共查询到20条相似文献,搜索用时 0 毫秒
1.
为满足煤炭矿区植被叶绿素含量高精度动态监测需求,该文以陕北大柳塔矿区为研究区,首先分析PROSAIL模型对矿区典型植被欧李、野樱桃的适用性,然后根据PROSAIL辐射传输模型建立查找表,结合基于正则化的代价函数对欧李、野樱桃叶绿素含量进行反演,并利用SNAP软件反演结果与地面实测数据对PROSAIL模型反演结果进行验证,最后利用所构建模型反演得到2016—2019年大柳塔矿区植被叶绿素含量空间分布。结果表明:PROSAIL模型模拟光谱与地面实测光谱的绝对偏差平均值最大为0.016,该精度满足植被参数反演;PROSAIL模型反演得到的欧李、野樱桃叶绿素含量与地面实测数据的决定系数、均方根误差和相对均方根误差分别为0.679、1.926和4.625%,优于SNAP软件反演结果,反演得到的大柳塔矿区叶绿素含量时空变化与实际植被生态修复情况和土地利用覆盖类型一致。研究结果可为矿区植被叶绿素反演和生态修复效果评估提供技术参考。 相似文献
2.
为及时准确地获取干旱区农作物种植信息,研究借助PIE-Engine Studio平台,以新疆焉耆盆地为研究区,基于2022年Sentinel-2影像和1948个野外定位采样数据提取农作物生育期内14种植被指数,使用See5.0决策树、随机森林(Random forest,RF)和多元回归(Multiple regression,MR)模型优选特征参数,结合支持向量机(Support vector machine,SVM)算法构建5种分类模型和5种样方分割方案进行农作物种植信息提取,通过目视解译和混淆矩阵对比分析分类结果,确定最佳分类方案。结果表明:(1)所有分类模型的总体精度(OA)和Kappa系数均在92.20%和0.9037以上,说明在PIE平台中使用SVM算法提取农作物信息是可行的。(2)SVM-有红边的OA和Kappa系数均值为93.77%和0.9236,比SVM-无红边方法提高了0.96%和0.0120。(3)相比于SVM-有红边方法,植被指数的引入提高了SVM-RF、SVM-MR和SVM-See5.0的OA和Kappa系数。(4)5种分类模型的OA和Kappa系数均值的大小... 相似文献
3.
基于Sentinel-2遥感时间序列植被物候特征的盐城滨海湿地植被分类 总被引:1,自引:0,他引:1
滨海湿地是具有重要功能的特殊海陆过渡带生态系统,精准获取滨海湿地植被时空分布信息具有重要意义。传统的湿地遥感观测研究集中于高空间、高光谱分辨率影像分类,往往受限于数据成本和覆盖范围,仅适用于小区域湿地监测。Sentinel-2A/B卫星影像时空分辨率高且免费共享,为大区域滨海湿地动态监测提供了可能。本文采用2018年Sentinel-2影像,提出像元级SAVI时间序列及双Logistic植被物候特征拟合重构模型,采用随机森林算法进行盐城滨海湿地植被分类,探讨Sentinel-2遥感时间序列植被物候特征分类方法的适用性。结果显示,分类总体精度达87.61%,Kappa系数为0.8358,分类结果与湿地实况相吻合,比常规单一时相分类精度总体提高19.57%。植被判别物候特征参数可为影像数据缺失或不足的滨海湿地分类提供不同植被的判别依据。研究表明,基于像元级时间序列植被物候特征的分类方法能实现植被群落混生带的精准分类以及对“异物同谱”植被的有效区分,对大区域滨海湿地植被分类具有很好的适用性,有效提高了滨海湿地植被分类精度。 相似文献
4.
Sentinel-1A合成孔径雷达数据不受云、雾等天气条件的影响并具有丰富的纹理信息,为提取城市建设用地信息提供了一种新的数据源。本文发展了一种基于Sentinel-1A合成孔径雷达数据和全卷积网络的城市建设用地监测方法。该方法的优势主要在于可以有效复合不同极化方式下的Sentinel-1A合成孔径雷达数据和综合集成多尺度特征。在甘肃省张掖市甘州区的应用表明,该方法的提取结果总体精度为92.50%,Kappa系数为0.85。与现有方法“KTH-Pavia城市提取器”相比,Kappa系数提高了37.10%,总体精度提高了11.50%。因此,该方法具有良好的应用潜力。 相似文献
5.
基于环境减灾卫星CCD数据与决策树技术的植被分类研究 总被引:1,自引:0,他引:1
以内蒙古呼伦贝尔地区为例,基于遥感数据获取区域7种典型植被的NDVI时间序列曲线。在此基础之上,分析曲线趋势及其特征值,研究基于曲线差异的植被分类信息提取方法。同时,以国产环境减灾卫星CCD数据作为主要遥感数据源,提取研究区5月上旬与8月上旬两期NDVI数据及其比值,采用决策树分类方法研究得到区域30 m空间分辨率植被分类结果。经实地验证,一级类型总体分类精度为83.64%,二级类型为70.91%,其中乔木林的分类精度最高,然后是农田与草地,灌丛的分类精度相对最低。结果表明该方法能够快速、准确据提取植被分类信息,为国产环境减灾卫星CCD数据的广泛深入应用提供理论与数据支持。 相似文献
6.
提出一种基于支持向量机(SVM)的三维LiDar数据分类方法:利用kd-trees存储无序的点云数据,在局部邻域中利用点云数据间的几何关系估算植被表面特征值;将密度值和高程差值作为SVM输入特征变量,利用基于径向基函数的SVM方法实现植被点云数据的分类.实验结果为:OA分类精度达到94.31%,Kappa系数为89.53%.该方法操作性较强,在分类精度及计算效率方面比传统方法具有优势. 相似文献
7.
基于Sentinel-2数据的不透水面识别方法与应用研究 总被引:1,自引:0,他引:1
快速、准确获取不透水面的空间分布信息对揭示城市发展与生态环境的关系具有重要意义.该文提出一种基于Sentinel-2数据的不透水面识别方法(Impervious Surface Identification Method,ISIM-S2),首先基于分层分类思想,利用多种指数算法剔除裸土和不透水面以外的地物,得到不透水面靶区,然后采用主成分分析对裸土和不透水面进行分离.为验证ISIM-S2的普适性,将其应用于北京、长春、广州和昆明4个不同地理环境下的研究区,并与生物物理综合指数、不透水面综合指数、比值居民地指数的提取结果进行对比,结果表明:ISIM-S2方法降低了云、水体对不透水面的影响,能有效改善不透水面提取中与裸土的混淆,在上述4个研究区不透水面总体识别精度分别为92.56% 、95.78% 、92.70% 和91.68%,优于其他3种指数,且该方法操作简单、易实现,可为不透水面有效识别提供一种新途径. 相似文献
8.
基于GF-1卫星数据的面向对象的民勤绿洲植被分类研究 总被引:1,自引:0,他引:1
以民勤绿洲为研究区,以GF-1遥感影像为数据源,采用面向对象的分类方法,结合分层技术,对影像逐级进行分类,以获取植被信息。根据归一化植被指数(NDVI)阈值区分植被与非植被,分割尺度为10;使用归一化水体指数(NDWI)阈值提取非植被中的水体,分割尺度为35;利用野外采样点获取的训练样本,将植被进一步分为耕地、林地和草地,分割尺度为25。总体分类精度达到83.02%,Kappa系数为0.745 1,比较基于象元的监督分类,其总体分类精度为69.37%,Kappa系数为0.497 0,表明面向对象的分类方法在干旱区绿洲植被信息的提取上较传统的基于象元的分类方法更有优势,分类精度更高。 相似文献
9.
采用基于风条纹提取风向的方式,利用地球物理模式函数,基于Sentinel-1A数据,通过CMOD5模型反演2017年3、5、7、12月份广东省近海海域风场。将反演结果与实测数据对比,风速普遍比实测风速大,风速反演的平均绝对误差为1.98 m/s,均方根误差为2.74 m/s,相关系数为0.8。其中3、5、7月的风速较为接近,且平均绝对误差和均方根误差都<2 m/s,而12月份平均风速>8 m/s,实测数据与卫星过境时间不完全匹配,导致平均绝对误差和均方根误差都偏大。哨兵一(Sentinel-1A)影像反演结果整体上与实测数据相一致,验证了COMD5反演模型适用于广东省近海高分辨率海洋风场反演,可为下一步估算广东省风能资源储量提供可能。 相似文献
10.
随着我国地膜使用面积的增加和人们对土壤微塑料污染问题的日益关注,大尺度的地膜遥感识别已成为农业生产管理、土壤污染防治的必要手段。针对地膜光谱反射特征的复杂性以及基于单一遥感影像光谱特征识别方法错分率高等问题,该文以河北省邯郸市邱县为试验区,利用GF-1数据的空间细节与Sentinel-2数据的光谱信息进行NN Diffuse Pan Sharpening融合,据此建立地膜识别的特征矩阵(NDVI、MNDWI、NDBI、IBI、PSI),基于该特征矩阵可实现自动阈值地膜分层分类识别。多种方法的地膜识别结果精度对比表明:多源光学遥感数据融合方法的总体精度为94.87%,Kappa系数达0.89,显著优于基于单一数据源的深度学习法的精度(93.14%)以及基于传统机器学习分类方法的支持向量机(85.91%)和随机森林分类法(86.78%)的精度;通过与Sentinel-2多光谱影像融合,弥补了GF-1数据光谱分辨率低的缺陷,实现了多源数据在地膜识别中的优势互补,可为相关部门农业规划与管理以及生态环境保护等研究提供大尺度、高精度的地膜分布参考数据。 相似文献
11.
基于2000—2011年MOD13Q1产品的EVI时序,借助QA-SDS数据集消除云、阴影和冰雪等的影响后,采用非对称高斯函数拟合法进行时序重构,并运用动态阈值法提取云南高原山地典型森林植被的物候特征参数(即生长期开始时间、峰值时间、结束时间和生长期长度),进而分析了不同植被类型物候期规律及其主要控制因素。结果表明:1.从寒温性森林植被到热性森林植被的EVI值呈递增趋势;2.森林植被生长期开始时间、峰值时间和结束时间分别大致发生在3月中旬至4月中下旬、6月中旬至下旬和8月中旬至10月初,生长期长度为135~195 d;3.由寒温性植被向热性植被的生长期高峰时间和生长期结束时间总体呈延迟趋势,且生长期延长,生长期开始时间则由暖性植被向寒温性植被、暖性植被向热性植被双向提前;4.高原山地热量梯度决定了森林植被物候的空间格局,水分条件则主要控制着EVI和物候期的年际波动。 相似文献
12.
棉花是中国重要的经济作物,在新疆大面积种植。及时、准确获取棉花种植面积,对农业政策制定与农业经济发展有重要意义。以渭干河—库车河三角洲绿洲棉花为主要研究对象,利用2018—2020年(1景/1月)36景哨兵2号(Sentinel-2)数据,构建归一化植被指数(Normalize difference vegetation index,NDVI)和红边归一化植被指数(Red edge normalize difference vegetation index,RENDVI783)时序数据;采用Savitzky-Golay(S-G)滤波法对时序数据进行平滑、重构并提取11个物候特征;利用袋外误差法对11个物候特征进行特征优选;在此基础上利用重构后的时序数据(NDVI Fit)、(RENDVI783 Fit)、物候特征(RENDVI783 Ph)、物候特征优选组合构建6种不同的特征数据集,利用随机森林分类(RFC)方法分别进行分类和提取,并采用最大似然分类方法和支持向量机分类方法对分类效果进行验证。结果表明:(1) NDVI和RENDVI783时序数据变化趋势较为一致,棉花在5月(苗期)到8月初(开花盛期)有明显的上升趋势,在8月末至9月(花铃期)达到峰值。相比NDVI,红边波段构成的RENDVI783时序曲线峰值从0.7提高到0.9,棉花区分效果更佳。(2) 11个物候特征中拟合函数最大值、生长季长度、生长季振幅、生长季结束、生长季大积分和生长季小积分对分类的贡献性最大,重要性得分分别为1.43、1.40、1.23、1.16、1.02和1.01。(3) RFC方法对特征数据集(RENDVI783 Fit+物候特征优选组合)分类精度最佳。总体精度和Kappa系数分别为92.20%和0.92。(4) 研究区内棉花分类精度达到了91.02%,种植面积约为3424 km2,占研究区总面积的24.67%。 相似文献
13.
14.
Sentinel-1A是欧空局"哥白尼计划"发射的首颗对地观测卫星,其搭载的C波段SAR传感器有效地延续了ERS-1/2和ENVISAT ASAR对地观测任务。简要介绍了Sentinel-1A卫星的特点和轨道参数,并与ERS-1/2和ENVISAT ASAR进行了对比。详细介绍了Sentinel-1A的成像模式(SM,IW,EW,WV)以及每种模式下数据产品(Level-0,Level-1,Level-2)的特征。最后分析了Sentinel-1A数据在不同领域的实际应用,为其在对地观测中的广泛应用提供了参考。 相似文献
15.
《地理与地理信息科学》2020,(4)
功能区识别对于揭示城市的物理和社会特征至关重要。目前,结合大数据和自然语言处理进行城市功能分区和识别是研究的热点。该文以广州市白云区为例,基于道路网络数据将研究区域划分为503个单元,结合POI数据和Place2vec模型对城市功能区进行识别:1)根据兴趣点的语义信息和地理信息构建训练数据集;2)利用SkipGram模型提取POI类型的高维特征向量,通过加权平均法得到各研究单元的特征向量,进而基于K-Means算法对研究单元进行聚类分析;3)利用POI频数密度、百度热力图等指标和方法进行功能区识别和标注,并将识别结果与高德地图进行对比分析。结果表明,该方法能够有效识别出城市功能区,对于低成本、快速有效地识别和理解一个城市的空间结构和功能配置以及城市功能区规划和地理空间分异研究具有参考意义。 相似文献
16.
《湿地科学》2015,(4)
红树林是潮滩木本植物群落,其光谱和陆生植被极其相似。利用EO-1卫星ALI(advanced land imager)获取的深圳湾区域影像数据,针对处于水分吸收带的波段5P和波段5,提出了这两个波段的角度指数(angle index),分别表示为b1.25和b1.65。以b1.25-b1.65和归一化差值植被指数(normalized difference vegetation index,NDVI)分类特征,采用决策树方法,开展了红树林遥感识别实验。研究结果表明,红树林独特的滨海湿地特点,使得其像元反射率在波段5P和波段5明显低于陆生植被,从而导致红树林的b1.25-b1.65值明显大于陆生植被;通过结合b1.25-b1.65和NDVI分类特征的决策树方法,能够对红树林进行有效识别,其错分率和漏分率分别为4.29%和5.11%。因此,具有众多红外波段的ALI遥感器在红树林识别中能够发挥重要作用。 相似文献
17.
摘要:土壤水分是全球水循环的重要组成成分,对研究土壤水分的空间分布、农作物长势和产量 、气候变化、水资源时空分布等有着重要意义 。本文利用Sentinel(哨兵)系列主动微波雷达卫星SAR(Sentinel-1)结合光学卫星(Sentinel-2)对格尔木中下游低矮植被覆盖下的地表土壤水分进行反演研究, 探讨不同极化组合方式和水云模型前后的土壤水分含量反演方法的适用性。结果表明:其中VV (VV Polarization) 极化对比VH (VH Polarization) 极化更加适用该区域,VV极化结合归一化水指数 (NDWI)反演地表土壤水分精度达到42.6%,拟合精度最高,VH极化仅为22.6%;利用水云模型去除植被覆盖后对地表土壤水分的反演精度有所提升,其中,VV极化精度提高约3.5%,VH极化提高1.5%;Sentinel系列卫星影像对于干旱区的土壤水分的反演具有较好的适用性。本文旨在探索一种适用于该研究区乃至柴达木盆地土壤水分实现大面积实时监测的可靠依据和手段。 相似文献
18.
土壤水分是全球水循环的重要组成成分,对研究水分的空间分布、农作物长势和产量、气候变化、水资源时空特征等有着重要意义。利用Sentinel(哨兵)系列主动微波雷达卫星SAR(Sentinel-1)结合光学卫星(Sentinel-2)对格尔木中下游低矮植被覆盖下的地表土壤水分进行反演研究,探讨不同极化组合方式和水云模型前后的土壤水分含量反演方法的适用性。结果表明,VV(VV Polarization)极化比VH(VH Polarization)极化更加适用该区域,VV极化结合归一化水指数(NDWI)反演地表土壤水分精度达到42.6%,拟合精度最高;VH极化仅为22.6%;利用水云模型去除植被覆盖后对地表土壤水分的反演精度有所提升,VV极化精度提高约3.5%,VH极化提高1.5%;Sentinel系列卫星影像对于干旱区的土壤水分的反演具有较好的适用性。探索了适用于该研究区乃至柴达木盆地土壤水分大面积实时监测的可靠手段和依据。 相似文献
19.
以黑龙江流域中的扎龙湿地及其上游区域为研究区,将Sentinel-2红边波段和Sentinel-1雷达波段影像数据相结合,根据面向对象原理,采用随机森林算法,对研究区的湿地进行遥感分类和信息提取;利用3种特征变量集,进行实验对比,研究红边波段反射率和雷达后向散射系数对湿地信息提取的作用。研究结果表明,红边波段反射率和雷达后向散射系数对土地覆盖分类精度的提高起到了重要作用,两者结合得到的分类结果的总体精度达到了88.72%,Kappa系数为0.87,其中,水体、水田和沼泽的用户精度分别为100%、98.18%和91.37%。利用红边波段和雷达波段影像数据,分别使土地覆盖分类总体精度提高了5.26%和2.51%,红边波段影像数据对沼泽提取精度的提高贡献最大,使生产者精度提高了12.5%。 相似文献