共查询到16条相似文献,搜索用时 62 毫秒
1.
径向基函数点插值无网格法(radial point interpolation method,RPIM)是一种新型的无网格法,其形函数具有插值特性,且形式简单,易于施加本质边界条件。文中介绍了径向基函数点插值无网格法的基本原理,推导了三维情况下点插值无网格法的基本公式。从变分原理出发,结合比奥固结理论,建立了流-固耦合的三维点插值无网格法基本方程和数值积分方法,并开发了相应计算程序。通过三维悬臂梁和单向固结问题的数值试验,验证了该方法对三维弹性问题和流-固耦合问题的适用性和有效性 相似文献
2.
地震勘探广泛应用于油气、煤田勘探。地震波场数值模拟是整个地震勘探数据处理技术的基石。将径向基函数(RBF)引入地震声波波场数值模拟中,在空间上用径向基函数无网格法来构造二阶导数,而在时间上采用简单的二阶差分公式,并重点讨论了形状参数c对该方法精度的影响,总结c经验取值范围为2~4倍平均数据点间距。设计不同模型,利用径向基函数无网格法进行声波波场模拟,并与空间四阶时间二阶的有限差分计算结果进行对比,结果表明:同样精度下,径向基函数每个波长所取的数据点数远小于空间四阶矩形网格有限差分每个波长所取的网格点数,即径向基函数的空间采样率更低,这表明径向基函数具有更小的数值频散。 相似文献
3.
本文采用径向基函数配点法建立了河渠间地下水非承压稳定流问题的数值模拟模型。径向基函数配点法的计算结果与形状参数的取值密切相关。将计算所得的近似解与解析解对比产生的误差很小,说明径向基函数配点法是一种既有效又有较高精度的求解方法。 相似文献
4.
针对线弹性断裂力学问题,提出扩展径向点插值无网格法(X-RPIM)。该方法基于单位分解思想,在传统径向点插值无网格法的位移模式中加入扩展项来描述裂纹两侧的不连续位移场和裂尖奇异场。由于其形函数具有Kronecker ? 函数性质,易于施加本质边界条件。详细描述了X-RPIM不连续位移模式的建立,支配方程的离散形式以及J积分计算混合模式裂纹的应力强度因子的实现过程,讨论了不同积分区域对应力强度因子的影响。数值算例分析证明了该方法在求解断裂问题时的可行性和有效性,同时说明扩展径向点插值无网格法在模拟裂纹扩展问题时具有良好的前景。 相似文献
5.
本文中使用的径向基函数配点法是以时空配点法为基础来解决抛物型方程的一类问题。这种方法与近似求时间导数的隐式,显式法以及其他数值法不同,它不需要对离散系统的时间稳定性进行分析。用时空径向基函数配点法求解二维地下水非稳定流动问题,通过呈现有混合边界条件及只有一类边界条件两种情况下的计算结果,说明了该方法求解该问题的精度及效率较高,结果理想。 相似文献
6.
针对点质量核径向基函数应用于局部重力场建模中的设计矩阵严重病态问题,本文引入Tikhonov正则化方法对传统点质量核径向基函数方程进行改造,建立了相应的正则化模型。通过模拟数据进行仿真实验,以传统格网化方法作为对比试验,利用"标靶法"确定两种模型的最优结构。实验结果表明:正则化点质量核径向基函数可以直接利用离散数据进行局部重力场建模。在两种模型的最优结构下,当实测数据无污染时,正则化方法达到与传统格网化方法相当的精度;当实测值中加入3 mGal的高斯白噪声时,正则化方法的精度获得了27.9%的提升。这说明本文方法可以应用于局部重力场建模中,且模型结构更优,抗干扰能力更强。 相似文献
7.
为了求取1;5万规则分布重力数据的最优插值参数,为数据网格化提供定量插值依据,以理论模型的重力数据为例,采用径向基函数法对插值核函数、搜索邻域等插值参数进行优选,根据标准偏差指标评价不同参数对应的插值结果。研究认为:自然三次样条核函数对应的插值精度最高;R2参数处于第一区间(0~1)时插值稳定且精度高;搜索邻域为椭圆形时插值精度高,优选的插值参数分别为:搜索半径R1=3 km、R2=4.5 km,搜索扇区为4个,搜索角度为32°,各向异性比率为0.667,各向异性角度为32°,从所有扇区使用的最大的数据个数为80个,从每个扇区使用的最大的数据个数为20个,所有扇区的最小数据个数(更少则白化节点)为8个,如果空白扇区多于3个则白化节点。 相似文献
8.
地下水动态预测的径向基函数法 总被引:12,自引:0,他引:12
地下水系统是一个复杂的随机系统,根据地下水位与其影响因素之间存在的映射关系,建立了一个RBF人工神经网络模型,并将其用于地下水位的动态预测,实例表明,该方法预测精度较高,具有一定的推广价值。 相似文献
9.
10.
无网格法是一类新型数值算法,具有精度高、高阶形函数构造与物性加载便利等特点,在计算力学领域应用广泛。将无网格方法(PIM、RPIM及EFGM)用于重力异常场二维正演计算:首先从重力异常二维变分问题出发,利用Galerkin法结合高斯积分公式推导了对应的无网格离散系统矩阵表达式;其次通过数值试验得出了RPIM-MQ、RPIM-exp及EFGM-exp形状参数的建议值,最后比较分析了最优形状参数下不同无网格法的计算效果。结果表明:无网格法适用于介质物性分布变化较大的重力异常二维正演,exp函数形状参数αc最优取值区间为[1.5,1.7],β建议值为0.6,MQ函数q取值区间为-4.1~1.9;EFGM较PIM及RPIM具有更高的计算精度。 相似文献
11.
12.
针对波浪数值模拟中基于矩形网格的数值方法在深水到浅水的网格间距选择与复杂边界处理上的缺陷,以及基于正交曲线网格和无结构网格的数值方法前处理工作复杂的问题,引入最近在计算力学中发展起来的无网格法——径向点插值法,对经典的双曲型缓坡方程进行空间离散,并在时间上采用四阶Adams-Bashforth-Moulton格式求解建立近岸波浪传播数学模型,通过椭圆形浅滩地形和环形河道的波浪传播计算验证,表明该无网格方法可较为有效地模拟近岸波浪的传播变形,且在处理复杂边界时具有较高的精度. 相似文献
13.
14.
15.
岩土体的渗透破坏、地下工程的防渗设计等无不与渗流计算有关。针对渗流自由面问题,提出一种重心拉格朗日插值的配点型无网格方法。由于渗流自由面问题的求解区域是不规则区域,该方法通过将不规则求解区域嵌入一个正则矩形区域,在正则区域上采用重心拉格朗日插值近似未知函数,利用配点法离散渗流问题的控制方程,将重心拉格朗日插值的微分矩阵离散成代数方程表达的矩阵形式。将自由面上的边界条件通过重心拉格朗日插值离散,通过置换方程法和附加方程法施加边界条件,利用正则区域上的重心插值配点法,通过迭代确定最终自由面的位置。数值算例表明所提出的无网格方法对于求解渗流自由面问题的正确性和高精度。 相似文献
16.
在利用实际地震数据中的面波反演近地表横波速度的过程中,若道间距较大、空间采样率不足,则会产生空间假频现象,从而降低频率速度谱的信噪比,影响频散曲线提取的精度以及反演效果,因此需要针对面波进行插值处理。文中提出了一种基于最佳小波基的地震面波插值方法,通过理论分析和实验误差对比在地震数据处理常用的众多小波基中选出适用于插值处理的最佳小波基bior6.8,提高了插值精度。针对面波同向轴为线性且斜率较大的特点,文中首先采用线性动校正的方法对面波进行拉平处理,再进行小波变换插值,最后进行反线性动校正恢复面波。通过对理论模型与实际资料进行插值处理验证了本文方法的有效性,插值后的面波记录波形恢复较好,显著提高了频率速度谱的信噪比,有效解决了面波数据空间采样率不足引起的假频问题。 相似文献