclustering within the families. Quite a lot of very close (<0.005 AU) mutual encounters are found, which suggest that, at least for the larger members in a family, the mutual gravitational interactions could be of some importance for the real orbital evolutions.The encounter statistics between the Dora and Oppavia family members suggest a possible interrelationship between this two groups.  相似文献   

12.
In order to study the dynamical behaviour of asteroids in commensurability with a planet, we propose a phase diagram obtained by short computer time. We test this numerical procedure by analyzing the behaviour of real and fictitious asteroids in first order commensurabilities with Jupiter. We have also studied the evolution time of the orbital elements and other variables to compare these results with those obtained in the phase diagram. The results obtained with our numerical technique were compared to similar results previously obtained by other authors. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
We present simulations on the asteroid photometric data that will be provided by the Pan-STARRS (Panoramic Survey Telescope and Rapid Response System). The simulations were performed using realistic shape and light-scattering models, random orientation of spin axes, and rotation periods in the range 2–24 h. We show that physical models of asteroids can be reconstructed from this data with some limitations (possible multiple pole solutions). We emphasize the potential of sparse photometric data to produce models of a large number of asteroids within the next decade and we outline further tests with fast and slow rotators, tumblers, and binary asteroids.  相似文献   

14.
15.
The magnetometer investigation aboard the NEAR-Shoemaker spacecraft has obtained extensive magnetic field observations throughout the 433 Eros environment, from distances in excess of 100,000 km to those conducted after landing on 12 February 2001. We report the apparent absence of global scale magnetization at this asteroid (H<0.005 A·m−1; natural remanent magnetization per kilogram <1.9×10−6 A·m2 ·kg−1), orders of magnitude less than the intense magnetization attributed to S-class asteroids Gaspra and Braille. The extremely low magnetization state of 433 Eros places this object significantly below the levels generally associated with LL chondrites and undifferentiated primitive bodies, challenging our current understanding of the meteorite-asteroid connection.  相似文献   

16.
The study of mean motion resonance dynamics was motivated by the search for an explanation for the puzzling problem of the Kirkwood gaps. The most important contributions in this field within the last 32 years are reviewed here. At the beginning of that period, which coincides with the first long-term numerical investigations of resonant motion, different hypotheses (collisional, gravitational, statistical and cosmological) to explain the origin of the gaps were still competing with each other. At present, a general theory, based on gravitational mechanisms only, is capable of explaining in a uniform way all the Kirkwood gaps except the 2/1 one. Indeed, in the 4/1, 3/1, 5/2 and 7/3 mean motion commensurabilities, the overlap of secular resonances leads to almost overall chaos where asteroids undergo large and wild variations in their orbital elements. Such asteroids, if not thrown directly into the Sun, are sooner or later subject to strong close encounters with the largest inner planets, the typical time scale of the whole process being of the order of a few million years. Unfortunately, this mechanism is not capable of explaining the 2/1 gap where the strong chaos produced by the overlapping secular resonances does not attain orbits with moderate eccentricity, of low inclination and with low to moderate amplitude of libration. In the light of the most recent studies, it appears that the 2/1 gap is the global consequence of slow diffusive processes. At present, the origin of these processes remains under study.  相似文献   

17.
The recent discovery of a relatively small basaltic asteroid in the outer main belt with no apparent link to (4) Vesta raised several hypotheses on its origin. We present the results of a dynamical and mineralogical study of the region near (1459) Magnya intended to establish its origin. The dynamical analysis shows that the region is filled with high-order two-body and three-body mean motion resonances and nonlinear secular resonances, which can lead to slow chaotic diffusion. The mineralogical analysis has not identified any other asteroid with a composition similar to Magnya, nor the presence of fragments that could be securely related to the catastrophic disruption of a differentiated parent body. The various scenarios for the origin of Magnya are also discussed in the face of both the results presented here and recently published results.  相似文献   

18.
A systematic study of the main asteroidal resonances of the third and fourth order is performed using mapping techniques. For each resonance one-parameter family of surfaces of section is presented together with a simple energy graph which helps to understand and predict the changes in the surfaces of section within the family. As the truncated Hamiltonian for the planar, elliptic, restricted three-body problem is used for the mapping, the method is expected to fail for high eccentricities. We compared, therefore, the surfaces of section with trajectories calculated by symplectic integrators of the fourth and six order employing the full Hamiltonian. We found a good agreement for small eccentricities but differences for the higher eccentricities (e 0.3).  相似文献   

19.
We derive an algebraic mapping for an autonomous, two-dimensional galactic type Hamiltonian in the 1/1 resonance case. We use the mapping to study the stability of the periodic orbits. Using the xp x Poincaré surface section, we compare the results of the mapping with those found by the numerical integration of the full equations of motion. For small values of the perturbation the results of the two methods are in very good agreement while satisfactory agreement is obtained for larger perturbations.  相似文献   

20.
The restricted three-body problem describes the motion of a massless particle under the influence of two primaries of masses 1− μ and μ that circle each other with period equal to 2π. For small μ, a resonant periodic motion of the massless particle in the rotating frame can be described by relatively prime integers p and q, if its period around the heavier primary is approximately 2π p/q, and by its approximate eccentricity e. We give a method for the formal development of the stable and unstable manifolds associated with these resonant motions. We prove the validity of this formal development and the existence of homoclinic points in the resonant region. In the study of the Kirkwood gaps in the asteroid belt, the separatrices of the averaged equations of the restricted three-body problem are commonly used to derive analytical approximations to the boundaries of the resonances. We use the unaveraged equations to find values of asteroid eccentricity below which these approximations will not hold for the Kirkwood gaps with q/p equal to 2/1, 7/3, 5/2, 3/1, and 4/1. Another application is to the existence of asymmetric librations in the exterior resonances. We give values of asteroid eccentricity below which asymmetric librations will not exist for the 1/7, 1/6, 1/5, 1/4, 1/3, and 1/2 resonances for any μ however small. But if the eccentricity exceeds these thresholds, asymmetric librations will exist for μ small enough in the unaveraged restricted three-body problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号