首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
基于对Leopold-Wolman关系修正的河床河型判别   总被引:1,自引:0,他引:1  
许炯心 《地理学报》2004,59(3):462-467
在广泛收集中国和世界上冲积河流资料的基础上,以近200条河流的大样本对著名的、国际上沿用40余年的 Leopold-Wolman关系,即用于河型判别的比降-流量关系进行了检验。结果发现,该关系不能用于包括砾石与砂质河床在内的河型判别。这是由于比降-流量关系主要反映砾石河床与砂质河床之间差异,其次才反映分汊与弯曲河型之间的差异。为此,对于Leopold-Wolman关系进行了改进,提出了以比降和河宽来判别河型的新关系。这一关系综合反映了河流在纵向上的能耗、阻力与输沙特性与在横向上的流场与环流分布特性的组合关系,因而具有更好的河型判别效果,可以用于包括砾石与砂质河床在内的河型判别。  相似文献   

2.
Global climate change may have a noticeable impact on the northern environment, leading to changes in permafrost, vegetation and fluvial morphology. In this paper we compare the results from three geomorphological models and study the potential effects of changing climatic factors on the river channel types in North-European Russia. Two of the selected models by Romashin [Romashin, V.V., 1968. Variations of the river channel types under governing factors, Annals of the Hydrological Institute, vol. 155. Hydrometeoizdat, Leningrad, pp. 56–63.] and Leopold and Wolman [Leopold, L.B., Wolman, M.G., 1957. River channel pattern: braided, meandering and straight, Physiographic and hydraulic studies of rivers. USA Geological Survey Professional Paper 252, pp. 85–98.] are conventional QS-type models, which predict the existence of either multi-thread or single-tread channel types using data on discharge and channel slope. The more advanced model by Van den Berg [Van den Berg, J.H., 1995. Prediction of alluvial channel pattern of perennial rivers. Geomorphology 12, 259–270.] takes into account the size of the sediment material.We used data from 16 runoff gauges to validate the models and predict the channel types at selected locations under modern and predicted for the future climatic conditions. Two of the three models successfully replicated the currently existing channel types in all but one of the studied sites. Predictive calculations under the hypothetical scenarios of 10%, 15%, 20% and 35% runoff increase gave different results. Van den Berg's model predicted potential transformation of the channel types, from single- to multi-thread, at 4 of 16 selected locations in the next few decades, and at 5 locations by the middle of the 21st century. Each of the QS-type models predicted such transformation at one site only.Results of the study indicate that climatic warming in combination with other environmental changes may lead to transformation of the river channel types at selected locations in north-western Russia. Further efforts are needed to improve the performance of the fluvial geomorphological models and their ability to predict such changes.  相似文献   

3.
Channel responses to flow depletions in the lower Duchesne River over the past 100 years have been highly complex and variable in space and time. In general, sand-bed reaches adjusted to all perturbations with bed-level changes, whereas the gravel-bed reaches adjusted primarily through width changes. Gravel-bed reaches aggraded only when gravel was supplied to the channel through local bank erosion and degraded only during extreme flood events.A 50% reduction in stream flow and an increase in fine sediment supply to the study area occurred in the first third of the 20th century. The gravel-bed reach responded primarily with channel narrowing, whereas bed aggradation and four large-scale avulsions occurred in the sand-bed reaches. These avulsions almost completely replaced a section of sinuous channel about 14 km long with a straighter section about 7 km long. The most upstream avulsion, located near a break in valley slope and the transition from a gravel bed upstream and a sand bed downstream, transformed a sinuous sand-bed reach into a braided gravel-bed reach and eventually into a meandering gravel-bed reach over a 30-year period. Later, an increase in flood magnitudes and durations caused widening and secondary bed aggradation in the gravel-bed reaches, whereas the sand-bed reaches incised and narrowed. Water diversions since the 1950s have progressively eliminated moderate flood events, whereas larger floods have been less affected. The loss of frequent flooding has increased the duration and severity of drought periods during which riparian vegetation can establish along the channel margins. As a result, the channel has gradually narrowed throughout the study area since the late 1960s, despite the occasional occurrence of large floods. No tributaries enter the Duchesne River within the study area, so all reaches have experienced identical changes in stream flow and upstream sediment supply.  相似文献   

4.
Predicting channel patterns   总被引:1,自引:0,他引:1  
The proposed distinction between meandering and braided river channel patterns, on the basis of bankfull specific stream power and bed material size, is analysed and rejected. Only by using regime-based estimates of channel widths (rather than actual widths) has discrimination been achieved, and it is argued that this procedure is unacceptable.An alternative is to explore the patterning processes underlying the marked pattern scatter on bankfull stream power/bed material size plots. Of the five sets of patterning processes, large-scale bedform development and stability is seen as especially important for meandering and braiding. For gravel-bed rivers, bedforms developed at around or above bankfull stage appear important for pattern generation, with braiding relating to higher excess shear stress and Froude number. There seems to be an upper threshold to both meandering and braiding which is achieved at extreme discharges and steep gradients, as on steep alluvial fans, rather than for the rivers with available flow data here considered. For sand-bed rivers with greater excess shear stress, the equivalent upper plane bed threshold may occur below bankfull, with bed material mobility and bedform modification occurring over a wider range of sub-bankfull discharges. Sand-bed channel margin outlines appear to be less perturbed by bedform effects than gravel bed planforms, and they may have naturally straight or sinuous planforms. Bedform relief may nevertheless lead to some being designated as braided when viewed at low flows.It is concluded that the use of a single-stage stream power measure and bed material size alone is unlikely to achieve meandering/braiding discrimination.  相似文献   

5.
黄河流域河型转化现象初探   总被引:9,自引:0,他引:9  
黄河以其高含沙水流以及下游河道的高沉积速率而著称于世。迄今的研究, 主要针对黄河中下游流域的 侵蚀、水文泥沙和河床演变方面的研究, 而对黄河流域主支流发生河型转化的现象关注不够。在黄河的不同河段, 河型的变化频繁, 类型多样, 现象复杂, 是研究者不可回避的科学问题。本文选取黄河上游第一弯的玛曲河段、黄河 上游末段托克托附近河段及黄河下游高村上下河段来研究河型转化的形式及影响因素。玛曲河段沿流向发生网状 河型→弯曲河型→辫状河型的转化现象, 该系列转化呈现出由极稳定河型向极不稳定河型的转化, 这与世界上通 常可以观察到的沿流向不稳定河型向稳定河型转化的情况完全相反。这主要受到地壳的抬升、上下峡谷卡口、水动 力特征、边界沉积物特征及植被的区域分布等因素的控制。托克托附近沿流向发生了弯曲河型→顺直河型转化的 现象, 这是较稳定河型向极稳定河型的转化, 主要受到边界沉积物、水动力等因素的控制。高村上下河段沿流向发 生的辫状河型→弯曲河型转化的现象, 是由极不稳定河型向较稳定河型转化的现象, 河道边界沉积物及水动力是 其主要控制因素, 人工大堤只是限制了河道摆动的最大幅度, 对河型的性质影响不大, 但其上游河段修筑的水库导 致下泻的水流在辫状河段的侵蚀能力增强而使其边界沉积物粗化, 并将泥质物大量沉积在弯曲河段, 客观上促进 了河型的转化。  相似文献   

6.
The style and degree of channel narrowing in aggrading reaches downstream from large dams is dependent upon the dominant geomorphic processes of the affected river, the magnitude of streamflow regulation, and the post-dam sediment transport regime. We measured different magnitudes of channel adjustment on the Green River downstream from Flaming Gorge Dam, UT, USA, that are related to these three factors. Bankfull channel width decreased by an average of about 20% in the study area. In reaches with abundant debris fans and eddy deposited sand bars, the amount of channel narrowing was proportional to the decrease in specific stream power. The fan–eddy-dominated reach with the greatest decrease in stream power narrowed by 22% while the reach with the least decrease in stream power narrowed by 11%. In reaches with the same magnitude of peak flow reduction, meandering reaches narrowed by 15% to 22% and fan–eddy-dominated reaches narrowed by 11% to 12%. Specific stream power was not significantly affected by flow regulation in the meandering reaches.In the diverse array of reach characteristics and deposit types found in the study area, all pre- and post-dam deposits are part of a suite of topographic surfaces that includes a terrace that was inundated by rare pre-dam floods, an intermediate bench that was inundated by rare post-dam floods, and a post-dam floodplain that was inundated by the post-dam mean annual flood. Analysis of historical photographs and tree-ring dating of Tamarix sp. shows that the intermediate bench and post-dam floodplain are post-dam landforms in each reach type. Although these two surfaces occur at different levels, they are forming simultaneously during flows of different magnitude. And while the relative elevation and sedimentologic characteristics of the deposits differ between meandering reaches and reaches with abundant debris fans and eddies, both reach types contain deposits at all of these topographic levels.The process of channel narrowing varied between fan–eddy-dominated and meandering reaches. In the meandering reaches, where stream power has not changed, narrowing was accomplished by essentially the same depositional processes that operated prior to regulation. In fan–eddy-dominated reaches, where significant reductions in stream power have occurred, channel narrowing has been accompanied by a change in dominant depositional processes. Mid-channel sand deposits are aggrading on deposits that, in the pre-dam era, were active gravel bars. These deposits are creating new islands and decreasing the presence of open-framework gravel bars. In eddies, bare sand bars are replaced with vegetated bars that have a simpler topography than the pre-dam deposits.  相似文献   

7.
游荡性河道在中国广泛分布,其中以黄河下游上段最为典型,但关于游荡性河型的归属问题尚存在很大争议,国际上多将游荡性河流归属为辫状河型。本文以黄河下游游荡性河道为典型案例,系统总结了游荡性河流的演变特征、主要影响因素和形成机理,并从定义、成因、特征及河道形成过程方面,将游荡与辫状河型的异同点进行对比分析。得到以下启示:游荡性河型是一种重要的河道型态,与辫状河型在许多方面存在较明显差异。特别是游荡河型主要发育于能量小于输沙需求的环境,因而形态呈现不稳定特性,但辫状河型不仅出现在能量较多的环境,而且也常在能量较小的环境中出现,因而一部分具有稳定形态,另一部分则表现出不稳定的特性,因此,有必要对游荡性河道和辫状河道给予区分。最后对未来研究进行了展望,提出应重视河型形成的内在机理,对能量理论进行发展及深化,进一步系统性评价游荡性河道与辫状河道的异同性,以解决游荡性河道的河型归属问题。  相似文献   

8.
Fluvial process and morphology of the Brahmaputra River in Assam, India   总被引:1,自引:0,他引:1  
The Brahmaputra River finds its origin in the Chema Yundung glacier of Tibet and flows through India and Bangladesh. The slope of the river decreases suddenly in front of the Himalayas and results in the deposition of sediment and a braided channel pattern. It flows through Assam, India, along a valley comprising its own Recent alluvium. In Assam the basin receives 300 cm mean annual rainfall, 66–85% of which occurs in the monsoon period from June through September. Mean annual discharge at Pandu for 1955–1990 is 16,682.24 m3 s 1. Average monthly discharge is highest in July (19%) and lowest in February (2%). Most hydrographs exhibit multiple flood peaks occurring at different times from June to September. The mean annual suspended sediment load is 402 million tons and average monthly sediment discharge is highest in June (19.05%) and lowest in January (1.02%). The bed load at Pandu was found to be 5–15% of the total load of the river. Three kinds of major geomorphic units are found in the basin. The river bed of the Brahmaputra shows four topographic levels, with increasing height and vegetation. The single first order primary channels of this braided river split into two or more smaller second order channels separated by bars and islands. The second order channels are of three kinds. The maximum length and width of the bars in the area under study are 18.43 km and 6.17 km, respectively. The Brahmaputra channel is characterised by mid-channel bars, side bars, tributary mouth bars and unit bars. The geometry of meandering tributary rivers shows that the relationship between meander wavelength and bend radius is most linear. The Brahmaputra had been undergoing overall aggradation by about 16 cm during 1971 to 1979. The channel of the Brahmaputra River has been migrating because of channel widening and avulsion. The meandering tributaries change because of neck cut-off and progressive shifting at the meander bends. The braiding index of the Brahmaputra has been increasing from 6.11 in 1912–1928 to 8.33 in 1996. During the twentieth century, the total amount of bank area lost from erosion was 868 km2. Maximum rate of shift of the north bank to south resulting in erosion was 227.5 m/year and maximum rate of shift of the south bank to north resulting in accretion was 331.56 m/year. Shear failure of upper bank and liquefaction of clayey-silt materials are two main causes of bank erosion.  相似文献   

9.
Historical planform changes in a 14.7 km reach of the lower Pages River were determined to assess whether they were autogenic (inherent in the river regime) or allogenic (driven by external changes) in nature so as to better focus river management activities and river restoration works. A pattern metamorphosis or complete change in river morphology occurred during the February 1955 flood. The peak discharge of this event exceeded the slope and grain size (intrinsic) threshold for braiding, converting the narrow, slightly sinuous stream to a wide, braided-like river. Five subsequent intrinsic threshold-exceeding floods did not cause further bar development because an over-widened channel already existed. Autogenic channel planform changes included sinuosity variations due to lateral migration and pattern metamorphosis due to the exceedance of a discharge–slope–grain size geomorphic threshold. Allogenic channel planform changes included: (1) realignment/channel straightening and artificial cutoffs by river training works; (2) lateral migration by increased bank erodibility due to riparian vegetation clearing; (3) lateral migration by the operation of a transitive geomorphic threshold involving the onset of a flood-dominated regime after 1946 and increased catchment runoff after 1830 due to large-scale clearing of catchment vegetation; and (4) the occurrence of a large flood in February 1955. Multiple forcing factors have clearly caused historical channel planform changes of the lower Pages River, making the design of river management and restoration works a complex matter outside the scope of simple formulaic protocols.  相似文献   

10.
Recent morphological evolution of the Lower Mississippi River   总被引:1,自引:0,他引:1  
This study documents slope and stream power changes in the Lower Mississippi River during the pre-cutoff (1880s–1930s), and post-cutoff (1943–1992) periods. The study reach extends from New Madrid, MO, to Natchez, MS, a distance of about 900 km. Analyses for six major reaches and 13 sub-reaches for the pre- and post-cutoff periods indicate that the river presently has a much larger slope and stream power than prior to the cutoffs. The largest increases have occurred between Fulton, TN, and Lake Providence, LA, where slope and stream power increases range from about 27% to 36% and 20% to 38%, respectively. Increases in slope and stream power in reaches upstream and downstream have also occurred, but to a lesser degree. Previous investigations have shown that no coarsening of the bed material has occurred since 1932, and that the bed material may actually be somewhat finer overall. As the Lower Mississippi River is not a sediment-starved system, an increase in stream power with no change in D50 would be expected to be offset by an increase in the bed material load as the river adjusts towards equilibrium. Previous investigators have inferred a reduction in the sediment loads on the Mississippi River this century based on analyses of total measured suspended loads. However, these results should be viewed as primarily representing the changes in wash load and should not be taken to imply that bed material loads have also decreased. Therefore, the bed material loads in the study reach should be greater than in the pre-cutoff period. Excess stream power in the sub-reaches directly affected by cutoffs resulted in scour that increased downstream bed material load. These elevated sediment loads play a key role in driving morphological adjustments towards equilibrium in the post-cutoff channel. The stability status of the channel in the study reach currently ranges from dynamic equilibrium in the farthest upstream reaches through severe degradation to dynamic equilibrium in the middle reaches, and aggradation in the lowest reaches. These evolutionary trends cannot be explained by consideration of changes in slope and stream power alone. Changes in the incoming bed material load to each reach generated by upstream channel evolution must also be considered.  相似文献   

11.
黄河内蒙古不同河型段对洪水过程的响应特征   总被引:7,自引:0,他引:7  
黄河内蒙古河段的河道淤积近年来有所加重,一些人寄望于人造洪峰冲沙来降低河床。本文根据典型年份的最大洪水的流量—水位过程线变化特征,揭示黄河内蒙古不同河型段对这些洪水的响应机制,得出黄河内蒙古河段洪水的流量—水位过程线类型有线形、顺时针环线、逆时针环线3类单一关系和线形+逆时针环线、逆时针环线+线形、"8"字形+线形、嵌套状逆时针环线以及交叉线形5类复合关系。这些关系总体上可以反映洪水过程中河床是侵蚀还是沉积、何时侵蚀何时沉积、以及冲淤是否具有反复性。黄河内蒙古冲积性河段的河道对同一次洪水过程的响应沿程表现出分化现象,其中辫状河段以河床侵蚀下降为特征,弯曲河段以河床明显沉积升高为特征,而顺直河段以少量沉积或冲淤平衡为特征。不同河型段的河道对洪水的响应趋势与洪水动能的沿程减小相适应,洪峰含沙量沿程减小是该趋势的具体体现。人造洪峰冲沙难以逆转上述淤积趋势,对防治洪灾帮助有限。  相似文献   

12.
The upper Columbia River, British Columbia, Canada, shows typical anastomosing morphology — multiple interconnected channels that enclose floodbasins — and lateral channel stability. We analysed field data on hydraulic and sedimentary processes and show that the anastomosing morphology of the upper Columbia River is caused by sediment (bedload) transport inefficiency, in combination with very limited potential for lateral bank erosion because of very low specific stream power (≤ 2.3 W/m2) and cohesive silty banks. In a diagram of channel type in relation to flow energy and median grain size of the bed material, data points for the straight upper Columbia River channels cluster separately from the data points for braided and meandering channels. Measurements and calculations indicate that bedload transport in the anastomosing reach of the upper Columbia River decreases downstream. Because of lateral channel stability no lateral storage capacity for bedload is created. Therefore, the surplus of bedload leads to channel bed aggradation, which outpaces levee accretion and causes avulsions because of loss of channel flow capacity. This avulsion mechanism applies only to the main channel of the system, which transports 87% of the water and > 90% of the sediment in the cross-valley transect studied. Because of very low sediment transport capacity, the morphological evolution of most secondary channels is slow. Measurements and calculations indicate that much more bedload is sequestered in the relatively steep upper anastomosing reach of the upper Columbia River than in the relatively gentle lower anastomosing reach. With anastomosing morphology and related processes (e.g., crevassing) being best developed in the upper reach, this confirms the notion of upstream rather than downstream control of upper Columbia River anastomosis.  相似文献   

13.
The Guil River Valley (Queyras, Southern French Alps) is prone to catastrophic floods, as the long historical archives and Holocene sedimentary records demonstrate. In June 2000, the upper part of this valley was affected by a “30-year” recurrence interval (R.I.) flood. Although of lower magnitude and somewhat different nature from that of 1957 (>100-year R.I. flood), the 2000 event induced serious damage to infrastructure and buildings on the valley floor. Use of methods including high-resolution aerial photography, multi-date mapping, hydraulic calculations and field observations made possible the characterisation of the geomorphic impacts on the Guil River and its tributaries. The total rainfall (260 mm in four days) and maximum hourly intensity (17.3 mm h−1), aggravated by pre-existing saturated soils, explain the immediate response of the fluvial system and the subsequent destabilisation of slopes. Abundant water and sediment supply (landsliding, bank erosion), particularly from small catchment basins cut into slaty, schist bedrock, resulted in destructive pulses of debris flow and hyperconcentrated flows. The specific stream power of the Guil and its tributaries was greater than the critical stream power, thus explaining the abundant sediment transport. The Guil discharge was estimated as 180 m3 s−1 at Aiguilles, compared to the annual mean discharge of 6 m3 s−1 and a June mean discharge of 18 m3 s−1. The impacts on the Guil valley floor (flooding, aggradation, generalised bank erosion and changes in the river pattern) were widespread and locally influenced by variations in the floodplain slope and/or channel geometry. The stream partially reoccupied former channels abandoned or modified in their geometry by various structures built during the last four decades, as exemplified by the Aiguilles case study, where the worst damage took place. A comparative study of the geomorphic consequences of both the 1957 and 2000 floods shows that, despite their poor maintenance, the flood control structures built after the 1957 event were relatively efficient, in contrast to unprotected places. The comparison also demonstrates the role of land-use changes (conversion from traditional agro-pastoral life to a ski/hiking-based economy, construction of various structures) in reducing the Guil channel capacity and, more generally, in increasing the vulnerability of the human installations. The efficiency of the measures taken after the 2000 flood (narrowing and digging out of the channel) is also assessed. Final evaluation suggests that, in such high mountainous environments, there is a need to keep most of the 1957 flooded zone clear of buildings and other structures (aside from the existing villages and structures of particular economic interest), in order to enable the river to migrate freely and to adjust to exceptional hydro-geomorphic conditions without causing major damage.  相似文献   

14.
Considerable progress has been made recently in characterising the patterns displayed by the anabranches of braided rivers. However, the physical processes of sediment scour, transfer and deposition that govern the generation and evolution of anabranch channels remain largely unexplained. Direct measurement of three-dimensional flow fields and morphological evolution of the anabranches in the braided Brahmaputra–Jamuna River, Bangladesh, were undertaken to investigate the interactions between fluvial processes and anabranch morphology. These data were used to elucidate the circumstances leading to the bifurcation of a single channel, which is a topic of fundamental importance to understanding the physical processes responsible for braiding. Results indicate that division of the velocity field into multiple threads within a single channel precedes a division in the cross-sectional morphology of the channel and appears to be a necessary prerequisite for development of a bifurcation. An empirical relationship was established to discriminate between channels with single and multi-thread velocity fields, based on the depth-to-width ratio and specific energy of the flow at a representative channel cross-section. This function requires further validation, but could be used to predict the conditions under which a single channel is likely to bifurcate to produce two anabranches.  相似文献   

15.
16.
黄河下游河道断面形态参数变化及其水沙过程响应   总被引:1,自引:0,他引:1  
刘慰  王随继  王彦君 《地理科学》2020,40(9):1563-1572
基于1965—2015年黄河下游花园口、高村、泺口站的逐年水文和汛前河道断面的实测资料,分析了河道断面形态参数(河道断面面积,河道宽深比等)的变化,以及对河道断面形态与来水来沙间的关系做出定量化分析。结果表明:主槽断面形态参数与水沙搭配以及前期断面形态密切相关,沿程3个断面形态参数调整方式存在显著差异。河宽调整幅度沿程减小,辫状河段变幅最大,尤其在1986—1999年,辫状河段萎缩程度最为严重,其次为弯曲河段,顺直河段横向调整幅度最小。受到前期断面形态的影响,辫状河段河道断面调整方式既有横向展宽(萎缩)又有垂直加深(淤积);弯曲河段河道宽深比与流量呈较弱的正相关关系,具有横向和垂向的调整方式;而顺直河段的宽深比与流量呈负相关关系,与来沙系数呈正相关关系,河道以垂直加深(淤积)为主。  相似文献   

17.
Theoretical regime equations for mobile gravel-bed rivers with stable banks   总被引:2,自引:1,他引:2  
Robert G. Millar   《Geomorphology》2005,64(3-4):207-220
A system of rational regime equations is developed for gravel-bed rivers with stable banks using the optimality theory (OT). The optimality theory is based on the premise that equilibrium river geometry is characterised by an optimum configuration, defined here as maximum sediment-transport efficiency. Theoretical dimensionless equations are derived for width, depth, slope, width/depth ratio, and meandering–braiding transition. Independent dimensionless variables comprise discharge, sediment concentration, and relative bank strength, μ′, which is defined as the ratio of the critical shear stresses for the bank and bed sediments. Discharge exponents and general form of the equations agree well with previously developed empirical relations. Relative bank strength, μ′, is used to parameterise the influence of riparian vegetation on bank strength and is evaluated by calibrating against observed width/depth ratio. Once calibrated, the hydraulic geometry of natural gravel rivers is well described by the theoretical equations, including discrimination between meandering and braiding channels. The results provide strong support for the assumption that equilibrium or regime river behavior is equivalent to an optimal state and underline the importance of bank strength and sediment load as controls on hydraulic geometry.  相似文献   

18.
The 270 km long section of the Upper Yellow River at the First Great Bend is comprised of single channel and multiple channel systems that alternate among anastomosing, anabranching, meandering and braided reaches. The sequence of downstream pattern changes is characterized as: anastomosing-anabranching, anabranching-meandering, meandering-braided and braided-meandering. Remote sensing images, DEM data and field investigations are used to assess ahd interpret controls on these reach transitions. Channel slope and bed sediment size are key determinants of transitions in channel planform. Anas- tomosing reaches have a relatively high bed slope (0.86‰) and coarser sediment bed material (d50 = 3.5 mm). In contrast, meandering reaches have a low slope (0.30‰) and fine sediment bed material (d50 = 0.036 mm). The transition from a meandering to braided pattern is characterized by an increase in channel width-depth ratio, indicating the important role of bank strength (i.e. cohesive versus non-cohesive versus channel boundaries). Interestingly, the braided-meandering and meandering-braided transitions are coincident with variable flow inputs from tributary rivers (Baihe and Heihe rivers respectively). Theoretical analysis of the meandering-braided transition highlights the key control of channel width-depth ratio as a determinant of channel planform.  相似文献   

19.
A large and geographically diverse data set consisting of meandering, braiding, incising, and post-incision equilibrium streams was used in conjunction with logistic regression analysis to develop a probabilistic approach to predicting thresholds of channel pattern and instability. An energy-based index was developed for estimating the risk of channel instability associated with specific stream power relative to sedimentary characteristics. The strong significance of the 74 statistical models examined suggests that logistic regression analysis is an appropriate and effective technique for associating basic hydraulic data with various channel forms. The probabilistic diagrams resulting from these analyses depict a more realistic assessment of the uncertainty associated with previously identified thresholds of channel form and instability and provide a means of gauging channel sensitivity to changes in controlling variables.  相似文献   

20.
The Nanga Parbat Himalaya presents some of the greatest relief on Earth, yet sediment production and denudation rates have only been sporadically addressed. We utilized field measurements and computer models to estimate bank full discharge, sediment transport, and denudation rates for the Raikot and Buldar drainage basins (north slope of Nanga Parbat) and the upper reach of the Rupal drainage basin (south slope).The overall tasks of determining stream flow conditions in such a dynamic geomorphic setting is challenging. No gage data exist for these drainage basins, and the overall character of the drainage basins (high relief, steep flow gradients, and turbulent flow conditions) does not lend itself to either ready access or complete profiling.Cross-sectional profiles were surveyed through selected reaches of these drainage basins. These data were then incorporated into software (WinXSPRO) that aids in the characterization (stage, discharge, velocity, and shear stress) of high altitude, steep mountain stream conditions.Complete field measurements of channel depths were rarely possible (except at several bridges where the middle of the channel could actually be straddled and probed) and, when coupled with velocity measurements, provided discrete points of field-measured discharge calculations. These points were then used to calibrate WinXSPRO results for the same reach and provided a confidence level for computer-generated results.Flow calculations suggest that under near bank full conditions, the upper Raikot drainage basin produces discharges of 61 cm and moves about 11,000 tons day−1 (9980 tons day−1) of sediment through its channel. Bank full conditions on the upper portion of the Rupal drainage basin generate discharges of 84 cm and moves only about 3800 tons day−1 (3450 tons day−1) of sediment. Although the upper Rupal drainage basin moves more water, the lower slope of the drainage basin (0.03) generates a much smaller shear stress (461 Pa) than does the higher slope (0.12) of the upper Raikot drainage basin (1925 Pa).Dissolved and suspended sediment loads were measured from water/sediment samples collected throughout the day and night over a period of 10 days at the height of the summer melt season but proved to be a minor variable in transport flux. Channel bed loads were measured using a pebble count method of bank material and then used to generate ratings curves of bed loads relative to discharge volumes. When coupled with discharge data and basin area, mean annual sediment yield and denudation rates for Nanga Parbat are produced. Denudation rates calculated in this fashion range from 0.2 mm year−1 in the slower, more sluggish Rupal drainage basin to almost 6 mm year−1 in the steeper, faster flowing Raikot and Buldar drainage basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号