首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of a large‐scale survey of meteorite bulk and grain densities, porosities, and magnetic susceptibilities, we measured these properties for 174 stones from 106 achondritic meteorites. These include four lunar meteorites, 15 stones from 10 shergottites, nakhlites, and chassignites (SNCs), 96 stones from 56 howardites, eucrites, and diogenites (HEDs), 17 stones from nine aubrites, two angrites, and 16 stones from 10 ureilites, four stones of three acapulcoites, as well as four stones of three lodranites, and 15 stones from eight primitive achondrites. Those meteorites derived from basalts and crustal material of differentiated parent bodies have lower densities and magnetic susceptibilities, on an average, than the more primitive achondrites, which have a higher percentage metal. A notable exception is the one chassignite in the study (Chassigny), which has a high grain density of 3.73 ± 0.04 g cm?3. Ureilites have magnetic susceptibilities consistent with primitive achondrites, but lower grain densities. Porosities do not vary considerably between most of the groups, with most stones 5–14% porous, although on an average, ureilites and brachinites have lower porosities, with most stones less than 7% porous. For primitive achondrites, the higher metal content causes finds to exhibit weathering effects similar to what is observed in ordinary chondrites, with a reduction in grain density, magnetic susceptibility, and porosity as compared with unweathered falls. For lunites, SNCs, and HEDs, no such effect is observed. We also observe that grain density and magnetic susceptibility used in conjunction distinguish shergottites, nakhlites, and chassignites from each other. Shergottites and nakhlites have low grain densities (averaging 3.31 and 3.41 g cm?3, respectively) whereas Chassigny is 3.7 g cm?3. In magnetic susceptibility, shergottities and chassignites are similar (averaging 2.85 and 2.98 in log units of 10?9 m3 kg?1, respectively) with nakhlites averaging higher at 3.42.  相似文献   

2.
Abstract— In this review, we summarize the data published up to December 2001 on the porosity and density of stony meteorites. These data were taken from 925 samples of 454 different meteorites by a variety of techniques. Most meteorites have densities on the order of 3 to 4 g/cm3, with lower densities only for some volatile‐rich carbonaceous meteorites and higher densities for stony irons. For the vast majority of stones, porosity data alone cannot distinguish between different meteorite compositions. Average porosities for most meteorite classes are around 10%, though individual samples can range as high as 30% porosity. Unbrecciated basaltic achondrites appear to be systematically less porous unless vesicles are present. The measured density of ordinary chondrites is strongly controlled by the amount of terrestrial weathering the sample has undergone with porosities steadily dropping with exposure to the terrestrial environment. A theoretical grain density based on composition can model “pre‐weathered” porosities. The average model porosity for H and LL chondrites is 10%, while L chondrite model porosities average only 6%, a statistically significant difference.  相似文献   

3.
Abstract– As part of our continuing survey of meteorite physical properties, we measured grain and bulk density, porosity, and magnetic susceptibility for 41 stones from 23 enstatite chondrites (ECs), all with masses greater than 10 g, representing the majority of falls and a significant percentage of all available non‐Antarctic EC meteorites. Our sampling included a mix of falls and finds. For falls, grain densities range from 3.45 to 4.17 g cm?3, averaging 3.66 g cm?3; bulk densities range from 3.15 to 4.10 g cm?3, averaging 3.55 g cm?3; porosities range from 0 to 12% with the majority less than 7%, and magnetic susceptibilities (in log units of 10?9 m3 kg?1) from 5.30 to 5.64, with an average of 5.47. For finds, weathering reduces both grain and bulk densities as well as magnetic susceptibilities. On average, finds have much higher porosity than falls. The two EC subgroups EH and EL, nominally distinguished by total iron content, exhibit similar values for all of the properties measured, indicating similar metallic iron content in the bulk stones of both subgroups. We also observed considerable intra‐meteorite variation, with inhomogeneities in bulk and grain densities at scales up to approximately 40 g (approximately 12 cm3).  相似文献   

4.
Abstract— We present a database of magnetic susceptibility measurements on 971 ordinary chondrites. It demonstrates that this parameter can be successfully used to characterize and classify ordinary chondrite meteorites. In ordinary chondrites, this rapid and non‐destructive measurement essentially determines the amount of metal in the sample, which occurs in a very narrow range for each chondrite class (though terrestrial weathering can result in a variable decrease in susceptibility, especially in finds). This technique is particularly useful not only for a rapid classification of new meteorites, but also as a check against curation errors in large collections (i.e., unweathered meteorites, the measured susceptibility of which lies outside the expected range, may well be misclassified or misidentified samples). Magnetic remanence, related to magnetic field measurements around asteroids, is also discussed.  相似文献   

5.
Abstract— Densities and porosities of meteorites are physical properties that can be used to infer characteristics of asteroid interiors. We report density and porosity measurements of 42 pieces of 30 ordinary chondrites and provide a quantification of the errors of the gas pycnometer method used in this study. Based on our measurements, we find that no significant correlation exists between porosity and petrologic grade, chemical group, sample mass, bulk and grain density, or shock level. To investigate variations in porosity and density between pieces of a meteorite, we examined stones from two showers, Holbrook and Pultusk. Examination of nine samples of Holbrook suggests relative homogeneity in porosity and density between pieces of this shower. Measurements of three samples of Pultusk show homogeneity in bulk density, in contrast to Wilkison and Robinson (2000), a study that reported significant variations in bulk density between 11 samples of Pultusk. Finally, examination of two friable ordinary chondrites, Bjurböle and Allegan, reveal variability in friability and porosity among pieces of the same fall. We suggest that friable ordinary chondrites may have formed in a regolith or fault zone of an asteroid.  相似文献   

6.
Some terrestrial areas have climatic and geomorphologic features that favor the preservation, and therefore, accumulation of meteorites. The Atacama Desert in Chile is among the most important of such areas, known as DCA. This desert is the driest on Earth, one of the most arid, uninhabitable localities with semiarid, arid, and hyper‐arid conditions. The meteorites studied here were collected from within the DCA of San Juan and Pampa de Mejillones, located, respectively, in the Central Depression and the Coastal Range of the Atacama Desert. 57Fe Mössbauer spectroscopy was used for quantitative analysis of the degree of weathering of the meteorites, through the determination of the proportions of the various Fe‐bearing phases and in particular the amount of oxidized iron in terrestrial alteration products. The abundance of ferric ions in weathered chondrites can be related to specific precursor compositions and to the level of terrestrial weathering. The aim of the study was the identification, quantification, and differentiation of the weathering products in the ordinary chondrites found in the San Juan and the Pampa de Mejillones areas of the Atacama Desert. The 57Fe Mössbauer spectroscopy study was complemented by synchrotron radiation X‐ray diffraction and magnetic susceptibility measurements. The results allow a clear differentiation of the rate of weathering in meteorite samples collected from the San Juan versus the Pampa de Mejillones areas of the Atacama Desert.  相似文献   

7.
Abstract— Concentration and isotopic composition of the light noble gases as well as of 84Kr, 129Xe, and 132Xe have been measured in bulk samples of 60 carbonaceous chondrites; 45 were measured for the first time. Solar noble gases were found in nine specimens (Arch, Acfer 094, Dar al Gani 056, Graves Nunataks 95229, Grosnaja, Isna, Mt. Prestrud 95404, Yamato (Y) 86009, and Y 86751). These meteorites are thus regolith breccias. The CV and CO chondrites contain abundant planetary‐type noble gases, but not CK chondrites. Characteristic features of CK chondrites are high 129Xe/132Xe ratios. The petrologic type of carbonaceous chondrites is correlated with the concentration of trapped heavy noble gases, similar to observations shown for ordinary chondrites. However, this correlation is disturbed for several meteorites due to a contribution of atmospheric noble gases, an effect correlated to terrestrial weathering effects. Cosmic‐ray exposure ages are calculated from cosmogenic 21Ne. They range from about 1 to 63.5 Ma for CO, CV, and CK classes, which is longer than exposure ages reported for CM and CI chondrites. Only the CO3 chondrite Isna has an exceptionally low exposure age of 0.15 Ma. No dominant clusters are observed in the cosmic‐ray exposure age distribution; only for CV and CK chondrites do potential peaks seem to develop at ~9 and ~29 Ma. Several pairings among the chondrites from hot deserts are suggested, but 52 of the 60 investigated meteorites are individual falls. In general, we confirm the results of Mazor et al. (1970) regarding cosmic‐ray exposure and trapped heavy noble gases. With this study, a considerable number of new carbonaceous chondrites were added to the noble gas data base, but this is still not sufficient to obtain a clear picture of the collisional history of the carbonaceous chondrite groups. Obviously, the exposure histories of CI and CM chondrites differ from those of CV, CO, and CK chondrites that have much longer exposure ages. The close relationship among the latter three is also evident from the similar cosmic‐ray exposure age patterns that do not reveal a clear picture of major breakup events. The CK chondrites, however, with their wide range of petrologic types, form the only carbonaceous chondrite group which so far lacks a solar‐gas‐bearing regolith breccia. The CK chondrites contain only minute amounts of trapped noble gases and their noble gas fingerprint is thus distinguishable from the other groups. In the future, more analyses of newly collected CK chondrites are needed to unravel the genetic and historic evolution of this group. It is also evident that the problems of weathering and pairing have to be considered when noble gas data of carbonaceous chondrite are interpreted.  相似文献   

8.
Abstract— Mössbauer spectroscopy is a very useful tool for identifying ferric iron weathering products in meteorites because of the capability to quantify the relative amounts of ferric iron in them. Mössbauer measurements were made of 33 Antarctic H chondrites (predominately H5) and two paired Antarctic CR chondrites. The primary goals of this study are to determine if Mössbauer spectroscopy can be used to determine which phases are weathering in Antarctic meteorites and if the relative amounts of ferric iron correlate with terrestrial age. Determining which minerals are weathering in ordinary chondrites appears very difficult due to variations in composition for different ordinary chondrites of the same meteorite class and possible problems in preparing homogeneous samples. The analysis of the two paired CR chondrites appears to indicate that metallic iron is predominately weathering to produce ferric iron for this class of meteorite. No correlation is seen between the relative amounts of ferric iron and terrestrial age for ordinary chondrites. One Antarctic H5 chondrite (ALHA77294) with a short 14C age of 135 ± 200 years from the dating of interior carbonate weathering products does have a relatively low amount of ferric iron, which is consistent with this meteorite being exposed on the surface for a relatively short time.  相似文献   

9.
Abstract— Densities and porosities for 285 ordinary chondrites have been assembled and analyzed. Measured chondrite porosities are bimodal; finds have an average porosity of <3%, whereas fall porosities average 7% but range from zero to >30%. We conclude that mild degrees of weathering fill pore spaces, lowering grain densities and porosities without significantly changing the bulk size or mass of the sample. By assuming an original pristine grain density (as a function of the meteorite's mineralogy—determined by its class), we can derive model pristine porosities. These model porosities cluster around an average value of 10% for all classes of ordinary chondrites. Ordinary chondrites do not show any correlation of porosity (model or measured) with petrographic grade or sample size (over a range from 0.2 g to 2 kg). However, we do see a correlation between shock state and porosity. Shock-blackened meteorites are less porous than other meteorites. Furthermore, less severely shocked meteorites show a much broader range of porosities, with the maximum porosity seen among meteorites of a given shock class falling linearly as a function of that shock class. This is consistent with the idea that shock compresses and closes pore space. Analysis of meteorite porosity provides a lower bound to the fine-scale porosity of asteroids. Our densities, even with 10% primordial porosity, are significantly higher than inferred densities of possible asteroid parent bodies. These asteroids are probably loose piles of rubble.  相似文献   

10.
Abstract— The distribution of white evaporitic deposits differs among different meteorite compositional groups and weathering categories of Antarctic meteorites. Evaporites occur with unusual frequency on carbonaceous chondrites, and are especially common in carbonaceous chondrites of weathering categories A and B. Among achondrites, weathering categories A and A/B show the most examples of evaporite weathering. Unlike carbonaceous chondrites and achondrites, most evaporite-bearing ordinary (H and L) chondrites are from rustier meteorites of weathering categories B and, to a lesser degree, B/C and C. LL chondrites are conspicuous by their complete lack of any evaporitic weathering product. Almost two-thirds of all evaporite-bearing meteorites belong to weathering categories A, A/B, and B. Where chemical data are available, surficial evaporite deposits are associated with elemental anomalies in meteorite interiors. Meteorites of weathering classes B, A/B, and even A may have experienced significant element redistribution and/or contamination as a result of terrestrial exposure. Evaporite formation during terrestrial weathering cannot be neglected in geochemical, cosmochemical, and mineralogical studies of Antarctic meteorites. A lower-case “e” should be added to the weathering classification of evaporite-bearing Antarctic meteorites, to inform meteorite scientists of the presence of evaporite deposits and their associated compositional effects.  相似文献   

11.
Abstract— Mössbauer absorption areas corresponding to 57Fe in olivine, pyroxene, troilite, and the metallic phase in ordinary chondrites are shown to exhibit certain systematic behaviors. H chondrites occupy 2 distinct regions on the plot of metallic phase absorption area versus silicate absorption area, while L/LL chondrites fall in a separate region. Similar separation is also observed when pyroxene absorption area is plotted against olivine absorption area. The one‐dimensional plot for the ratio of olivine area to pyroxene area separates L and LL chondrites. Based on these systematics, a newly fallen meteorite at Jodhpur, India is suggested to be an LL chondrite.  相似文献   

12.
We measured the concentrations and isotopic compositions of He, Ne, and Ar in 14 fragments from 12 different meteorites: three carbonaceous chondrites, six L chondrites (three most likely paired), one H chondrite, one R chondrite, and one ungrouped chondrite. The data obtained for the CV3 chondrites Ramlat as Sahmah (RaS) 221 and RaS 251 support the hypothesis of exposure age peaks for CV chondrites at approximately 9 Ma and 27 Ma. The exposure age for Shi?r 033 (CR chondrite) of 7.3 Ma is also indicative of a possible CR chondrite exposure age peak. The three L chondrites Jiddat al Harasis (JaH) 091, JaH 230, and JaH 296, which are most likely paired, fall together with Hallingeberg into the L chondrite exposure age peak of approximately 15 Ma. The two L chondrites Shelburne and Lake Torrens fall into the peaks at approximately 40 Ma and 5 Ma, respectively. The ages for Bassikounou (H chondrite) and RaS 201 (R chondrite) are approximately 3.5 Ma and 5.8 Ma, respectively. Six of the studied meteorites show clear evidence for 3He diffusive losses, the deficits range from approximately 17% for one Lake Torrens aliquot to approximately 45% for RaS 211. The three carbonaceous chondrites RaS 221, RaS 251, and Shi?r 033 all have excess 4He, either of planetary or solar origin. However, very high 4He/20Ne ratios occur at relatively low 20Ne/22Ne ratios, which is unexpected and needs further study. The measured 40Ar ages fit well into established systematics. They are between 2.5 and 4.5 Ga for the carbonaceous chondrites, older than 3.6 Ga for the L and H chondrites, and about 2.4 Ga for the R chondrite as well as for the ungrouped chondrite. Interestingly, none of our studied L chondrites has been degassed in the 470 Ma break‐up event. Using the amount of trapped 36Ar as a proxy for noble gas contamination due to terrestrial weathering we are able to demonstrate that the samples studied here are not or only very slightly affected by terrestrial weathering (at least in terms of their noble gas budget).  相似文献   

13.
Abstract— In this paper, we present concentration and isotopic composition of the light noble gases He, Ne, and Ar as well as of 84Kr, 132Xe, and 129Xe in bulk samples of 33 Rumuruti (R) chondrites. Together with previously published data of six R chondrites, exposure ages are calculated and compared with those of ordinary chondrites. A number of pairings, especially between those from Northwest Africa (NWA), are suggested, so that only 23 individual falls are represented by the 39 R chondrites discussed here. Eleven of these meteorites, or almost 50%, contain solar gases and are thus regolithic breccias. This percentage is higher than that of ordinary chondrites, howardites, or aubrites. This may imply that the parent body of R chondrites has a relatively thick regolith. Concentrations of heavy noble gases, especially of Kr, are affected by the terrestrial atmospheric component, which resides in weathering products. Compared to ordinary chondrites, 129Xe/132Xe ratios of R chondrites are high.  相似文献   

14.
Abstract— Cosmic‐ray exposure ages calculated from cosmogenic noble gas nuclides are reported for 57 enstatite (E) chondrites, 43 of them were measured for the first time. With a total of 62 individual E chondrites (literature and this data, corrected for pairing) the observed spectrum of ages ranges between 0.07 and 66 Ma. Three clusters seem to develop at about 3.5, 8, and 25 Ma, respectively. Since the uncertainty of ages is estimated to be ~20% (in contrast to 10 to 15% for ordinary chondrites) and the number of examined samples is still comparatively small, these peaks have to be confirmed by more measurements. Regarding the two subgroups, EH and EL chondrites, no systematic trend is apparent in the distribution of cosmic‐ray exposure ages. Several E chondrites yield significantly lower 38Ar ages compared to those calculated from cosmogenic 3He and 21Ne. For these E chondrites, we suggest a reduction of cosmogenic 38Ar as a result of weathering. In order to prove the possible influence of terrestrial alteration on the cosmogenic noble gas record of E‐chondritic material, we simulated terrestrial weathering in an experiment of 12 weeks duration. The treatment showed that a significant amount of cosmogenic 38Ar is lost on Earth by the influence of water.  相似文献   

15.
Abstract— The Sahara Desert is a region of high diurnal temperature variation and sporadic rainfall that has recently yielded over 450 meteorites. Eighteen of these Saharan samples are carbonaceous chondrites, of which we have analysed 17 for C content and isotopic composition. Ten of the 18 are paired CR chondrites, of which four have also had N and H contents and compositions determined. A primitive ordinary chondrite (L/LL3.2) found in the region has also been analysed for C, N and H contents and isotopic composition. Saharan samples contain between 21% and 45% of the light elements of their non-Saharan counterparts. Paired Saharan samples show a greater heterogeneity in both C content and isotopic composition than multiple analyses of non-Saharan samples. The cause of the observed isotopic and abundance effects is due to the hot desert weathering processes experienced by these samples. Peak temperatures of meteorites on the desert floor may be in excess of 100 °C, leading to low-temperature hydrous pyrolysis and oxidation reactions, liberating volatile organics and CO2. This may also cause the remaining material to become partially solubilised and ultimately lost during rainfall. The low δD of the CR and ordinary chondrites can be attributed to the destruction and loss of organic material through dehydrogenation and exchange reactions on the desert surface. The increased 13C abundance suggests that the less tightly bound C from the macromolecular organic material is isotopically lighter than the remaining C. Carbon contents and isotopic compositions are also affected by the addition of terrestrial calcitic evaporite deposits, up to 10,000 ppm carbonate has been measured, with a δ13C of between 0 and ?10%0.  相似文献   

16.
Using an X‐ray diffractometer, powder‐like diffraction patterns were acquired from in‐plane rotation of polished thin sections (PTSs) of 60 ordinary chondrites (23 H, 21 L, and 16 LL), in order to explore the thermal and shock metamorphism and its modifications of primordial features. The olivine (Ol) 130 peak position shown as Bragg indices clearly correlates with the chemical group for equilibrated ordinary chondrites (EOCs), while the peak is split or broad for unequilibrated ordinary chondrites (UOCs). The intensity ratio of kamacite may be useful for distinguishing the chemical group between H and L‐LL, but it is not definite because of heterogeneous terrestrial weathering of kamacite, especially in H chondrites. The summed intensities of the orthoenstatite (Oen) 511 and 421 peaks positively correlates with the metamorphic sequence from 3 to 6, while that of clinoenstatite (Cen) 22 is inversely correlated. The shock stage positively correlates with the summed full width of half maximum values of the Oen 511 and 421 peaks and the FWHM of Ol 130 peak for each class. Significant amount of Oen (Pbca) transformed through Cen (C2/c) finally to Cen (P21/c) is stable at high pressure for shock stage S6 (Tenham and NWA 4719). The shock melted LL chondrite is characterized by the occurrence of Cen and abundant homogeneous olivine. The effects of both thermal and shock metamorphism are thus incorporated into the bulk X‐ray diffraction (XRD) data. The bulk XRD method is useful for determining the bulk mineralogy, resulting in the classification of ordinary chondrites. The method is also applicable to samples other than PTS.  相似文献   

17.
We describe the geological, geomorphological, and paleoclimatic setting of the Sahara of North Africa in particular, focused on the main meteorite dense collection areas (DCA; Morocco, Algeria, Tunisia, and Libya). We report on the outcome of several meteorite recovery field expeditions in Morocco and Tunisia since 2008, by car and by foot, that applied systematic search methods. The number of meteorites collected is 41 ordinary chondrites and one brachinite. The statistics of unpaired ordinary chondrites indicates that H chondrites are more abundant (21) than L chondrites (12), while LL chondrites are rare (2). Our meteorite density estimates for Tunisia and Morocco are in the order of magnitude of 1 met km?2. An estimate of the total maximum number of meteorites that could be recovered from the Sahara is 780,000 meteorites. We selected 23 meteorites from Aridal, Bou Kra, Bir Zar, and Tieret DCAs for 14C dating. The results show a wide range of terrestrial ages from 0.4 to more than 40 kyr with a majority of meteorites showing ages between 0.4 and 20 kyr. The weathering degree of these meteorites is ranges from minor (W1) to strong (W4). The highest weathering grades result from repeated oscillations between high and low humidity in the Sahara. However, there appears to be no correlation between weathering grade and terrestrial age of meteorites.  相似文献   

18.
Abstract— Fifty‐four fragments of ordinary chondrites from 50 finds representing all searched areas in central Oman and all weathering stages were selected to compare the physical, chemical, and mineralogical effect of terrestrial weathering with 14C terrestrial ages. 14C ages range from 2.0 to >49 kyr with a median value of 17.9 kyr. The peak of the age range, which is between 10–20 kyr, falls in an arid climate period. A comparison of the chemical composition of Omani chondrites with literature data for unweathered H and L chondrites demonstrates a strong enrichment in Sr and Ba, and depletion in S during weathering. Water contents in H chondrites increase with terrestrial age, whereas L chondrites show a rapid initial increase followed by nearly constant water content. Correlating Sr, Ba, and H2O with age indicates two absorption trends: i) an initial alteration within the first 20 kyr dominated by H2O uptake, mainly reflecting Fe‐Ni metal alteration, and ii) a second Ba‐and Sr‐dominated stage correlated with slower and less systematic weathering of troilite that starts after H2O reaches ?2 wt%. Sulfur released from troilite partly combines with Ba and Sr to form sulfate minerals. Other parameters correlated with 14C age are degree of weathering, color of powdered meteorites, and the Ni/Fe ratio. Chemical analyses of 145 soils show a high degree of homogeneity over the entire interior Oman Desert, indicating large‐scale mixing by wind. Soil samples collected from beneath meteorite finds typically are enriched in Ni and Co, confirming mobilization from the meteorites. High Cr and Ni concentrations in reference soil samples, which decrease from NE to SW, are due to detrital material from ultramafic rocks of the Oman Mountains.  相似文献   

19.
Abstract— An improvement in the velocity resolution and quality of Mössbauer spectra has been applied to a group of ordinary chondrites. This improvement permitted us to carry out a more detailed study of the iron bearing phases in these samples than has previously been possible. Mössbauer spectra of 11 ordinary chondrites of L and H chemical groups were measured using 4096 channels and presented for further analysis in 1024 channels. Subspectra of the metal grains of several chondrites demonstrated the presence of at least two magnetic sextets related to the main Fe(Ni, Co) phases. Moreover, Mössbauer study of extracted metal grains from Tsarev L5 revealed three sextets and one singlet spectral components related to various α‐Fe(Ni, Co), α‘‐Fe(Ni, Co), α2‐Fe(Ni, Co), and γ‐Fe(Ni, Co) phases. Each subspectrum of olivine and pyroxene in Mössbauer spectra of ordinary chondrites was fitted by superposition of two quadrupole doublets related to M1 and M2 sites in minerals for the first time. An analysis of relative areas and Mössbauer hyperfine parameters was performed and some differences for L and H chondrites as well as for M1 and M2 sites were observed. Mössbauer parameters of troilite and oxidized iron were analyzed. In contrast to a previous study with 512‐channel spectra, the presence of oxidized iron was found in all chondrites.  相似文献   

20.
The Kumtag 016 strewn field was found in the eastern part of the Kumtag desert, Xinjiang Province, China. In this study, 24 recovered meteorites have been characterized by a suite of different analytical techniques to investigate their petrography, mineralogy, bulk trace elements, noble gas isotopic composition, density, and porosity. We attribute to the strewn field 22 L5 chondrites with shock stage S4 and weathering grade W2–W3. Two different meteorites, Kumtag 021, an L4 chondrite and Kumtag 032, an L6 chondrite, were recognized within the strewn field area. Moreover, Kumtag 003, an H5 chondrite, was previously found in the same area. We infer that the Kumtag 016 strewn field most likely consists of at least four distinct meteorite falls. The effects of terrestrial weathering on the studied meteorites involve sulfide/metal alteration, chemical changes (Sr, Ba, Pb, and U enrichments and depletion in Cr, Co, Ni, and Cs abundances), and physical modifications (decrease of grain density and porosity). Measurements of the light noble gases indicate that the analyzed Kumtag L5 samples contain solar wind-implanted noble gases with a 20Ne/22Ne ratio of ~12.345. The cosmic-ray exposure (CRE) ages of the L5 chondrites are in a narrow range (3.6 ± 1.4 Ma to 5.2 ± 0.4 Ma). For L4 chondrite Kumtag 021 and L6 chondrite Kumtag 032, the CRE ages are 5.9 ± 0.4 Ma and 4.7 ± 0.8 Ma, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号