首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During the warm seasons of 1998–2004, the naturally-acidic (pH2.2) Lake Caviahue was sampled for conductivity, temperature, oxygen, light, nutrients, and phytoplankton (density, biomass and chlorophyll a) with a view to studying the summer phytoplankton population changes with relation to environmental factors, as well as the significance of nitrogen limitation on the phytoplankton yield. Lake Caviahue is characterized by its low transparency, CO2, and N concentration; significant P values; a distinctive vertical distribution of phytoplankton biomass with high values along the water column; and sometimes maximum meta-hypolimnion values. Biodiversity is very low as a result of extreme environmental conditions, Chlorophyceae being the prevailing algae group. Two types of bioassays were carried out to assess nitrogen limitation. For the first bioassay, a solution of ammonium–nitrogen chloride and/or wastewater (rich in ammonium and phosphorus) was used, while one of the lake's sediments was the source of nutrients for the second bioassay. Contrary to the case of acidic mining lakes, N-ammonium proved to be a significant supportive capacity limiting factor as to phytoplankton yield. The present paper provides for the first time information on phytoplankton nitrogen limitation in a naturally-acidic lake.  相似文献   

2.
The strategies for eutrophication control, remediation, and policy management are often defined for neutral to alkaline freshwater systems, as they are most suitable for human use. The influence of nutrients on eutrophication in a naturally-acidic lake is poorly known. The main purpose of the present work is to evaluate the significance of volcanic nutrients in the control of the trophic state of the acidic Lake Caviahue, located at North Patagonia, Argentina.  相似文献   

3.
Most existing studies on the algal communities of acid lakes are based on environments that have been caused by anthropogenic disturbances. Such lakes have a different origin compared to the natural acidic lakes and could be expected to differ also in the mechanisms controlling phytoplankton and trophic status. Planktonic community in Lake Caviahue is somewhat diverse in spite of the low pH of the water. Algae have a distinctive vertical distribution: the values of phytoplankton biomass remain constant throughout the water column and at times were highest in the upper end of the hypolimnion, forming a maximum or a layer of chlorophyll a at depth. The goal of this work was to investigate the factors influencing the seasonal and vertical distribution of phytoplankton. The lake was sampled between the years 2004 and 2006. Physical, chemical and biological parameters at different depths throughout the water column were determined. The interrelationships between environmental variables at different sampling dates were analyzed using an integration of multivariate matrices, multiple factor analysis, to analyze any joint partnerships in the samples. We found that phytoplankton biomass is dominated by Keratococcus rhaphidioides. With regard to zooplankton, we found a single species of rotifers (Philodina sp.). The two arms of the lake and the depths have different behaviours showing differences in the arms' conductivity, dissolved oxygen and pH. The more superficial layers were characterized by high values of phytoplankton and zooplankton biomass, organic and inorganic carbon, dissolved oxygen and pH. The deeper layers showed high values of chlorophyll a, ammonium and phosphorus (dissolved and particulate). From the multivariate analysis the relationships of the each algal species with pH, as a possible indicator of the degree of “acidophilia”, could be extracted.  相似文献   

4.
鄱阳湖作为中国最大的淡水湖泊,其水生态健康状态始终是人们关注的热点。近些年,鄱阳湖极端洪旱灾害频发,浮游植物生长受极端洪旱的影响发生了明显变化。为分析浮游植物时空变化特征、探究环境因子对鄱阳湖浮游植物影响机制以及极端洪枯事件对浮游植物的影响,利用结构方程模型(SEM)构建浮游植物与环境因子的影响路径模型,定量分析环境因子对浮游植物的影响程度。结果表明,鄱阳湖浮游植物以蓝藻、绿藻为主且有明显的季节特征,在7月丰水期浮游植物密度达到最高;由结构方程模型(SEM)可知,影响浮游植物密度最关键的因子为物理因子(水温>pH>透明度>溶解氧),其次为营养物质(总氮>硝态氮>总磷>磷酸盐),浮游植物对高温、高营养和高pH较偏好。2020年极端洪水和2022年极端高温干旱,浮游植物密度主要受水温、溶解氧、透明度等物理因子的影响;在影响较小的营养物质中,主要的限制性因素分别为磷和氮。与正常年份相比,极端洪水年鄱阳湖受入湖来水及降雨的增多,湖区水量急剧增加,“稀释”作用超过水温和透明度对浮游植物生长的促进作用造成浮游植物密度和生物量有所下降;在营养物质中,磷成为主要限制性因素。而极端高温干旱年受入湖来水的减少及湖水的快速蒸发,“浓缩”作用超过水温和透明度对浮游植物生长的抑制作用造成浮游植物密度和生物量显著增加,同时,营养物质对浮游植物的作用更加凸显。研究结果表明极端洪枯事件导致鄱阳湖浮游植物变化明显,确定其对浮游植物的影响机制,可以为极端洪枯事件下浮游植物监测、管理提供一定的理论基础。  相似文献   

5.
This study aims at investigating the composition and biomass of the phytoplankton community in 15 urban shallow eutrophic lakes as well as the effects of main environmental factors, including nutrient concentrations and the ratio of nitrogen to phosphorus, temperature, COD, BOD, water depth, etc. on the phytoplankton community structure. Lake water samples were taken and analyzed on a bimonthly basis during the period from March 2004 to March 2006. The redundancy analysis (RDA) and regression analysis (RA) were performed to identify the effects of nutrients on the phytoplankton community and biomass in these typical urban lakes. The results indicate that most of these urban lakes were hypertrophic due to high concentrations of total phosphorus (TP) and total nitrogen (TN), with mean levels of 490 and 5380 mg m−3, respectively. The phytoplankton community was dominated by Microcystis aeruginosa and Euglena caudate in summer and Cryptomonas ovata and Cyclotella meneghiniana in winter. The mean biomass of the phytoplankton reached 456.87 mg L−1 in summer months and the annual level was 189.24 mg L−1. Temperature and TP content were found to be the principal limiting factors for phytoplankton growth on an annual basis. On the other hand, the results of RDA and RA demonstrate that the dominant phytoplankton species were not nutrient-limited during summer months. Low TN:TP ratios (<10) were detected accompanied with fewer occurrences of N-fixing cyanobacteria and other filamentous algae in most lakes in summer, which implies that low N:P ratio does not always shifts the dominance of phytoplankton community to the N-fixing cyanobacteria. Moreover, TP always had higher correlation with chlorophyll a (Chl-a) than TN, even when the TN:TP ratios of most samples were lower than 10. Therefore, it is concluded that the TN:TP ratio is not always a suitable index to determine whether nitrogen or phosphorus limits the phytoplankton biomass in urban shallow eutrophic lakes.  相似文献   

6.
《Continental Shelf Research》1999,19(9):1113-1141
Relationships among primary production, chlorophyll, nutrients, irradiance and mixing processes were examined along the salinity gradient in the Mississippi River outflow region. A series of six cruises were conducted during 1988–1992 at various times of year and stages of river discharge. Maximum values of biomass and primary production were typically observed at intermediate salinities and coincided with non-conservative decreases in nutrients along the salinity gradient. Highest values of productivity (>10 gC m−2 d−1) and biomass (>30 mg chlorophyll a m−3) were observed in April 1988, July–August 1990 and April–May 1992; values were lower in March and September 1991. Rates of primary production were apparently constrained by low irradiance and mixing in the more turbid, low salinity regions of the plume, and by nutrient limitation outside the plume. Highest values of primary production occurred at stations where surface nutrient concentrations exhibited large deviations from conservative mixing relationships, indicating that depletion of nutrients was related to phytoplankton uptake. Mixing and advection were important in determining the location and magnitude of primary production maxima and nutrient depletion. In addition to growth within plume surface waters, enhanced growth and/or retention of biomass may have occurred in longer residence time waters at the plume edge and/or beneath the surface plume. Vertical structure of some plume stations revealed the presence of subsurface biomass maxima in intermediate salinity water that was depleted in nutrients presumably by uptake processes. Exchange between subsurface water and the surface plume apparently contributed to the reduction in nutrients at intermediate salinities in the surface layer. DIN (=nitrate+nitrite+ammonium) : PO4 (=phosphate) ratios in river water varied seasonally, with high values in winter and spring and low values in late summer and fall. Periods of high DIN : PO4 ratios in river nutrients coincided with cruises when surface nutrient concentrations and their ratios indicated a high probability for P limitation. N limitation was more likely to occur at high salinities and during late summer and fall. Evidence for Si limitation was also found, particularly in spring.  相似文献   

7.
The optical properties and light climate in the deep and extremely acid Lake Caviahue have been studied in order to better understand its characteristics and the possible influence upon the phytoplankton community. The absorption coefficients for the dissolved fraction were maximal in the ultraviolet (UV) region and the water absorption spectra showed a shoulder around 300 nm, which was attributed to the concentration of Fe(III). No radiation was detected in the water column below 360 nm. The depth of the 1% incident radiation was dependent of wavelength, showing its maximum of 13.3 m at 565 nm, compared to 1.7 m and 4.8 m at 400 nm and 700 nm, respectively. Phytoplankton biomass was low and showed an almost constant profile with depth despite the relative darkness of the water column. Optical climate of Lake Caviahue is not typical of high elevation lakes but is more similar to low elevation shallow lakes of the Andean region. The chemical composition of the water, mainly Fe oxidation state and concentration, is the responsible for the high attenuation of the UV radiation (UVR). Living organisms are protected of UVR because Lake Caviahue waters are a shield against UV-B.  相似文献   

8.
Hong Kong is surrounded by estuarine, coastal and oceanic waters. In this study, monthly averages over a 10 year time series of salinity, temperature, chlorophyll a (chl a), dissolved oxygen (DO), dissolved inorganic nitrogen (DIN), silicate (SiO4) and orthophosphate (PO4) at three representative stations around Hong Kong were used to examine if excess nitrogen in estuarine influenced waters is due to P limitation. The monthly distribution clearly shows the dominant influence of the seasonal change in river discharge in the Pearl River estuary and adjacent coastal waters. In winter, the river discharge is small and more oceanic waters are dominant and as a result, salinity is high, and chlorophyll and nutrients are low. In summer, when the river discharge is high, salinity decreases and nutrients increase. DIN is very high, reaching 100 μM in the estuary. This indicates over enrichment of nitrogen relative to P and consequently there is an excess of N in coastal waters of Hong Kong. P remains low (∼1 μM) and can potentially limit both phytoplankton biomass and N utilization which was demonstrated in field incubation experiments. P limitation would result in excess N being left in the estuarine influenced waters south of Hong Kong. Phosphate concentration is lower in the Pearl River estuary than in many other eutrophied estuaries. Therefore, this relatively low PO4 concentration should be a significant factor limiting a further increase in the magnitude of algal biomass and in the degree of eutrophication in the Pearl River estuary. The export of the excess N offshore into the northern South China Sea may result in an increase in the size of the region that is P limited in summer.  相似文献   

9.
以太湖重度蓝藻水华发生的西北湖区为研究对象,从河口至湖心区设置5个采样点,于2012年10月至2013年10月逐月采集表层水体样品,测定了水温、溶解氧和浮游细菌丰度,并分析了浮游植物群落结构的组成、溶解性无机氮(DIN)和有机氮(DON)浓度以及氮磷比.研究结果表明,太湖西北湖区浮游植物主要由蓝藻、硅藻、绿藻和隐藻组成.可能由于风、浪等混合作用使太湖西北湖区不同采样点之间蓝藻细胞密度没有显著差异.蓝藻生物量在浮游植物中所占比例最高为34%±15%,春季部分点位隐藻生物量高于50%,表明隐藻与蓝藻的相互竞争趋势显著.CCA排序图结果表明,DIN、DON浓度以及总氮∶总磷比(TN∶TP比)是影响西北湖区浮游植物优势属分布的重要环境因子.5个采样点铵态氮(NH_4~+-N)与DIN浓度具有显著差异,与DON浓度没有显著差异.夏季蓝藻水华暴发期间,可能由于蓝藻的吸收利用引起NH_4~+-N和硝态氮(NO_3~--N)浓度迅速降低.此外,由于NH_4~+-N浓度还可能受到沉积物NH_4~+-N释放的影响,因此,蓝藻细胞密度与NO_3~--N的相关系数和显著水平均高于NH_4~+-N.夏季TN∶TP比和DIN∶TP比降至最低,表明该湖区浮游植物,尤其是蓝藻的生长可能受到氮限制.蓝藻细胞密度与DON浓度呈显著负相关,表明在氮限制条件下,DON可能是蓝藻氮素利用的重要补充.  相似文献   

10.
Extracellular polymeric substances (EPS) secreted by phytoplankton can induce bloom formation, and nutrients are considered the key factors that cause algal blooms outbreak. Thus, understanding the characteristics of EPS from blooming Microcystis under the influence of nitrogen (N) and phosphorus (P) is important. In this study, the effects of nitrogen (N) and phosphorus (P) nutrients on EPS released by Microcystis aeruginosa in Lake Taihu were examined in pure cultures. The characteristics of Microcystis EPS were evaluated by excitation-emission matrix (EEM) fluorescence spectroscopy with parallel factor analysis (PARAFAC). Results indicated that the fluorescent characterization of EPS was affected more by N than by P. Low N concentration can stimulate cells to secrete large amounts of tyrosine-like substances directly into the culture medium, thus suggesting that Microcystis features a mechanism for adapting to low N conditions. Total fluorescent intensities in the EPS were significantly related to cell biomass. All fluorescent substances in the bound EPS fraction were positively and significantly correlated with Microcystis growth. As for the soluble EPS fraction, the humic-like and tryptophan-like substances were both significantly related to cell biomass, whereas only the tyrosine-like substances were significantly related to cell biomass under low N supply. PARAFAC analysis of the EEM spectra showed that N greatly affected the exudation of tyrosine-like substances and redistribution of the EPS fractions. Thus, protein-like fluorophore could be used as a potential indicator to evaluate the nutritional status of cyanobacteria during cyanobacterial blooms in Lake Taihu.  相似文献   

11.
The CE-Qual-ICM model computes phytoplankton biomass and production as a function of temperature, light, and nutrients. Biomass is computed as carbon while inorganic nitrogen, phosphorus, and silica are considered as nutrients. Model formulations for production, metabolism, predation, nutrient limitation, and light limitation are detailed. Methods of parameter determination and parameter values are presented. Results of model application to a ten-year period in Chesapeake Bay indicate the model provides reasonable representations of observed biomass, nutrient concentrations, and limiting factors. Computed primary production agrees with observed under light-limited conditions. Under strongly nutrient-limited conditions, computed product is less than observed. The production characteristics of the model are similar to behavior reported for several similar models. Process omitted from the model that may account for production shortfalls include variable algal stoichiometry, use of urea as nutrient, and vertical migration by phytoplankton.  相似文献   

12.
夏季短期调水对太湖贡湖湾湖区水质及藻类的影响   总被引:1,自引:0,他引:1  
贡湖湾作为"引江济太"工程长江来水进入太湖的第一站,湖湾水体生态环境的变化是对调水工程净水效果的最好响应,因此本文针对贡湖湾一次夏季短期调水展开调查研究,分别取2013年7月24日(调水前)和2013年8月18日(短期调水后)两次监测水样的水体理化指标和浮游藻类群落数据进行了对比分析,并对浮游藻类群落与环境因子做了相关性分析.结果表明:受来水影响,短期调水后监测区水体的p H略有下降,溶解氧、浊度、硝态氮、总氮、总磷以及高锰酸盐指数等水体理化指标浓度均较调水前有所升高;其中受调水影响最为显著的区域为望虞河的入湖口区、湾心区.两次监测调水前后湖区水体优势藻种属未发生变化,仍以微囊藻为主,但蓝藻种属比例有所下降,绿藻和硅藻等种属比例则有所上升.望虞河入湖口区和贡湖湾湾心区的Shannon-Wiener多样性指数和Pielou均匀度指数受调水的影响升高.同时,浮游藻类群落结构与受水水体理化参数的冗余分析结果表明,此次监测的短期调水后,太湖贡湖湾监测湖区水体p H、溶解氧、硝态氮、总氮、总磷、高锰酸盐指数等环境因子与浮游藻类的群落分布呈显著相关,是影响受水水体中藻类群落的主要环境因子.  相似文献   

13.
针对武汉东湖存在营养状态梯度的5个子湖(郭郑湖、汤菱湖、团湖、庙湖、水果湖),结合"空间换时间"理论,研究湖泊富营养状况改善过程中浮游植物群落对环境因子的响应.全年调查期间,各子湖综合营养状态指数分布范围为45.4~76.8,浮游植物密度及生物量变化范围分别为2.03×106~245×106 cells/L和0.819~19.9 mg/L.冗余分析结果显示,浮游植物的物种分布与水温、总氮、透明度、总溶解性固体、氨氮呈显著相关.采用多元逐步回归分析构建浮游植物密度、生物量与环境因子之间的最优响应方程,结果显示,总氮、水温是影响浮游植物密度的主要因子;对于浮游植物生物量而言,总磷、总氮浓度降低能够降低浮游植物生物量.通过对富营养程度改善进程中浮游植物群落组成的动态变化进行分析,发现浮游植物密度及生物量显著下降,但物种组成及生物多样性并未发生明显转变.此外,浮游植物物种多样性与水体富营养水平梯度并不呈现简单的线性相关.因此,在对富营养化湖泊进行修复时,应制定短期修复与长期维护双重措施,同时应重视生物多样性的重建,进而达到理想的修复效果.  相似文献   

14.
2005-2017年北部太湖水体叶绿素a和营养盐变化及影响因素   总被引:7,自引:0,他引:7  
利用国家生态观测网络太湖湖泊生态系统研究站对北部太湖14个监测点2005-2017年的营养盐和叶绿素a浓度逐月监测数据,分析了北部太湖2005年以来水体营养盐和叶绿素a变化特征,探讨了叶绿素变化的影响因素.结果表明,2015年以来,北部太湖水体叶绿素a浓度呈现显著增高特征,特别是5-7月的蓝藻水华灾害关键期,水体叶绿素a浓度增幅更加明显;营养盐方面,氮、磷对治理的响应完全不同:水体总氮、溶解性总氮、氨氮的降幅很明显,甚至在春末夏初的蓝藻生长旺盛期出现了供给不足的征兆;但水体总磷降幅却不明显,加之蓝藻水华的磷"泵吸作用",近3 a来水体总磷浓度反而有升高趋势,溶解性总磷浓度也无明显下降趋势.不同湖区的营养盐变化也不相同:西北湖区溶解性总氮、溶解性总磷浓度显著高于梅梁湾、贡湖湾和湖心区,而且后3个湖区的水质呈现均一化趋势.统计分析表明,北部太湖水体叶绿素a浓度与颗粒氮、颗粒磷、总磷、高锰酸盐指数均呈显著正相关,与溶解态氮呈负相关;5-7月水华关键期北部太湖水体叶绿素a浓度与上半年(1-6月)逐日水温积温、总降雨量、年平均水位均呈显著正相关关系.从研究结果可以看出,近年来北部太湖水体叶绿素a浓度的波动很大程度上受水文气象因子的影响;2007年以来太湖流域一系列生态修复工程的实施,虽然明显降低了湖泊氮浓度,但由于流域和湖体的氮磷本底较高,磷的缓冲能力大,致使水体营养盐水平仍未降到能显著抑制蓝藻生长的水平,年际之间的水文气象条件差异成为蓝藻水华暴发强度差异的主控因素.为此,仍需加大对太湖流域氮、磷负荷的削减,使湖体氮、磷浓度降低到能显著影响蓝藻生长的水平,才能摆脱水文气象条件对蓝藻水华情势的决定作用.  相似文献   

15.
Ecological restoration of eutrophic lakes using aquatic macrophytes is an important and practical technology. Here, we investigated the response of phytoplankton and zooplankton to a large-scale 2015-built aquatic macrophyte enclosure (AME, 200,000 m2) screened of by a PVC net in Baima Lake, a eutrophic lake, from spring to autumn of 2019. AME significantly improved water quality by increasing water transparency, and reducing total nitrogen, total phosphorus, and chlorophyll-a content during the growing season. AME significantly decreased phytoplankton abundance and biomass and marginally increased zooplankton abundance and biomass. Phytoplankton and zooplankton communities were closely related to environmental factors, such as water temperature, conductivity, total phosphorus, chemical oxygen demand, and chlorophyll-a inside and outside the AME. The zooplankton:phytoplankton biomass ratio inside was slightly higher than outside the AME. Zooplankton and phytoplankton biomass were significantly positively correlated inside and outside the AME, as were chlorophyll-a and total phosphorus. We found phosphorus to be a key factor limiting primary productivity in Baima Lake, and that bottom-up effects were the main driver to control phytoplankton in the AME. Using aquatic macrophytes to reduce nutrient loads is an effective way to manage eutrophication in Baima Lake.  相似文献   

16.
The influence of extreme floods from the River Danube in 2006 on the species composition and vertical distributions of phytoplankton was studied in a shallow floodplain lake, Lake Sakadaš (Kopa?ki Rit Nature Park, Croatia) which in the last few decades was in a turbid state characterised by high phytoplankton concentrations. As a consequence of extremely high floods, the whole floodplain area (approximately 16 km2) became one lentic habitat with well developed macrophyte vegetation. Seasonal dynamics of chlorophyll a (Chl a) concentration in the lake had a characteristic pattern for the shallow lakes with dense macrophyte vegetation. Extremely low mean phytoplankton abundance and biomass were found in the conditions of very high nutrient concentrations. Dominant phytoplankton species were diatoms and chlorococcal green algae from the functional groups characteristic for a mixed environment. The canonical correspondence analysis (CCA) demonstrated that nutrients and temperature were significant environmental variables for their development. The sequence of phytoplankton seasonality, vertical distribution of phytoplankton, as well as the domination of rapidly acclimating phytoplankton forms (R-strategists) indicated clear, well-mixed conditions and a highly disturbed environment. Our results suggest that the occurrence of extreme flooding can be a stressor high enough for the transition from a turbid to a clear state of the floodplain lake. Possibly, cyclic shifts between alternative stable states in floodplain ecosystems can be expected as a consequence of the impact of extreme hydrological events induced by a climate change.  相似文献   

17.
This paper presents data on the first identification, characterization and quantification of hepatotoxic microcystins and neurotoxic anatoxin-a in water samples of Lake Baringo, Kenya. The shallow turbid Lake Baringo was investigated five times between June 2001 and May 2002. The phytoplankton community was mainly dominated by the cyanobacterium Microcystis aeruginosa. Due to the high turbidity the phytoplankton biomass was low, ranging between 1.5 and 8.2 mg L−1. High mean total phosphorus concentration (1.0 mg L−1) and mean total nitrogen concentration (2.8 mg L−1) typical for hypertrophic lakes were found. Using HPLC technique the hepatotoxins microcystin-LR, -RR and -YR and the neurotoxin anatoxin-a were detected in the water samples. The microcystin concentrations varied from 310 to 19800 μg microcystin-LR equivalents g−1 DW and the anatoxin-a concentration ranged from 270 to 1260 μg g−1 DW. To our knowledge this is the first evidence of cyanobacterial toxins in Lake Baringo.  相似文献   

18.
Daily variations in nutrients were monitored for 15 months (September 2007–November 2008) in the Godavari estuary, Andhra Pradesh, India, at two fixed locations. River discharge has significant influence on nutrients loading to the estuary, which peaks during June–August (peak discharge period; monsoon) whereas exchanges at the sediment–water interface, groundwater and rainwater contribute significantly during other period. Despite significant amount of nutrients brought by discharge to the study region, phytoplankton biomass, in terms of chlorophyll-a (Chl a), did not increase significantly due to high suspended load and shallow photic depth. Nutrients showed downward gradient towards downstream of the estuary from upstream due to dilution by nutrient poor seawater and biological uptake. The N:P ratios were higher than Redfield ratio in both upstream and downstream of the estuary during no discharge period suggesting PO4 to be a limiting nutrient for phytoplankton production, at levels <0.10 μmol L−1. On the other hand, Si:N ratios were always more than unity during entire study period at both the stations indicating that Si(OH)4 is not a limiting nutrient. Our results suggest that suspended matter limits phytoplankton biomass during peak discharge period whereas PO4 during no discharge period.  相似文献   

19.
为了解青藏高原湖泊浮游植物功能群垂直分布特征与环境因子的关系,本文选取西藏东南部最大的高山冰川堰塞湖之一的巴松错为研究对象,于2017年11月(枯水期)和2018年9月(丰水期)在湖心利用挂锤式深水采样器进行浮游植物垂直分层采样,共设置7个断面,采集水样84个.应用浮游植物功能群、相关性分析、冗余分析(RDA)等方法,对巴松错浮游植物功能群垂直分布特征及其与环境因子的关系进行了研究.结果表明:1)巴松错水体稳定性强,水温有明显的分层现象,枯水期在30~60 m处形成温跃层,丰水期在1~15 m和30~60 m处形成双温跃层;2)巴松错浮游植物群落共鉴定7门76属242种,物种组成均表现为硅藻蓝藻绿藻型结构;3)根据浮游植物功能群分类方法,可划分为25个功能群,分别为A、B、C、D、E、F、G、H1、H2、J、L M、L O、M、MP、N、P、S1、S2、T、W1、W2、X1、X2、X3和Y,优势功能群从枯水期的MP、D、L O、P转变为丰水期的D、F、L O、MP、N、P,其中MP功能群为巴松错浮游植物群落绝对优势群;4)通过RDA表明,不同水情期浮游植物功能群垂直分布特征受环境因子影响差异较明显,整体上,pH、总氮和氨氮浓度是影响浮游植物功能群分布格局的主要环境因子.  相似文献   

20.
为探究呼伦湖浮游植物群落的季节变化特征及其与环境因子的关系,本研究分别于2019年3、5 10月对呼伦湖浮游植物的种类、细胞密度和生物量及湖水水质进行调查.结果显示,共鉴定出120种浮游植物,隶属于7门72属.从浮游植物群落季节组成差异上来看,春季绿藻门种类数最多,其次是硅藻门、蓝藻门;夏秋季绿藻门种类数最多,蓝藻门次之;冬季硅藻门种类数最多,绿藻门次之.呼伦湖浮游植物优势种主要为硅藻门的梅尼小环藻(Cyclotella meneghiniana)、蓝藻门的卷曲长孢藻(Anabaena circinalis)和细小平裂藻(Merismopedia minima),种类数在春季最多,秋冬季最少.浮游植物细胞密度在春季(123.52×104cells/L)和冬季(16.41×104cells/L)较夏季(280.80×104cells/L)和秋季(380.63×104cells/L)低,春冬季绿藻门细胞密度最高,夏秋季蓝藻门细胞密度最高.就浮游植物生物量而言,夏季(0.38mg/L)最大,其次是秋季(0...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号