共查询到20条相似文献,搜索用时 9 毫秒
1.
利用2013年3月至2017年2月天津西青地基35通道微波辐射计观测资料,分析天津地区大气水汽和液态水特征。结果表明:天津地区各季节积分水汽和积分液态水的日变化趋势基本一致,均呈单峰型日变化特征,其中夏季最大,秋季次之,冬季最小。各季节积分水汽最大值出现在23:00时(北京时,下同)的概率均明显大于其他时次,夏季和冬季的积分液态水的最大值出现在14时的概率最大,春季和秋季分别出现在10时和13时的概率最大。天津地区水汽密度由地面至3.5 km处逐渐减小,递减梯度由夏季、秋季、春季和冬季的顺序依次增大,各季节从1.5 km往上日变化均不明显。1 km以下,春季、夏季和秋季平均水汽密度的日变化曲线呈双峰型,主峰值分别出现在08时、11时和12时左右。冬季呈单峰型变化,峰值区出现在12-16时。液态水密度随高度分层变化,夏季的液态水密度大值区(0.08-0.14 g·m-3)为5-6 km,在18-20时出现最大值。秋季、春季和冬季液态水密度的大值区出现的高度为1.5-3.5 km,但数值依次减小,春季和冬季的最大值出现在05时前后,秋季则出现在02时左右。另外天津地区水汽、液态水与温度和降水量的变化趋势基本一致,除夏季06-18时及冬季部分时次外,水汽与温度呈正相关。液态水与温度相关性较差,但与降水量呈正相关,全年液态水与降水量夜间的相关性大于白天。 相似文献
2.
六盘山区是中国典型的农牧交错带和生态脆弱带,也是黄土高原重要的水源涵养地、生态保护区及国家级扶贫开发区。利用2017年6-11月隆德气象站地基多通道微波辐射计资料,结合同期平凉探空站及隆德地面降水等观测资料,分析了六盘山区夏秋季大气水汽、液态水变化特征。结果表明:六盘山区夏秋季在降水天气背景下,大气水汽含量和液态水含量均较高,分别为无降水天气背景下的1.4倍和7.0倍;降水天气背景下水汽在5000 m以下有明显的增加,且在此高度范围内的水汽密度随高度的递减率比无降水天气背景下明显偏小;各高度层的液态水相比无降水天气背景下均有明显增大,除6月外,主峰值均出现在0℃层高度层以下。六盘山区夏秋季各月中,6-9月。大气水汽含量高值区均出现在正午到傍晚时段,低值区均出现在日出前后;液态水含量在日出前、午后及傍晚分别出现峰值,最明显的峰值出现在午后。对一次对流性降水天气过程分析后发现,降水发生前40 min大气水汽含量和液态水含量出现两次明显的跃增,水汽向上输送不断加强,2500-7500 m高度的相对湿度明显增大。 相似文献
3.
大气云水含量分布及演变规律研究对于区域云水资源开发利用意义重大。利用2017年10月至2020年12月陕西泾河站MWP967KV型地基多通道微波辐射计探测资料,分析关中平原中部大气云水含量时间变化特征,并结合地面降水和多普勒天气雷达观测资料,通过个例对比分析不同云系降水前水汽和液态水发展演变特征。结果显示:关中平原中部水汽夏季最高,秋季次之,冬季最低,峰值在7月,谷值在12月;液态水秋季和夏季较高,冬季最低,峰值在9月,谷值在12月。水汽和液态水均呈现单峰单谷型日变化,峰谷出现时间存在差异,水汽日峰值夏季和秋季在07:00—08:00(北京时,下同)、春季在23:00、冬季在13:00,日谷值春夏秋三季在12:00前后、冬季在22:00;液态水日峰值春夏秋三季在07:00—09:00、冬季略晚(10:00),日谷值均在夜间。不同类型云系降水前云水含量增长用时不同,层状云系发展用时平均为15.6 h,其他积状云系平均为9.0 h,初期水汽均先于液态水发展,越临近降水时刻波动幅度越大,但降水触发前液态水率先跳变跃增,且不同季节层状云系触发降水时的水汽和液态水差异较大;午后强对流发展用时较短... 相似文献
4.
郑飒飒 《高原山地气象研究》2020,40(2):83-88
利用2016年12月1日~2017年11月30日,地基微波辐射计、L波段探空资料和地面常规气象资料,对四川盆地的水汽和云液态水进行了初步分析。结果表明:(1)探空与微波辐射计反演的水汽含量差值为0.558cm,相关系数为0.787,且通过了α=0.01显著性检验,微波辐射计反演的水汽含量是可信的。(2)基于地基微波辐射计分析四川盆地水汽和云液态水含量的变化特征,可以得出,夏季水汽含量最多,秋季云液态水含量最多;最大值出现在夜晚,最小值出现在白天,夜晚值大于白天。水汽含量和云液态水含量最大值和最小值时间间隔秋季最长(均为16小时),冬季最短(分别为9小时、10小时);水汽含量日较差在秋季最大(1.096cm),冬季最小(0.489cm),云液态水含量日较差在夏季最大(0.908mm),冬季最小(0.311mm)。水汽含量与降水、温度的月变化特征为显著性正相关,相关系数分别为0.842和0.915;与温度日变化特征在春、秋季的11:00~次日01:00为显著性正相关,白天相关性大于夜晚,在夏季01:00~13:00为显著性负相关,日出前相关性最高。(3)水汽和云液态水含量在降水过程开始前1~2h有明显的波动上升,降水结束后,水汽和云液态水含量迅速减少,水汽和云液态水的变化特征对降水天气的预报具有指示意义。 相似文献
5.
6.
目前的大气水汽算法只适用于晴空条件,但是全球大部分时间云层覆盖都处于40%~60%之间。因此,只适用于晴空条件下的大气水汽反演算法,是不能满足应用需求的。而微波具有一定的穿透能力这一特点,使得其在全天候大气水汽探测方面具有很大的发展潜力。本文发展了基于微波辐射计AMSR-E的数据反演大气水汽的算法,利用不同波段间地表发射率之间的线性关系,消去辐射计信号中的地表信息,而AMSR-E的23.8GHz对大气水汽比较敏感,因此用其反演大气水汽,反演的结果和MODIS以及实测的数据进行对比,算法优势明显。 相似文献
7.
9.
地基遥感大气水汽总量和云液态水总量的研究 总被引:9,自引:1,他引:9
介绍了地基微波辐射计遥感反演大气柱中的水汽总量和云液态水总量的辐射传输原理和反演方法。给出了实用的有气候代表性的北京地区4个季节的反演公式,并对反演公式进行了数值检验,分析了反演精度:春、夏、秋、冬4季水汽总量反演的相对标准偏差分别为3.1%、1.6%、2.2%和2.4%。用反演公式反演在香河探测的NASA微波辐射计资料发现:微波辐射计反演的水汽总量平均比探空测量值偏大O.21cm,二者的线性相关系数为0.988.均方根误差为0.16cm:云液态水总量除降水云天外.值均在0.1mm以下。 相似文献
10.
利用地基双通道微波辐射计遥感青藏高原大气云水特征 总被引:6,自引:1,他引:6
利用1997年春季西宁市地基双通道(22.235和35.3GHz)微波辐射计观测的资料,分析了不同月份、不同天气条件下的大气总含水量(V)和云中液态水积分含量(L)的分布规律。结果表明,在相同天气条件下,L值3-5月均呈逐渐递增的趋势,增加幅度一般为20%-40%,V值变化幅度很小;春季高原L值大约只有V的1%。与河北省的资料进行对比后发现,L值基本相当,而V值高原只有平原地区的30%-50%。 相似文献
11.
基于机载微波辐射计GVR,以北京探空资料作为训练数据,机载对空微波辐射传输方程作为前向算子,建立基于BP神经网络和Decker模型基础上的积分水汽含量和液态水路径反演算法。与GVR自带算法相比,新算法增加观测高度作为输入变量,考虑温度对云水相态的影响建立新的云模型,对历史探空资料进行补全,增加积分高度至30 km。利用数值模拟检验、外场观测试验和观测误差传递分析对两种算法反演的积分水汽含量反演误差进行验证,结果表明:新算法和自带算法模拟计算的反演值与探空计算值相关系数分别为0.9988、0.9929,自带算法反演值普遍低于探空计算值;新算法和GVR自带算法反演的积分水汽含量统计均方根绝对误差分别为0.05~1.30 mm、0.2~3.0 mm,相对误差分别为1%~10%、4%~65%,新算法在6 km以下计算的积分水汽含量相对误差最小值为1%,整层高度上约75%的相对误差低于5%,而自带算法仅有不到1%的相对误差低于5%;以2016年11月20日观测个例为例,GVR仪器观测误差经过新算法和自带算法反演公式传递后造成的误差在3000 m高度分别为0.05 mm和0.06 mm,随水汽探测... 相似文献
12.
13.
MP-3000A 是一种新型大气探测仪器,可以连续得到从地面到10 km 高度上高分辨率的位温、相对湿度、水汽密度及其廓线。选取大雾发生、维持及消散时微波辐射计观测数据,分析发现,大雾从形成到消散过程中水汽密度、相对湿度和位温均有不同变化;大雾发生前近地层大气中的相对湿度、水气密度一般会稳定增加,大雾发生时两者会有爆发性增加的现象。大雾维持阶段在近地层多伴有逆温层,辐射雾逆温层明显;大雾期间雾层高度有稳定型也有波动型,雾层高度下降时大雾会迅速加强。大雾消散时近地层大湿区减小抬升,水汽密度迅速减小。因此研究微波辐射计探测的大气水汽密度、液态水含量和位温,将有助于提高大雾生成与消散的预报、预警。 相似文献
14.
对比分析多通道微波辐射计、GNSS/MET(GPS)与常规探空观测资料,利用微波辐射计观测资料分析呼和浩特地区水汽分布特征。结果表明:微波辐射计的温度廓线在3km以下比较准确,相对湿度和水汽密度在2km以下具有参考价值。微波辐射计、GPS与探空测量水汽的绝对误差分别为0.38cm与1.0cm,且均高于探空值。呼和浩特地区水汽具有明显的季节变化与日变化特征,夏季水汽平均值最大,为2.59cm,秋季其次,为1.52cm,春季和冬季分别为0.96cm和0.54cm。四个季节的水汽日较差夏季(0.20cm)>秋季(0.17cm)>冬季(0.14cm)春季(0.09cm),水汽的日变化率冬季(26.63%)>秋季(12.01%)>春季(9.63%)>夏季(8.53%)。水汽最大值、最小值出现频率具有一定特征,不同季节水汽最大值出现在23:00—23:59的概率最大,最小值在00:00—00:59出现的概率最大。 相似文献
15.
地基微波辐射计对乌鲁木齐暴雨天气过程的观测分析 总被引:1,自引:0,他引:1
MP-3000A是一种新型大气探测仪器,可以连续得到从地面到10km高度上高分辨率的温度、相对湿度、水汽廓线以及液态水廓线。通过选取2011年5月1日的微波辐射计观测数据,分析在降水发生前后的水汽密度和液态水含量的变化,发现大气降水与水汽密度和液态水含量有很紧密的联系。大气中的可降水量一般会维持在25mm,当大气中的可降水量值超过50mm,液态水含量值开始增加的时候,发生降水的可能性增大;降水过后,液态水含量若是没有回落到0.0mm以内,在未来的2~3h内还是会发生降水,因此研究微波辐射计探测的大气水汽密度和液态水含量,将有助于提高短时、临近预报的准确度。 相似文献
16.
利用辽宁省阜新蒙古族自治县QFW-6000型地基微波辐射计和邻近探空资料,对微波辐射计反演精度进行评估,分析云中积分液态水含量、积分水汽含量与降水量的变化特征。结果表明:微波辐射计的反演参量与探空资料具有高相关性,反演的相对湿度基本大于探空测量的相对湿度,近地面与高层的误差在5%以内。基于云中积分液态水含量与降水量的统计分析发现,降水开始前存在明显跃增,云中积分液态水含量会快速增大到1 mm以上,随着降水的持续,云中积分液态水含量一直维持在2 mm以上,当降水结束,云中积分液态水含量迅速回落至0.2 mm以下。积分液态水和积分水汽含量为雨天>云天>晴天,积分水汽含量在不同天气下具有相似的垂直结构,均表现出随高度升高递减的变化趋势,水汽在高空的递减速率相对较慢,到近地层递减速率明显加快;云中积分液态水含量在云天和晴天的垂直分布结构相似,最大值分别为0.15 g·m-3和0.10 g·m-3,均位于1 km高度处;雨天云中积分液态水含量具有两个峰值区间,分别位于1.0 km和2.5 km高度处。云中积分液态水含量和积分水汽含量呈现白天高值而夜间及清晨低值的日变化特征,云底高度则呈相反的变化趋势。 相似文献
17.
18.
19.
用1958-2004年NCEP/NCAR再分析资料分析了中国南方春季大尺度大气水汽汇的时空变化特征。结果表明:华南中东部、广西北部-湖南西部-贵州东部地区是中国南方春季水汽汇的两个主要变异中心区。华南中东部春季水汽汇具有明显的年际和年代际变化特征,并以年代际方差占优;广西北部-湖南西部-贵州东部地区春季水汽汇以年际变化为主。华南中东部以及广西北部-湖南西部-贵州东部地区水汽汇的强度异常与东亚上空水汽输送异常导致上述地区垂直积分的水汽通量辐合的异常密切相关,当中国南方上空有西南(东北)风水汽通量距平,即西南风水汽输送增强(减弱)时,则上述地区上空的水汽汇偏强(偏弱)。 相似文献
20.
为了发展云雷达与微波辐射计联合反演液态水含量的方法, 利用2019年4—9月中国气象科学研究院在广东龙门开展的综合观测试验中的双波段云雷达和微波辐射计数据, 首先检验了在降水条件下微波辐射计天顶观测和斜路径观测两种探测模式反演温度(T)、相对湿度(RH)、液态水含量(LWC)和液态水路径(LWP)的合理性, 然后分析了两种探测设备反演LWC和LWP的差别。得到以下结论: (1)微波辐射计在斜路径观测模式下反演的产品受降水影响较小, 其反演结果明显优于天顶观测模式; (2)两种探测设备反演的LWP相关性较好且随时间变化较为一致, 但云雷达反演LWP与平均回波强度有明显相关, 随着雷达回波强度的增大, 云雷达与微波辐射计反演的LWP之比越大; (3)两种探测设备反演的LWC相关性较差且存在明显偏差, 在不考虑融化层的情况下单波段云雷达反演LWC与微波辐射计随高度变化趋势相近, 双波段云雷达反演LWC与微波辐射计反演结果在1 km及其以上区间存在明显差异。 相似文献