首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 570 毫秒
1.
Abstract— In this paper, we review the recent hypothesis, based mostly on geomorphological features, that a ~130 m‐wide sag pond, surrounded by a saddle‐shaped rim from the Sirente plain (Abruzzi, Italy), is the first‐discovered meteoritic crater of Italy. Sub‐circular depressions (hosting ponds), with geomorphological features and size very similar to those exhibited by the main Sirente sag, are exposed in other neighboring intermountain karstic plains from Abruzzi. We have sampled present‐day soils from these sag ponds and from the Sirente sags (both the main “crater” and some smaller ones, recently interpreted as a crater field) and various Abruzzi paleosols from excavated trenches with an age range encompassing the estimated age of the “Sirente crater.” For all samples, we measured the magnetic susceptibility and determined the Ni and Cr contents of selected specimens. The results show that the magnetic susceptibility values and the geochemical composition are similar for all samples (from Sirente and other Abruzzi sags) and are both significantly different from the values reported for soils contaminated by meteoritic dust. No solid evidence pointing at an impact origin exists, besides the circular shape and rim of the main sag. The available observations and data suggest that the “Sirente crater,” together with analogous large sags in the Abruzzi intermountain plains, have to be attributed to the historical phenomenon of “transumanza” (seasonal migration of sheep and shepherds), a custom that for centuries characterized the basic social‐economical system of the Abruzzi region. Such sags were excavated to provide water for millions of sheep, which spent summers in the Abruzzi karstic high pasture lands, on carbonatic massifs deprived of natural superficial fresh water. Conversely, the distribution of the smaller sags from the Sirente plain correlates with the local pattern of the calcareous bedrock and, together with the characteristics of their internal structure, are best interpreted as natural dolines. In fact, reported radiocarbon ages for the formation of the main sag pond and of the smaller sags differ (significantly) by more than two millennia, thus excluding that they were all contemporaneously formed by a meteoritic impact.  相似文献   

2.
Abstract— The proposed Sirente crater field consists of a slightly oblong main structure (main crater) 120 m in width and about 30 smaller structures (satellite craters), all in unconsolidated but stiff carbonate mud. Here we focus on the subsurface structure of the satellite craters and compare the Sirente field with known meteorite crater fields. We present a more complete outline of the crater field than previously reported, information on the subsurface morphology of a satellite crater (C8) 8 m in width, radiocarbon and thermoluminescence (TL) ages of material from this crater, and evidence for heated material in both crater C8 and the rim of the main crater. Crater C8 has a funnel shape terminating downwards, and evidence for soil injection from the surface to a depth of 9 m. The infill contained dispersed charcoal and small, irregular, porous fragments of heated clay with a calibrated age of b.p. 1712 (13C‐corrected radiocarbon age: b.p. 1800 ± 100) and a TL age of b.p. 1825 (calculated error ± 274). Together with previous radiocarbon age (b.p. 1538) of the formation of the main crater (i.e., target surface below rim), a formation is suggested at the beginning of the first millennium a.d. Although projectile vaporization is not expected in Sirente‐sized craters in this type of target material, we used geochemistry in an attempt to detect a meteoritic component. The results gave no unequivocal evidence of meteoritic material. Nevertheless, the outline of the crater field, evidence of heated material within the craters, and subsurface structure are comparable with known meteorite crater fields.  相似文献   

3.
Lockne is a concentric impact structure due to a layered target where weak sediments and seawater covered a crystalline basement. A matrix‐supported, sedimentary breccia is interlayered between the crystalline breccia lens and the resurge deposits in the crater infill. As the breccia is significantly different from the direct impact breccia and the resurge deposit, we propose a separate unit name, Tramsta Breccia, based on the type locality (i.e., the LOC02 drilling at Tramsta). We use granulometry and a novel matrix line‐log method to characterize the sedimentology of the Tramsta Breccia. The obliquity of impact combined with the layered target caused an asymmetric, concentric transient crater, which upon its collapse controlled the deposition of the breccia. On the wide‐brimmed downrange side of the crater where the sedimentary target succession was removed during crater excavation, wide, overturned basement crater ejecta flaps prevented any slumping of exterior sediments. Instead, the sediments most likely originated from the uprange side where the brim was narrow and the basement crater rim was poorly developed, sediment‐rich, and relatively unstable. Here, the water cavity wall remained in closer proximity to the basement crater and, aided by the pressure of the collapsing water wall, unconsolidated black mud would flow back into the crater. The absence of interlayered resurge deposits in the Tramsta Breccia and the evidence for reworking at the contact between the overlying resurge deposits and the Tramsta Breccia indicate that the slumping was a rapid process (<75 s) terminating well before the resurge entered the crater.  相似文献   

4.
Abstract— Detailed field mapping has revealed the presence of a series of intra‐crater sedimentary deposits within the interior of the Haughton impact structure, Devon Island, Canadian High Arctic. Coarse‐grained, well‐sorted, pale gray lithic sandstones (reworked impact melt breccias) unconformably overlie pristine impact melt breccias and attest to an episode of erosion, during which time significant quantities of impact melt breccias were removed. The reworked impact melt breccias are, in turn, unconformably overlain by paleolacustrine sediments of the Miocene Haughton Formation. Sediments of the Haughton Formation were clearly derived from pre‐impact lower Paleozoic target rocks of the Allen Bay Formation, which form the crater rim in the northern, western, and southern regions of the Haughton structure. Collectively, these field relationships indicate that the Haughton Formation was deposited up to several million years after the formation of the Haughton crater and that they do not, therefore, represent an immediate, post‐impact crater lake deposit. This is consistent with new isotopic dating of impactites from Haughton that indicate an Eocene age for the impact event (Sherlock et al. 2005). In addition, isolated deposits of post‐Miocene intra‐crater glacigenic and fluvioglacial sediments were found lying unconformably over remnants of the Haughton Formation, impact melt breccias, and other pre‐impact target rock formations. These deposits provide clear evidence for glaciation at the Haughton crater. The wealth and complexity of geological and climatological information preserved as intra‐crater deposits at Haughton suggests that craters on Mars with intra‐crater sedimentary records might present us with similar opportunities, but also possibly significant challenges.  相似文献   

5.
Abstract— The Lockne and Tvären craters formed about 455 million years ago in an epicontinental sea where seawater and mainly limestones covered a crystalline basement. The target water depth for Tvären (apparent basement crater diameter D = 2 km) was probably not over 150 m, and for Lockne (D = 7.5 km) recent best‐fit numerical simulations suggest the target water depth of 500–700 m. Lockne has crystalline ejecta that partly cover an outer crater (14 km diameter) apparent in the target sediments. Tvären is eroded with only the crater infill preserved. We have line‐logged cores through the resurge deposits within the craters in order to analyze the resurge flow. The focus was clast lithology, frequencies, and size sorting. We divide the resurge into “resurge proper,” with water and debris shooting into the crater and ultimately rising into a central water plume, “anti‐resurge,” with flow outward from the collapsing plume, and “oscillating resurge” (not covered by the line‐logging due to methodological reasons), with decreasing flow in diverse directions. At Lockne, the deposit of the resurge proper is coarse and moderately sorted, whereas the anti‐resurge deposit is fining upwards and better sorted. The Tvären crater has a smoothly fining‐up section deposited by the resurge proper and may lack anti‐resurge deposits. At Lockne, the content of crystalline relative to limestone clasts generally decreases upwards, which is the opposite of Tvären. This may be a consequence of factors such as crater size (i.e., complex versus simple) and the relative target water depth. The mean grain size (i.e., the mean ‐phi value per meter, ø) and standard deviation, i.e., size sorting (s?) for both craters, can be expressed by the equation s? = 0.60ø ? 1.25.  相似文献   

6.
Abstract— We propose the Sirente crater field to be the first discovered impact craters in Italy. They are located in the Sirente plain within the mountains of the Abruzzo region, central Italy. The craters are distributed in a field 450 m long and 400 m wide. This field consists of ?17 smaller craters close to a larger main crater. The main crater is located in the southern end of the crater field and is 140 m long and 115 m wide, measured rim‐to‐rim. It has a well‐developed, saddle‐shaped rim that rises at a maximum 2.2 m above the surrounding plain. Radiocarbon dating of the target surface preserved below the rim gave a calibrated age of formation at about a.d. 412 (1650 ± 40 radiocarbon years b.p.). This young age is consistent with the apparent little modification of the rim. The morphology of the main crater and its relation to a crater field strongly points to its origin by impact from a projectile that broke up during its passage through the atmosphere. Quartz is very rare in the target and no planar deformation features have been found so far. The rim material and the upper 4 m of the main crater infill are impregnated with ferric oxides, which gives a more reddish colour compared to the other sediments of the plain. Rusty crusts with high Fe and Mn content occur in the rim material, but have not been found in the plain's sediments. Some of these crusts can be separated by magnet, and have sporadic micron‐sized Ni‐rich granules. The main crater is in the size range of the craters with explosive dispersion of the projectile and has many features comparable to both large experimental and meteoritic impact craters formed in loose sediments. We suggest that this crater represents a rare example of well‐preserved, small impact crater formed in unconsolidated target materials.  相似文献   

7.
The Flynn Creek impact structure is an approximately 3.8 km diameter, marine‐target impact structure, which is located in north central Tennessee, USA. The target stratigraphy consists of several hundreds of meters of Ordovician carbonate strata, specifically Knox Group through Catheys‐Leipers Formation. Like other, similarly sized marine‐target impact craters, Flynn Creek's crater moat‐filling deposits include, in stratigraphic order, gravity‐driven slump material, aqueous resurge deposits, and secular (postimpact) aqueous settling deposits. In the present study, we show that Flynn Creek also possesses previously undescribed erosional resurge gullies and an annular, sloping surface that comprises an outer crater rim surrounding an inner, nested bowl‐shaped crater, thus forming a concentric crater structure. Considering this morphology, the Flynn Creek impact structure has a crater shape that has been referred to at other craters as an “inverted sombrero.” In this paper, we describe the annular rim and the inner crater at Flynn Creek using geographic information system technology. We relate these geomorphic features to the marine environment of crater formation, and compare the Flynn Creek impact structure with other marine‐target impact structures having similar features.  相似文献   

8.
Abstract— An impact crater 26.8 km in diameter, located in the northern lowlands (70.32°N, 266.45°E) at the base of the flanking slopes of the shield volcano Alba Patera, is characterized by highly unusual deposits on its southeastern floor and interior walls and on its southeastern rim. These include multiple generations of distinctive arcuate ridges about 115–240 m in width and lobate deposits extending down the crater wall and across the crater floor, forming a broad, claw‐like, ridged deposit around the central peak. Unusual deposits on the eastern and southeastern crater rim include frost, dunes, and a single distal arcuate ridge. Based on their morphology and geometric relationships, and terrestrial analogs from the Mars‐like Antarctic Dry Valleys, the floor ridges are interpreted to represent drop moraines, remnants of the previous accumulation of snow and ice, and formation of cold‐based glaciers on the crater rim. The configuration and superposition of the ridges indicate that the accumulated snow and ice formed glaciers that flowed down into the crater and across the crater floor, stabilized, covering an area of about 150 km2 produced multiple individual drop moraines due to fluctuation in the position of the stable glacier front. Superposition of a thin mantle and textures attributed to a recent ice‐age period (?0.5–2 Myr ago) suggest that the glacial deposits date to at least 4–10 Myr before the present. At least five phases of advance and retreat are indicated by the stratigraphic relationships, and these may be related to obliquity excursions. These deposits are in contrast to other ice‐related modification and degradation processes typical of craters in the northern lowlands, and may be related to the distinctive position of this crater in the past atmospheric circulation pattern, leading to sufficient preferential local accumulation of snow and ice to cause glacial flow.  相似文献   

9.
Roter Kamm, located in the Namib Desert of SW Africa, is an 8,000-foot-diameter crater developed essentially in Precambrian granitic rocks. Sand overburden is pervasive both inside ami outside the crater and the only significant rock exposures are high in the crater rim. In most cases these exposed rocks proved entirely normal when examined microscopically but two specimens were found which exhibited features compatible with, and suggestive of, shock pressures in the range of 50 to 100 kilobars. Both specimens are probably foreign to the rim environment and may represent remnants of ejecta from the crater formation. There is a strong negative residual gravity anomaly across the structure which reaches a maximum of ?9.3 milligals. The size and shape of the anomaly are fully compatible with a meteorite impact structure of “normal” dimensions. It is more difficult to interpret the gravity data in terms of an explosive volcanic origin and neither is there any evidence of such an origin in the rim rock exposures. An impact origin for the crater is strongly suggested by all the evidence to date. Definitive evidence of shock metamorphism could perhaps be found by a further search for “exotic” rocks in the rim.  相似文献   

10.
Abstract— The late Eocene Chesapeake Bay impact structure (CBIS) on the Atlantic margin of Virginia is one of the largest and best‐preserved “wet‐target” craters on Earth. It provides an accessible analog for studying impact processes in layered and wet targets on volatile‐rich planets. The CBIS formed in a layered target of water, weak clastic sediments, and hard crystalline rock. The buried structure consists of a deep, filled central crater, 38 km in width, surrounded by a shallower brim known as the annular trough. The annular trough formed partly by collapse of weak sediments, which expanded the structure to ?85 km in diameter. Such extensive collapse, in addition to excavation processes, can explain the “inverted sombrero” morphology observed at some craters in layered targets. The distribution of crater‐fill materials in the CBIS is related to the morphology. Suevitic breccia, including pre‐resurge fallback deposits, is found in the central crater. Impact‐modified sediments, formed by fluidization and collapse of water‐saturated sand and silt‐clay, occur in the annular trough. Allogenic sediment‐clast breccia, interpreted as ocean‐resurge deposits, overlies the other impactites and covers the entire crater beneath a blanket of postimpact sediments. The formation of chaotic terrains on Mars is attributed to collapse due to the release of volatiles from thick layered deposits. Some flat‐floored rimless depressions with chaotic infill in these terrains are impact craters that expanded by collapse farther than expected for similar‐sized complex craters in solid targets. Studies of crater materials in the CBIS provide insights into processes of crater expansion on Mars and their links to volatiles.  相似文献   

11.
Abstract— The 1.07 Ma well‐preserved Bosumtwi impact structure in Ghana (10.5 km in diameter) formed in 2 Ga‐old metamorphosed and crystalline rocks of the Birimian system. The interior of the structure is largely filled by the 8 km diameter Lake Bosumtwi, and the crater rim and region in the environs of the crater is covered by tropical rainforest, making geological studies rather difficult and restricted to road cuts and streams. In early 1999, we undertook a shallow drilling program to the north of the crater rim to determine the extent of the ejecta blanket around the crater and to obtain subsurface core samples for mineralogical, petrological, and geochemical studies of ejecta of the Bosumtwi impact structure. A variety of impactite lithologies are present, consisting of impact glassrich suevite and several types of breccia: lithic breccia of single rock type, often grading into unbrecciated rock, with the rocks being shattered more or less in situ without much relative displacement (autochthonous?), and lithic polymict breccia that apparently do not contain any glassy material (allochtonous?). The suevite cores show that melt inclusions are present throughout the whole length of the cores in the form of vesicular glasses with no significant change of abundance with depth. Twenty samples from the 7 drill cores and 4 samples from recent road cuts in the structure were studied for their geochemical characteristics to accumulate a database for impact lithologies and their erosion products present at the Bosumtwi crater. Major and trace element analyses yielded compositions similar to those of the target rocks in the area (graywacke‐phyllite, shale, and granite). Graywacke‐phyllite and granite dikes seem to be important contributors to the compositions of the suevite and the road cut samples (fragmentary matrix), with a minor contribution of Pepiakese granite. The results also provide information about the thickness of the fallout suevite in the northern part of the Bosumtwi structure, which was determined to be ≤15 m and to occupy an area of ?1.5 km2. Present suevite distribution is likely to be caused by differential erosion and does not reflect the initial areal extent of the continuous Bosumtwi ejecta deposits. Our studies allow a comparison with the extent of the suevite at the Ries, another well‐preserved impact structure.  相似文献   

12.
Abstract– The 3.8 km Steinheim Basin in SW Germany is a complex impact crater with central uplift hosted by a sequence of Triassic to Jurassic sedimentary rocks. It exhibits a well‐preserved crater morphology, intensely brecciated limestone blocks that form the crater rim, as well as distinct shatter cones in limestones. In addition, an impact breccia mainly composed of Middle to Upper Jurassic limestones, marls, mudstones, and sandstones is known from drilling into the impact crater. No impact melt lithologies, however, have so far been reported from the Steinheim Basin. In samples of the breccia that were taken from the B‐26 drill core, we discovered small particles (up to millimeters in size) that are rich in SiO2 (~50 wt%) and Al2O3 (~28 wt%), and contain particles of Fe‐Ni‐Co sulfides, as well as target rock clasts (shocked and unshocked quartz, feldspar, limestone) and droplet‐shaped particles of calcite. The particles exhibit distinct flow structures and relicts of schlieren and vesicles. From the geochemical composition and the textural properties, we interpret these particles as mixed silicate melt fragments widely recrystallized, altered, and/or transformed into hydrous phyllosilicates. Furthermore, we detected schlieren of lechatelierite and recrystallized carbonate melt. On the basis of impactite nomenclature, the melt‐bearing impact breccia in the Steinheim Basin can be denominated as Steinheim suevite. The geochemical character of the mixed melt particles points to Middle Jurassic sandstones (“Eisensandstein” Formation) that crop out at the center of the central uplift as the source for the melt fragments.  相似文献   

13.
We report results of an interdisciplinary project devoted to the 26 km‐diameter Ries crater and to the genesis of suevite. Recent laboratory analyses of “crater suevite” occurring within the central crater basin and of “outer suevite” on top of the continuous ejecta blanket, as well as data accumulated during the past 50 years, are interpreted within the boundary conditions imposed by a comprehensive new effort to model the crater formation and its ejecta deposits by computer code calculations (Artemieva et al. 2013). The properties of suevite are considered on all scales from megascopic to submicroscopic in the context of its geological setting. In a new approach, we reconstruct the minimum/maximum volumes of all allochthonous impact formations (108/116 km3), of suevite (14/22 km3), and the total volume of impact melt (4.9/8.0 km3) produced by the Ries impact event prior to erosion. These volumes are reasonably compatible with corresponding values obtained by numerical modeling. Taking all data on modal composition, texture, chemistry, and shock metamorphism of suevite, and the results of modeling into account, we arrive at a new empirical model implying five main consecutive phases of crater formation and ejecta emplacement. Numerical modeling indicates that only a very small fraction of suevite can be derived from the “primary ejecta plume,” which is possibly represented by the fine‐grained basal layer of outer suevite. The main mass of suevite was deposited from a “secondary plume” induced by an explosive reaction (“fuel‐coolant interaction”) of impact melt with water and volatile‐rich sedimentary rocks within a clast‐laden temporary melt pool. Both melt pool and plume appear to be heterogeneous in space and time. Outer suevite appears to be derived from an early formed, melt‐rich and clast‐poor plume region rich in strongly shocked components (melt ? clasts) and originating from an upper, more marginal zone of the melt pool. Crater suevite is obviously deposited from later formed, clast‐rich and melt‐poor plumes dominated by unshocked and weakly shocked clasts and derived from a deeper, central zone of the melt pool. Genetically, we distinguish between “primary suevite” which includes dike suevite, the lower sublayer of crater suevite, and possibly a basal layer of outer suevite, and “secondary suevite” represented by the massive upper sublayer of crater suevite and the main mass of outer suevite.  相似文献   

14.
The ejecta blankets of impact craters in volatile‐rich environments often possess characteristic layered ejecta morphologies. The so‐called double‐layered ejecta (DLE) craters are characterized by two ejecta layers with distinct morphologies. The analysis of high‐resolution image data, especially HiRISE and CTX, provides new insights into the formation of DLE craters. A new phenomenological excavation and ejecta emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim—a well‐preserved DLE crater—and studies of other DLE craters. The observations show that the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a debris avalanche or (if saturated with water) a debris flow mode after landing, overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits during the emplacement stage that overrun and superimpose parts of the outer ejecta layer. Based on our model, DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock‐induced vaporization and melting of ground ice, leading to high ejection angles, proximal landing positions, and an ejecta curtain with relatively wet (in terms of water in liquid form) composition in the distal part versus dryer composition in the proximal part. As a consequence, basal melting of ice components in the ejecta at the transient crater rim, which is induced by frictional heating and the enhanced pressure at depth, initiates an outwards directed collapse of crater rim material in a translational slide mode. Our results indicate that similar processes may also be applicable for other planetary bodies with volatile‐rich environments, such as Ganymede, Europa, and the Earth.  相似文献   

15.
Abstract— The Lockne and Tvären craters formed in the Late Ordovician Baltoscandian epicontinental sea. Both craters demonstrate similarities concerning near‐synchronous age, target seabed, and succeeding resurge deposits; however, the water depths at the impact sites and the sizes of the craters were not alike. The post‐impact sedimentary succession of carbonates, i.e., the Dalby Limestone, deposited on top of the resurge sediments in the two craters, is nevertheless similar. At least three main facies of the Dalby Limestone were established in the Lockne crater, depending on sea‐floor topography, location with respect to the crater, and local water currents. The dominating nodular argillaceous facies, showing low values of inorganic carbon (IC), was distributed foremost in the deeper and quiet areas of the crater floor and depressions. At the crater rim, consisting of crushed crystalline basement ejecta, a rim facies with a reef‐like fauna was established, most certainly due to topographical highs and substrate‐derived nutrients. Between these facies are occurrences of a relatively thick‐bedded calcilutite rich in cephalopods (cephalopod facies). In Tvären, the lower part of the succession consists of an analogous argillaceous facies, also showing similar low IC values as in Lockne, followed by calcareous mudstones with an increase of IC. Occasionally biocalcarenites with a distinctive fauna occur in the Tvären succession, probably originating as detritus from a facies developed on the rim. They are evident as peaks in IC and lows in organic carbon (Corg). The fauna in these biocalcarenites corresponds very well with those of erratic boulders derived from Tvären; moreover, they correspond to the rim facies of Lockne except for the inclusion of photosynthesizing algae, indicating shallower water at Tvären than Lockne. Consequently, we suggest equivalent distribution patterns for the carbonates of the Dalby Limestone in Lockne and Tvären.  相似文献   

16.
Abstract— The effect of shallow marine water (?30–100 m deep) in the late excavation and early modification stages of a marine‐target crater 5 km in diameter, as exemplified by the Late Cretaceous Wetumpka impact structure in Alabama, USA, is manifest in the early collapse of a weak part of the rim. Excavation flow and connate marine water are interpreted to be factors in this collapse. This partial rim collapse catastrophically emplaced an upper‐structure‐filling unit of broken and redistributed sedimentary target formations, which presently mantles the deeper fallback breccia deposits within the structure. Furthermore, rim collapse flow facilitated the formation of a structurally modified, extrastructure terrain, which is located outside and adjacent to the collapsed rim segment. This extrastructure terrain appears to be the product of extensive slumping of poorly consolidated target sedimentary formations.  相似文献   

17.
Scott C. Mest  David A. Crown 《Icarus》2005,175(2):335-359
The geology and stratigraphy of Millochau crater (21.4° S, 275° W), located in the highlands of Tyrrhena Terra, Mars, are documented through geomorphic analyses and geologic mapping. Crater size-frequency distributions and superposition relationships are used to constrain relative ages of geologic units and determine the timing and duration of the geologic processes that modified Millochau rim materials and emplaced deposits on Millochau's floor. Crater size-frequency distributions show a Middle Noachian age for rim materials and Middle Noachian to Early Hesperian ages for most of the interior deposits. Valley networks and gullies incised within Millochau's rim materials and interior wall, respectively, indicate fluvial activity was an important erosional process. Millochau contains an interior plateau, offset northeast of Millochau's center, which rises up to 400 m above the surrounding crater floor and slopes downward to the south and west. Layers exposed along the northern and eastern scarp boundaries of the plateau are tens to hundreds of meters thick and laterally continuous in MOC images. These layers suggest most materials within Millochau were emplaced by sedimentary processes (e.g., fluvial or eolian), with the potential for lacustrine deposition in shallow transient bodies of water and contributions of volcanic airfall. Mass wasting may have also contributed significant quantities of material to Millochau's interior, especially to the deposits surrounding the plateau. Superposition relationships combined with impact crater statistics indicate that most deposition and erosion of Millochau's interior deposits is ancient, which implies that fluvial activity in this part of Tyrrhena Terra is much older than in the eastern Hellas region. Eolian processes mobilized sediment to form complicated patterns of long- and short-wavelength dunes, whose emplacement is controlled by local topography. These deposits are some of the youngest within Millochau (Amazonian) and eolian modification may be ongoing.  相似文献   

18.
Abstract— We have used data from the Clementine and Lunar Prospector spacecraft in conjunction with reflectance spectra collected with Earth‐based telescopes to study the geology of the Hadley‐Apennine portion of the lunar Imbrium basin. The Apennine Mountains and the Imbrium backslope are composed of Imbrium basin ejecta with a noritic or anorthositic norite composition. We find that the two major facies of Imbrium ejecta, the Apenninus material and the Alpes Formation, differ in iron and titanium content. “Pure” anorthosite has tentatively been identified in the ejecta of the crater Conon, based on low‐iron content. A difference in Th and rare earth element (REE) abundance between the northeast Apennine Mountains (lower) and the southwest Apennines (higher) is noted. Pyroclastic deposits are common in the region and are dominated by mare basalt material, probably plug rock ejected in vulcanian eruptions. The Apennine Bench Formation, which is likely to be a deposit of non‐mare volcanic material, has an Fe, Ti and Th composition consistent with that of Apollo 15 KREEP basalt samples thought to be fragments of the Bench. Aristillus crater is a Th and REE hot spot, and the stratigraphy of the impact target site has been reconstructed from knowledge of the composition of the crater interior and exterior deposits. We infer that the target consisted of highland basement, KREEP plutonics and volcanics, and both high‐ and low‐Ti mare basalt.  相似文献   

19.
Drill core UNAM‐7, obtained 126 km from the center of the Chicxulub impact structure, outside the crater rim, contains a sequence of 126.2 m suevitic, silicate melt‐rich breccia on top of a silicate melt‐poor breccia with anhydrite megablocks. Total reflection X‐ray fluorescence analysis of altered silicate melt particles of the suevitic breccia shows high concentrations of Br, Sr, Cl, and Cu, which may indicate hydrothermal reaction with sea water. Scanning electron microscopy and energy‐dispersive spectrometry reveal recrystallization of silicate components during annealing by superheated impact melt. At anhydrite clasts, recrystallization is represented by a sequence of comparatively large columnar, euhedral to subhedral anhydrite grains and smaller, polygonal to interlobate grains that progressively annealed deformation features. The presence of voids in anhydrite grains indicates SOx gas release during anhydrite decomposition. The silicate melt‐poor breccia contains carbonate and sulfate particles cemented in a microcrystalline matrix. The matrix is dominated by anhydrite, dolomite, and calcite, with minor celestine and feldspars. Calcite‐dominated inclusions in silicate melt with flow textures between recrystallized anhydrite and silicate melt suggest a former liquid state of these components. Vesicular and spherulitic calcite particles may indicate quenching of carbonate melts in the atmosphere at high cooling rates, and partial decomposition during decompression at postshock conditions. Dolomite particles with a recrystallization sequence of interlobate, polygonal, subhedral to euhedral microstructures may have been formed at a low cooling rate. We conclude that UNAM‐7 provides evidence for solid‐state recrystallization or melting and dissociation of sulfates during the Chicxulub impact event. The lack of anhydrite in the K‐Pg ejecta deposits and rare presence of anhydrite in crater suevites may indicate that sulfates were completely dissociated at high temperature (T > 1465 °C)—whereas ejecta deposited near the outer crater rim experienced postshock conditions that were less effective at dissociation.  相似文献   

20.
Abstract— The Lockne crater in Sweden is a marine‐target crater, formed in a shelf sea, approximately 460 Ma ago. The crater structure consists of an inner crater surrounded by an outer, inclined surface that extends to almost 12 km from the center. Marine craters differ in several respects from craters formed on land. One special feature is the formation of resurge gullies excavated by the erosional force of the resurging sea water after the impact. The formation of these gullies strongly depends on the ratio crater‐rim height to water depth, as well as on the size of the impact structure. Such gullies are known from very few marine‐target craters. At the Lockne impact site, four gullies are identified, each of which cuts radially through the rim of the outer crater. The rapid collapse of that part of the crater cavity, which formed in the seawater, resulted in forceful flooding of the crater. The resurging seawater not only contained fallback‐ejecta; on its way towards the cavity on the sea‐bottom it incorporated fractured lithologies from the sea‐bottom as well. This entrained material disintegrated during transport and constitutes today the dominantly monomict lower part of the resurge sequence. The resurge flood was highly turbulent, highly erosive, and developed to a probable hyperconcentrated flow or a possible water flood. The erosion in the gullies proceeded as headward erosion down to the transition zone between the brecciated and the less disintegrated crystalline basement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号