首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uncertainty quantification is typically accomplished by simulating multiple geological realizations, which can be very expensive computationally if the flow process is complicated and the models are highly resolved. Upscaling procedures can be applied to reduce computational demands, though it is essential that the resulting coarse-model predictions correspond to reference fine-scale solutions. In this work, we develop an ensemble level upscaling (EnLU) procedure for compositional systems, which enables the efficient generation of multiple coarse models for use in uncertainty quantification. We apply a newly developed global compositional upscaling method to provide coarse-scale parameters and functions for selected realizations. This global upscaling entails transmissibility and relative permeability upscaling, along with the computation of a-factors to capture component fluxes. Additional features include near-well upscaling for all coarse parameters and functions, and iteration on the a-factors, which is shown to improve accuracy. In the EnLU framework, this global upscaling is applied for only a few selected realizations. For 90 % or more of the realizations, upscaled functions are assigned statistically based on quickly computed flow and permeability attributes. A sequential Gaussian co-simulation procedure is incorporated to provide coarse models that honor the spatial correlation structure of the upscaled properties. The resulting EnLU procedure is applied for multiple realizations of two-dimensional models, for both Gaussian and channelized permeability fields. Results demonstrate that EnLU provides P10, P50, and P90 results for phase and component production rates that are in close agreement with reference fine-scale results. Less accuracy is observed in realization-by-realization comparisons, though the models are still much more accurate than those generated using standard coarsening procedures.  相似文献   

2.
Subsurface flow models can exhibit strong full-tensor anisotropy due to either permeability or grid nonorthogonality effects. Upscaling procedures, for example, generate full-tensor effects on the coarse scale even for cases in which the underlying fine-scale permeability is isotropic. A multipoint flux approximation (MPFA) is often needed to accurately simulate flow for such systems. In this paper, we present and apply a different approach, nonlinear two-point flux approximation (NTPFA), for modeling systems with full-tensor effects. In NTPFA, transmissibility (which provides interblock connections) is determined from reference global flux and pressure fields for a specific flow problem. These fields can be generated using either fully resolved or approximate global simulations. The use of fully resolved simulations leads to an NTPFA method that corresponds to global upscaling procedures, while the use of approximate simulations gives a method corresponding to recently developed local–global techniques. For both approaches, NTPFA algorithms applicable to both single-scale full-tensor permeability systems and two-scale systems are described. A unified framework is introduced, which enables single-scale and two-scale problems to be viewed in a consistent manner. Extensive numerical results demonstrate that the global and local–global NTPFA techniques provide accurate flow predictions over wide parameter ranges for both single-scale and two-scale systems, though the global procedure is more accurate overall. The applicability of NTPFA to the simulation of two-phase flow in upscaled models is also demonstrated.  相似文献   

3.
Upscaled flow functions are often needed to account for the effects of fine-scale permeability heterogeneity in coarse-scale simulation models. We present procedures in which the required coarse-scale flow functions are statistically assigned to an ensemble of upscaled geological models. This can be viewed as an extension and further development of a recently developed ensemble level upscaling (EnLU) approach. The method aims to efficiently generate coarse-scale flow models capable of reproducing the ensemble statistics (e.g., cumulative distribution function) of fine-scale flow predictions for multiple reservoir models. The most expensive part of standard coarsening procedures is typically the generation of upscaled two-phase flow functions (e.g., relative permeabilities). EnLU provides a means for efficiently generating these upscaled functions using stochastic simulation. This involves the use of coarse-block attributes that are both fast to compute and correlate closely with the upscaled two-phase functions. In this paper, improved attributes for use in EnLU, namely the coefficient of variation of the fine-scale single-phase velocity field (computed during computation of upscaled absolute permeability) and the integral range of the fine-scale permeability variogram, are identified. Geostatistical simulation methods, which account for spatial correlations of the statistically generated upscaled functions, are also applied. The overall methodology thus enables the efficient generation of coarse-scale flow models. The procedure is tested on 3D well-driven flow problems with different permeability distributions and variable fluid mobility ratios. EnLU is shown to capture the ensemble statistics of fine-scale flow results (water and oil flow rates as a function of time) with similar accuracy to full flow-based upscaling methods but with computational speedups of more than an order of magnitude.  相似文献   

4.
Large-scale flow models constructed using standard coarsening procedures may not accurately resolve detailed near-well effects. Such effects are often important to capture, however, as the interaction of the well with the formation can have a dominant impact on process performance. In this work, a near-well upscaling procedure, which provides three-phase well-block properties, is developed and tested. The overall approach represents an extension of a recently developed oil–gas upscaling procedure and entails the use of local well computations (over a region referred to as the local well model (LWM)) along with a gradient-based optimization procedure to minimize the mismatch between fine and coarse-scale well rates, for oil, gas, and water, over the LWM. The gradients required for the minimization are computed efficiently through solution of adjoint equations. The LWM boundary conditions are determined using an iterative local-global procedure. With this approach, pressures and saturations computed during a global coarse-scale simulation are interpolated onto LWM boundaries and then used as boundary conditions for the fine-scale LWM computations. In addition to extending the overall approach to the three-phase case, this work also introduces new treatments that provide improved accuracy in cases with significant flux from the gas cap into the well block. The near-well multiphase upscaling method is applied to heterogeneous reservoir models, with production from vertical and horizontal wells. Simulation results illustrate that the method is able to accurately capture key near-well effects and to provide predictions for component production rates that are in close agreement with reference fine-scale results. The level of accuracy of the procedure is shown to be significantly higher than that of a standard approach which uses only upscaled single-phase flow parameters.  相似文献   

5.
Subsurface flows are affected by geological variability over a range of length scales. The modeling of well singularity in heterogeneous formations is important for simulating flow in aquifers and petroleum reservoirs. In this paper, two approaches in calculating the upscaled well index to capture the effects of fine scale heterogeneity in near-well regions are presented and applied. We first develop a flow-based near-well upscaling procedure for geometrically flexible grids. This approach entails solving local well-driven flows and requires the treatment of geometric effects due to the nonalignment between fine and coarse scale grids. An approximate coarse scale well model based on a well singularity analysis is also proposed. This model, referred to as near-well arithmetic averaging, uses only the fine scale permeabilities at well locations to compute the coarse scale well index; it does not require solving any flow problems. These two methods are systematically tested on three-dimensional models with a variety of permeability distributions. It is shown that both approaches provide considerable improvement over a simple (arithmetic) averaging approach to compute the coarse scale well index. The flow-based approach shows close agreement to the fine scale reference model, and the near-well arithmetic averaging also offers accuracy for an appropriate range of parameters. The interaction between global flow and near-well upscaling is also investigated through the use of global fine scale solutions in near-well scale-up calculations.  相似文献   

6.
The upscaling process of a high-resolution geostatistical reservoir model to a dynamic simulation grid model plays an important role in a reservoir study. Several upscaling methods have been proposed in order to create balance between the result accuracy and computation speed. Usually, a high-resolution grid model is upscaled according to the heterogeneities assuming single phase flow. However, during injection processes, the relative permeability adjustment is required. The so-called pseudo-relative permeability curves are accepted, if their corresponding coarse model is a good representation of the fine-grid model. In this study, an upscaling method based on discrete wavelet transform (WT) is developed for single-phase upscaling based on the multi-resolution analysis (MRA) concepts. Afterwards, an automated optimization method is used in which evolutionary genetic algorithm is applied to estimate the pseudo-relative permeability curves described with B-spline formulation. In this regard, the formulation of B-spline is modified in order to describe the relative permeability curves. The proposed procedure is evaluated in the gas injection case study from the SPE 10th comparative solution project’s data set which provides a benchmark for upscaling problems [1]. The comparisons of the wavelet-based upscaled model to the high-resolution model and uniformly coarsened model show considerable speedup relative to the fine-grid model and better accuracy relative to the uniformly coarsened model. In addition, the run time of the wavelet-based coarsened model is comparable with the run time of the uniformly upscaled model. The optimized coarse models increase the speed of simulation up to 90% while presenting similar results as fine-grid models. Besides, using two different production/injection scenarios, the superiority of WT upscaling plus relative permeability adjustment over uniform upscaling and relative permeability adjustment is presented. This study demonstrates the proposed upscaling workflow as an effective tool for a reservoir simulation study to reduce the required computational time.  相似文献   

7.
In subsurface flow modeling, compositional simulation is often required to model complex recovery processes, such as gas/CO 2 injection. However, compositional simulation on fine-scale geological models is still computationally expensive and even prohibitive. Most existing upscaling techniques focus on black-oil models. In this paper, we present a general framework to upscale two-phase multicomponent flow in compositional simulation. Unlike previous studies, our approach explicitly considers the upscaling of flow and thermodynamics. In the flow part, we introduce a new set of upscaled flow functions that account for the effects of compressibility. This is often ignored in the upscaling of black-oil models. In the upscaling of thermodynamics, we show that the oil and gas phases within a coarse block are not at chemical equilibrium. This non-equilibrium behavior is modeled by upscaled thermodynamic functions, which measure the difference between component fugacities among the oil and gas phases. We apply the approach to various gas injection problems with different compositional features, permeability heterogeneity, and coarsening ratios. It is shown that the proposed method accurately reproduces the averaged fine-scale solutions, such as component overall compositions, gas saturation, and density solutions in the compositional flow.  相似文献   

8.
The paper is devoted to the upscaling method appropriate for single-phase flow in media with discontinuous permeability distribution. The suggested algorithm is a modification of the iterative adaptive local–global upscaling developed by Chen and coauthors. The key feature of this method is a consistency between local and coarse global calculated characteristics. In this work, we apply a modified procedure to determine the boundary conditions used in the local fine-scale computation. To increase the accuracy of these boundary conditions on each iteration, we involve an additional preliminary step based on the results of coarse scale calculations from the previous iteration. Numerical tests show an essential improvement of the accuracy of upscaled flow rates for most of the realizations of statistical permeability distribution. Although the developed method is universal, its efficiency increases with increasing of permeability contrast.  相似文献   

9.
Ground-penetrating radar (GPR) surveys, outcrop measurements, and cores provide a high-resolution 3D geologic model to investigate the hydraulic effects of shales in marine-influenced lower delta-plain distributary channel deposits within the Cretaceous-age Ferron Sandstone at Corbula Gulch in central Utah, USA. Shale statistics are computed from outcrop observations. Although slight anisotropy was observed in mean length and variogram ranges parallel and perpendicular to pale of low , the anisotropy is not statistically significant and the estimated mean length is 5.4 m. Truncated Gaussian simulation was used to create maps of shales that are placed on variably dipping stratigraphic surfaces interpreted from high-resolution 3D GPR surveys, outcrop interpretations, and boreholes. Sandstone permeability is estimated from radar responses calibrated to permeability measurements from core samples. Experimentally designed flow simulations examine the effects of variogram range, shale coverage fraction, and trends in shale coverage on predicted upscaled permeability, breakthrough time, and sweep efficiency. Approximately 1500 flow simulations examine three different geologic models, flow in the 3 coordinate directions, 16 geostatistical parameter combinations, and 10 realizations for each model. ANOVA and response models computed from the flow simulations demonstrate that shales decrease sweep, recovery, and permeability, especially in the vertical direction. The effect on horizontal flow is smaller. Flow predictions for ideal tracer displacements at Corbula Gulch are sensitive to shale-coverage fraction, but are relatively insensitive to twofold variations in variogram range or to vertical trends in shale coverage. Although the hydraulic effects of shale are statistically significant, the changes in flow responses rarely exceed 20%. As a result, it may be reasonable to use simple models when incorporating analogous shales into models of reservoirs or aquifers.  相似文献   

10.
We present a locally mass conservative scheme for the approximation of two-phase flow in a porous medium that allows us to obtain detailed fine scale solutions on relatively coarse meshes. The permeability is assumed to be resolvable on a fine numerical grid, but limits on computational power require that computations be performed on a coarse grid. We define a two-scale mixed finite element space and resulting method, and describe in detail the solution algorithm. It involves a coarse scale operator coupled to a subgrid scale operator localized in space to each coarse grid element. An influence function (numerical Greens function) technique allows us to solve these subgrid scale problems independently of the coarse grid approximation. The coarse grid problem is modified to take into account the subgrid scale solution and solved as a large linear system of equations posed over a coarse grid. Finally, the coarse scale solution is corrected on the subgrid scale, providing a fine grid representation of the solution. Numerical examples are presented, which show that near-well behavior and even extremely heterogeneous permeability barriers and streaks are upscaled well by the technique.  相似文献   

11.
Estimating the hydraulic properties of fractured aquifers is challenging due to the complexity of structural discontinuities that can generally be measured at a small scale, either in core or in outcrop, but influence groundwater flow over a range of scales. This modeling study uses fracture scanline data obtained from surface bedrock exposures to derive estimates of permeability that can be used to represent the fractured rock matrix within regional scale flow models. The model is developed using PETREL, which traditionally benefits from high resolution data sets obtained during oil and gas exploration, including for example seismic data, and borehole logging data (both lithological and geophysical). The technique consists of interpreting scanline fracture data, and using these data to generate representative Discrete Fracture Network (DFN) models for each field set. The DFN models are then upscaled to provide an effective hydraulic conductivity tensor that represents the fractured rock matrix. For each field site, the upscaled hydraulic conductivities are compared with estimates derived from pumping tests to validate the model. A hydraulic conductivity field is generated for the study region that captures the spatial variability of fracture networks in pseudo-three dimensions from scanline data. Hydraulic conductivities estimated using this approach compare well with those estimated from pumping test data. The study results suggest that such an approach may be feasible for taking small scale fracture data and upscaling these to represent the aquifer matrix hydraulic properties needed for regional groundwater modeling.  相似文献   

12.
Fault damage zones in highly porous reservoirs are dominated by deformation bands that generally have permeability-reducing properties. Due to an absence of sufficiently detailed measurements and the irregular distribution of deformation bands, a statistical approach is applied to study their influence on flow. A stochastic model of their distribution is constructed, and band density, distribution, orientation, and flow properties are chosen based on available field observations. The sensitivity of these different parameters on the upscaled flow is analyzed. The influence of a heterogeneous permeability distribution was also studied by assuming the presence of high permeability holes within bands. The fragmentation and position of these holes affect significantly the block-effective permeability. Results of local upscaling with a diagonal and full upscaled permeability tensor are compared, and qualitatively similar results for the flow characteristics are obtained. Further, the procedure of iterative local–global upscaling is applied to the problem.  相似文献   

13.
A new method for upscaling fine scale permeability fields to general quadrilateral-shaped coarse cells is presented. The procedure, referred to as the conforming scale up method, applies a triangle-based finite element technique, capable of accurately resolving both the coarse cell geometry and the subgrid heterogeneity, to the solution of the local fine scale problem. An appropriate averaging of this solution provides the equivalent permeability tensor for the coarse scale quadrilateral cell. The general level of accuracy of the technique is demonstrated through application to a number of flow problems. The real strength of the conforming scale up method is demonstrated when the method is applied in conjunction with a flow-based gridding technique. In this case, the approach is shown to provide results that are significantly more accurate than those obtained using standard techniques.  相似文献   

14.
The use of upscaled models is attractive in many-query applications that require a large number of simulation runs, such as uncertainty quantification and optimization. Highly coarsened models often display error in output quantities of interest, e.g., phase production and injection rates, so the direct use of these results for quantitative evaluations and decision making may not be appropriate. In this work, we introduce a machine-learning-based post-processing framework for modeling the error in coarse-model results in the context of uncertainty quantification. Coarse-scale models are constructed using an accurate global single-phase transmissibility upscaling procedure. The framework entails the use of high-dimensional regression (random forest in this work) to model error based on a number of error indicators or features. Many of these features are derived from approximations of the subgrid effects neglected in the coarse-scale saturation equation. These features are identified through volume averaging, and they are generated by solving a fine-scale saturation equation with a constant-in-time velocity field. Our approach eliminates the need for the user to hand-design a small number of informative (relevant) features. The training step requires the simulation of some number of fine and coarse models (in this work we perform either 10 or 30 training simulations), followed by construction of a regression model for each well. Classification is also applied for production wells. The methodology then provides a correction at each time step, and for each well, in the phase production and injection rates. Results are presented for two- and three-dimensional oil–water systems. The corrected coarse-scale solutions show significantly better accuracy than the uncorrected solutions, both in terms of realization-by-realization predictions for oil and water production rates, and for statistical quantities important for uncertainty quantification, such as P10, P50, and P90 predictions.  相似文献   

15.
16.
To physically investigate permeability upscaling, over 13,000 permeability values were measured with four different sample supports (i.e., sample volumes) on a block of Berea Sandstone. At each sample support, spatially exhaustive permeability datasets were measured, subject to consistent flow geometry and boundary conditions, with a specially adapted minipermeameter test system. Here, we present and analyze a subset of the data consisting of 2304 permeability values collected from a single block face oriented normal to stratification. Results reveal a number of distinct and consistent trends (i.e., upscaling) relating changes in key summary statistics to an increasing sample support. Examples include the sample mean and semivariogram range that increase with increasing sample support and the sample variance that decreases. To help interpret the measured mean upscaling, we compared it to theoretical models that are only available for somewhat different flow geometries. The comparison suggests that the nonuniform flow imposed by the minipermeameter coupled with permeability anisotropy at the scale of the local support (i.e., smallest sample support for which data is available) are the primary controls on the measured upscaling. This work demonstrates, experimentally, that it is not always appropriate to treat the local-support permeability as an intrinsic feature of the porous medium, that is, independent of its conditions of measurement.  相似文献   

17.
Detailed reservoir models routinely contain 106–108 grid blocks. These models often cannot be used directly in a reservoir simulation because of the time and memory required for solving the pressure grid on the fine grid. We propose a nested gridding technique that efficiently obtains an approximate solution for the pressure field. The domain is divided into a series of coarse blocks, each containing several fine cells. Effective mobilities are computed for each coarse grid block and the pressure is then found on the coarse scale. The pressure field within each coarse block is computed using flux boundary conditions obtained from the coarse pressure solution. Streamline-based simulation is used to move saturations forward in time. We test the method for a series of example waterflood problems and demonstrate that the method can give accurate estimates of oil production for large 3D models significantly faster than direct simulation using streamlines on the fine grid, making the method overall approximately up to 1,000 times faster than direct conventional simulation.  相似文献   

18.
The use of limited global information in multiscale simulations is needed when there is no scale separation. Previous approaches entail fine-scale simulations in the computation of the global information. The computation of the global information is expensive. In this paper, we propose the use of approximate global information based on partial upscaling. A requirement for partial homogenization is to capture long-range (non-local) effects present in the fine-scale solution, while homogenizing some of the smallest scales. The local information at these smallest scales is captured in the computation of basis functions. Thus, the proposed approach allows us to avoid the computations at the scales that can be homogenized. This results in coarser problems for the computation of global fields. We analyze the convergence of the proposed method. Mathematical formalism is introduced, which allows estimating the errors due to small scales that are homogenized. The proposed method is applied to simulate two-phase flows in heterogeneous porous media. Numerical results are presented for various permeability fields, including those generated using two-point correlation functions and channelized permeability fields from the SPE Comparative Project (Christie and Blunt, SPE Reserv Evalu Eng 4:308–317, 2001). We consider simple cases where one can identify the scales that can be homogenized. For more general cases, we suggest the use of upscaling on the coarse grid with the size smaller than the target coarse grid where multiscale basis functions are constructed. This intermediate coarse grid renders a partially upscaled solution that contains essential non-local information. Numerical examples demonstrate that the use of approximate global information provides better accuracy than purely local multiscale methods.  相似文献   

19.

Upscaling methods such as the dual porosity/dual permeability (DPDP) model provide a robust means for numerical simulation of fractured reservoirs. In order to close the DPDP model, one needs to provide the upscaled fracture permeabilities and the parameters of the matrix-fracture mass transfer for every fractured coarse block in the domain. Obtaining these model closures from fine-scale discrete fracture-matrix (DFM) simulations is a lengthy and computationally expensive process. We alleviate these difficulties by pixelating the fracture geometries and predicting the upscaled parameters using a convolutional neural network (CNN), trained on precomputed fine-scale results. We demonstrate that once a trained CNN is available, it can provide the DPDP model closures for a wide range of modeling parameters, not only those for which the training dataset has been obtained. The performance of the DPDP model with both reference and predicted closures is compared to the reference DFM simulations of two-phase flows using a synthetic and a realistic fracture geometries. While the both DPDP solutions underestimate the matrix-fracture transfer rate, they agree well with each other and demonstrate a significant speedup as compared to the reference fine-scale solution.

  相似文献   

20.
Fast 3D Reservoir Simulation and Scale Up Using Streamtubes   总被引:1,自引:0,他引:1  
This paper presents an implementation of a semianalytical method for oil recovery calculation in heterogeneous reservoirs that is both fast and accurate. The method defines streamline paths based on a conventional single-phase incompressible flow calculation. By calculating the time-of-flight for a particle along a streamline and assigning a volumetric flux to each streamline, the cumulative pore volume of a streamtube containing the streamline can be calculated. Subsequently, the streamtube geometries are kept constant and the effects of the time varying mobility distribution in two-phase flow are accounted for by varying the flow rate in each streamtube, based on fluid resistance changes along the streamtube. Oil recovery calculations are then done based on the 1D analytical Buckley–Leverett solution. This concept makes the method extremely fast and easy to implement, making it ideal to simulate large reservoirs generated by geostatiscal methods. The simulation results of a 3D heterogeneous reservoir are presented and compared with those of other simulators. The results shows that the new simulator is much faster than a traditional finite difference simulator, while having the same accuracy. The method also naturally handles the upscaling of absolute and relative permeability. We make use of these upscaling abilities to generate a coarse curvilinear grid that can be used in conventional simulators with a great advantage over conventional upscaled Cartesian grids. This paper also shows an upscaling example using this technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号