首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the aim of better understanding geochemistry of coal, 71 Late Permian whole-seam coal channel samples from western Guizhou Province, Southwest China were studied and 57 elements in them were determined. The contents of Al, Ca, Co, Cr, Cu, Fe, Ga, Hf, K, Li, Mn, Mo, Nb, Ni, Sn, Ta, Ti, Th, U, V, Zr, and REEs in the Late Permian coals from western Guizhou Province are higher than the arithmetic means for the corresponding elements in the US coals, whereas As, Ba, Br, F, Hg, P, Se, and Tl are lower. Compared to common Chinese coals, the contents of Co, Cr, Cu, Ga, Hf, Li, Mn, Mo, Ni, Sc, Sn, Ti, U, V, Zn, and Zr in western Guizhou coals are higher, and As, F, Hg, Rb, Sb, Tl, and W are lower. Five groups of elements may be classified according to their mode of occurrence in coal: The first two, Group A, Tm–Yb–Lu–Y–Er–Ho–Dy–Tb–Ce–La–Nd–Pr–Gd–Sm, and Group B, As–Sr–K–Rb–Ba–F–Ash–Si–Sn–Ga–Hf–Al–Ta–Zr–Be–Th–Na, have high positive correlation coefficients with ash yield and they show mainly inorganic affinity. Some elements from Group B, such as Ba, Be, Ga, Hf, and Th, are also characterized by significant aluminosilicate affinity. In addition, arsenic also exhibits high sulfide affinity (rS–Fe>0.5). The elements, which have negative or lower positive correlation coefficients with ash yield (with exceptions of Bi, Cs, Nb, Mn, Se, and Ti), are grouped in other four associations: Group C, Cr–V–Mo–U–Cd–Tl; Group D, Hg–Li–Sc–Ti–Eu–Nb–Cs–W; Group E, Bi–Sb; and Group F, Co–Ni–Cu–Pb–Zn–Mg–Se–Ca–Mn–S–Fe. The correlation coefficients of some elements, including Co, Cr, Cu, Fe, Hg, Li, Mo, Ni, P, S, Sc, U, V, and Zn, with ash yield are below the statistically significant value. Only Cr and Cu are negatively correlated to ash yield (−0.07 and −0.01, respectively), showing intermediate (organic and inorganic) affinity. Manganese and Fe are characterized by carbonate affinity probably due to high content of epigenetic veined ankerite in some coals. Phosphorus has low correlation coefficients with any other elements and is not included in these six associations. There are five possible genetic types of enrichment of elements in coal from western Guizhou Province: source rock, volcanic ash, low-temperature hydrothermal fluid, groundwater, and magmatic hydrothermal inputs.  相似文献   

2.
A detailed study of U-Th distribution in two Lower Cretaceous coals in Canada shows that for these coals formed in a continental fluvial and deltaic environment with no marine influence, the U contents are in the range 0.07–7.5 ppm with Th in the range 0.3–11.0 ppm. Average Th/U ratios are near 2 which indicates slight uranium enrichment. The environments of the two coals show different degrees of weathering (montmorillonite-illite and kaolin-gibbsite) and U values are lowest in the more weathered environment In sedimentary profiles associated with the coals, the maximum uranium values are not in the coals but in carbonaceoss clay sediments above and below coal seams. Uranium distribution patterns can be correlated cith Ni, Cu, Rb, Pb, Sr, and Zr, indicating contributions from heavy minerals plus more mobile species (possibly simple organic compounds) which are adsorbed or bonded onto claysor organic matter.  相似文献   

3.
Twenty five coal samples from the Late Permian coal-bearing strata in Weining, Nayong, and Zhijin, western Guizhou Province, SW, China, were analyzed for platinum group elements (PGEs). The coal ashes were digested by the Carius tube technique and accurately measured by isotope dilution-inductively coupled plasma mass spectrometry (ID-ICP-MS) for all PGEs. The results are much lower than the previous reported values. Our study suggested that the previously reported PGE values are incorrect and may due to the polyatomic interferences in ICP-MS measurements. In our study, samples from the Weining coalfield have the lowest PGE contents (from 0.019 Ir to 0.42 ng/g Pd), which represent the PGE background value in coal in western Guizhou province. Some of the coals have Pt and Pd contents about 20-times higher than the background value, indicating PGEs are concentrated. We also reported new and reliable PGE data and background value of coal in western Guizhou province, SW, China, and suggested to rework the PGE background values of Chinese coals.  相似文献   

4.
煤中有害微量元素对生态环境和人体健康的潜在影响是地球化学和能源环境领域研究的热点之一,地球化学制图对深刻理解地球化学过程及其变化规律具有重要作用。目前,尚缺乏中国煤中有害微量元素含量的空间分布图。通过对中国煤炭样品中1 167个Be、1 315个Co、1 406个Cu、1 191个Mo、1 247个Th 和1 390个Zn含量数据进行统计分析,测算中国煤中Be、Co、Cu、Mo、Th 和 Zn 的平均含量,并利用ArcGIS技术绘制中国煤中Be、Co、Cu、Mo、Th、Zn的含量地球化学空间分布地图。结果表明:中国煤中有害微量元素含量跨度大,数据分布呈正偏性,不符合正态分布特征;中国煤中Be、Co、Cu、Mo、Th和Zn 的平均含量分别为2.10、5.53、21.36、2.19、7.35和30.02 mg/kg;各元素含量的空间分布极不均匀;煤中有害微量元素含量空间分布格局是多种因素综合作用的结果,如物源区母岩、热液作用、水运移作用等,其中热液作用是煤中有害微量元素异常富集的典型特征。研究成果可为煤中微量元素研究和环境管理提供直观有效的参考。   相似文献   

5.
Geochemistry and origin of elements in some UK coals   总被引:3,自引:0,他引:3  
Twenty-four UK coals ranging in rank with 4.6%–37.6% volatile matter were analysed for 46 major and trace elements. The samples were obtained from the UK Coal Bank and are representative of the major UK coal fields. The major element distributions are interpreted in terms of the mineralogical variations—quartz and kaolinite are largely responsible for the Si and Al, carbonates for Ca and Mg and pyrite for Fe. Also exerting an influence in some samples are siderite, Al-phosphate minerals and illite. Based on statistical relationships with the major elements, Rb, Cr, Th, Ce, Zr, Y, Ga, La, Ta, Nb and V are thought to be mainly present in the clay minerals, and As, Mo, Sb, Tl, Se and Bi and Pb are probably present in pyrite. Strontium and Ba are concentrated in a restricted number of samples related to the phosphate minerals. Germanium is the only element for which a major organic association can be demonstrated. Elements with an indirect association with the organic matter are Na, Cl, and Br in porefluids and possibly Te. The ash content is controlled mainly by the detrital input and the trace elements related to the ash content are therefore those elements associated with the clay minerals. Variations with rank would appear to be mainly related to the moisture content (porefluids). The trace elements associated with the quartz and clay minerals are thought to be dominantly detrital in origin. The non-detrital elements, essentially those contained in pyrite, are thought to have been incorporated in the depositional environment from waters with enhanced salinities through seawater ingress, hence there are positive relationships between S and trace element concentrations.  相似文献   

6.
《Organic Geochemistry》1987,11(2):83-89
Rare earth element and yttrium abundances in vitrain, xylain, liptain, fusain and whole coal samples from Bulgarian coal deposits have been studied. Vitrain, xylain, and liptain are depleted, while fusain is enriched in REE and Y as compared to the whole coal samples from which they were selected. Chondrite-normalized patterns show relative enrichment of light (LREE) against heavy (HREE) rare earth elements, negative Eu anomaly, and positive Lu anomaly. The shale-normalized patterns of the lithotypes reveal an increase from LREE to HREE, while those of the whole coal samples and mineral interlayers are less fractionated. The petrographic composition of the coals is of secondary importance for the concentration of the REE and Y. The main factors are the source area and the input of dissolved REE and Y into the coal depositional sites.  相似文献   

7.
以淮北煤田二叠纪10、7、3煤层样品为研究对象,采用仪器中子活化法(INNA)测试了煤中42个伴生元素的含量,将其与华北石炭-二叠纪和中国煤中的伴生元素含量、范围进行了对比,并对伴生元素中主量元素含量和灰分的关系、微量元素的共生组合特点以及稀土元素含量与灰分的关系、稀土元素分布模式进行了初步分析。结果表明,对环境有影响的Ba、Co、Cr、Cu、Mo、Th、V、W、Zn、Ti元素在研究区煤中相对富集,Al、Ti、K、Na等元素与灰分有较好的相关性,Ca、Mg、Fe和灰分的相关性较差,稀土元素与灰分正相关且具有相似的分配模式,普遍存在Eu亏损现象,说明煤中伴生元素的主要来源是陆源物质。  相似文献   

8.
Ashes of the lithotypes from some Indian coals were analyzed by emission spectroscopy for some selected elements. Based on the combined concentration and differential fixation, the elements Pb and Co appear to be supplied by the woody portion of the proto-coal material whereas Ga, Nb, Ni, Cr and In can be attributed to the non-woody portions of the proto-coal. On the other hand, Cu, Mo and part of the available Cr appear to come from both organic and inorganic sources, whereas V, Mn, Sr, La and Ba have been attributed to an extraneous inorganic source. The differential fixation of the trace elements appears to be mainly dependent on the physicochemical environment of the basin.  相似文献   

9.
The concentration, distribution and modes of occurrence of trace elements in thirty coals, four floors and two roofs from Northern China were studied. The samples were collected from the major coalfields of Shanxi Province, Shaanxi Province, Inner Mongolian Autonomous Region, and Ningxia Hui Autonomous Region. The concentrations of seventeen potential hazardous trace elements, including Hg, As, Se, Pb, Cd, Br, Ni, Cr, Co, Mo, Mn, Be, Sb, Th, V, U, Zn, and five major elements P, Na, Fe, Al, and Ca in coals were determined.Compared with average concentration of trace elements in Chinese coal, the coals from Northern China contain a higher concentration of Hg, Se, Cd, Mn, and Zn. They may be harmful to the environment in the process of combustion and utilization. Vertical variations of trace elements in three coal seams indicated the distributions of most elements in coal seam are heterogeneous. Based on statistical analyses, trace elements including Mo, Cr, Se, Th, Pb, Sb, V, Be and major elements including Al, P shows an affinity to ash content. In contrast, Br is generally associated with organic matter. Elements As, Ni, Be, Mo, and Fe appear to be associated with pyrite. The concentrations of trace elements weakly correlate either to coal rank or to maceral compositions.  相似文献   

10.
低熟煤中的孢粉与常量元素和微量元素的相关性初探   总被引:1,自引:0,他引:1  
运用电离耦合等离子体原子发射光谱(ICP-AES)和X射线荧光光谱分析(XRF),对新疆八道湾煤矿中侏罗统西山窑组煤中的孢粉角质层进行了分析,测定了煤中的常量和微量元素。并对煤中孢粉和共伴生元素进行了回归分析,探讨了微量和常量元素的煤岩学及孢粉学属性,在微量元素与孢粉的煤相学应用方面作了初步尝试。结果表明,成煤的蕨类植物孢子和裸子植物花粉与某些常量元素和微量元素有着很高的相关性;蕨类植物孢子和裸子植物花粉的相对含量在煤中具有互补性,决定了它们与微量元素的关系也具有一定的互补性。  相似文献   

11.
淮北煤中几种具有环境意义的微量元素分布   总被引:6,自引:1,他引:5  
通过中子活化法,对淮北煤田主采煤层中和相对应的灰中几种具有环境意义的微量元素含量进行了测试,分析了它们在煤中和灰中的含量分布,并与中国和华北煤田煤中的平均值进行了对比,以便为煤和煤灰的综合利用提供基础资料。  相似文献   

12.
吉林白山地区原煤微量元素地球化学特征   总被引:2,自引:1,他引:1  
对吉林白山地区煤矿主采煤层中的As、B、Ba、Cd、Cu、Hg、Pb、Se、Sr等微量元素进行了分析,结果表明:太原组与山西组由于成煤环境不同,微量元素组成及其质量分数存在一定的差异,太原组原煤中As、B、Hg、Pb、Se、Zn的质量分数明显高于山西组,山西组原煤中Ba、Cr、Cu、Mn、V的质量分数明显高于太原组。白山地区原煤中As、B、Hg、Pb、Se的质量分数明显高于地壳元素平均值,呈富集状态;Co、Cd与地壳平均值接近,其他元素均亏损。与全国煤中微量元素的质量分数平均值相比,As、Ba、Co、Cr、Cu、Hg、Ni、Pb、Se、V、Zn的质量分数高于全国平均值。B、Mn、Sr质量分数低于全国平均值。微量元素赋存状态及相关分析表明,Fe与亲硫有害元素As、Cu、Hg、Pb、Se具有显著相关关系,说明煤中黄铁矿及其他硫化物是许多有害微量元素的重要载体。  相似文献   

13.
The distribution of trace elements in the lower Eocene coal seam mined in the Yeniceltek, Kucukkohne and Ayridam coal mines from the Sorgun Basin was investigated in relation to ash content and maceral composition. The coal seam is mainly composed of huminite. In the present study, 35 samples from five seam sections were collected on the basis of megascopic characteristics. Results were determined using an energy dispersive polarised X-ray fluorescence (EDP-XRF) spectrometer on a whole-coal dry basis. Most of the major and trace elements studied are enriched in high-ash samples, while Ba, Br, Mn and W show relative enrichments in low-ash samples. Most of elements studied, such as Ga, Ce, La, Th, Nb, Rb, Zr, V, Cu, U, Pb, Sb, Cs, Sn, Cr, Se, Y and Zn, are primarily associated with mineral matter (clay minerals). Arsenic and a part of Zn, Se and Sb are probably concentrated in pyrites in the samples. Element concentrations show statistically significant negative correlations with many macerals and positive relationships with only attrinite that is mainly mixed with mineral matter (clay minerals and small quartz grains) in the samples. Nine trace elements (As, Cr, Mn, Ni, Pb, Sb, Se, Th and U), considered as potentially Hazardous Air Pollutants, are present in low to moderate concentrations. The mean values of trace element concentrations display relative enrichments in Se (2.8 ppm), Th (21 ppm) and W (26 ppm) in the investigated samples in comparison with other coals in the world.  相似文献   

14.
Permian coals of the southern hemisphere are generally considered to contain lower concentrations of sulfides, halogens, and trace elements when compared to northern hemisphere Carboniferous coals. Few studies have considered the trace element content in South African coals, and little or no work has been published for Highveld coals. Of the nineteen coal fields in South Africa, the Highveld coal field is one of the nine currently producing, and is second largest in terms of production. Five run of mine samples and a high ash middlings product from the Number 4 Lower seam were analyzed, totaling six sample sets. Fourteen trace elements (As, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, V, and Zn) were selected for this study based on the global perception that these elements may be hazardous to human health and/or the environment when they are released during coal utilization. Several sample preparation techniques were tested using certified reference materials (SARMs 18, 19 and 20) to determine the most repeatable technique for these coals. The samples were analyzed by ICP-AES and CVAA (Hg only). Microwave digestion proved to be generally unreliable despite the utilization of several different methods. A slurry direct injection method into the ICP-AES provided good correlations with the reference material, but requires further development to enhance the confidence level in this relatively unexplored technique. Samples prepared based on three ASTM standards for the determination of trace elements in coal provided repeatable results in most instances, and were the preparation methods utilized for the Highveld coals.The trace element values determined for the Highveld coals are generally in good agreement with values available in literature for South African coals, with the exception of Hg, Mn and Cr. Hg values reported here are lower, Cr and Mn higher. Results generally agree well with analyses on the same samples conducted by the United States Geological Survey. When considering the global ranges for trace elements, the Highveld range values are within Swaine's range boundaries with the exception of Cr. Compared to the cited global average values for the fourteen trace elements determined, the values obtained for the Highveld coals generally fall below or well below these average values, with the exception of Cr and Mn. Concentrations of Cd and Cu are lower compared to global average values, and As, Mo, Pb, Se, Sb, and Zn can be considered low to very low. Arsenic is ten times lower compared to typical USA values. Concentrations of Co and Ni are similar to global averages, with V and Hg being very slightly higher. The middlings samples reported higher concentrations of most elements, related to the higher ash content of these samples. Of interest, the chalcophile elements determined are all depleted in the Highveld coals compared to global averages, and the siderophile elements are enriched or comparable to global averages.Risk-based health studies in the USA on coals with similar or higher Hg and significantly higher As contents have not reported negative health effects, and therefore it could be assumed that the mobilization of these trace elements from the five Highveld coals are unlikely to cause human health problems. Work is ongoing to determine the modes of occurrence of these HAPs and to address the partitioning behaviors and speciation states of these elements during coal utilization.  相似文献   

15.
Coals from Guizhou Province, Southwest China, attract many researchers' attention for their high concentrations of hazardous trace elements, sulphur and mineral components. Trace elements in coals have diverse modes of occurrence that will greatly influence their migration in the process of coal preparation. Mode of occurrence is also important in determining the partitioning during coal combustion. The coal floatation test by progressive release was used to study the migration of trace elements and mineral components in the process of froth floatation. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the absolute concentrations of trace elements including As, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Th, U, V and Zn in the parent coals and the floatation fractions. Precise determination of the mineral matter percentage in coals was obtained by low-temperature ashing. The mineral compositions in coals were quantified using Rietveld-based X-ray diffraction analysis package on low-temperature ash. Scanning electron microscope equipped with energy dispersive X-ray detector was used to provide information on the forms of occurrence of mineral components in coal. Five floatation fractions were obtained from the pulverized coal samples. The contents of trace elements and mineral components decrease from the first tailings to the last cleaned coal. The concentrations of trace elements and mineral components in parent coals and different floatation samples show that trace elements and mineral components are mainly concentrated in the first tailings samples. Nearly 60% of mineral components are enriched in the first tailings, whereas less than 1.3% remains in the cleaned coal. The ratio of sixteen trace elements concentrations in the first tailings to the corresponding concentrations in the cleaned coal ranges from 1.6 to 22.7. Quantitative mineralogical analysis results using the full-profile general structure analysis system (GSAS) showed that the main compositions of LTA include quartz, calcite, kaolinite, pyrite, chlorite, montmorillonite, illite, anatase and pyrite.  相似文献   

16.
The elemental composition of high temperature ash (750°C) and forms of S were studied in 25 coal seams from the Escucha Formation (Middle Albian) in the Teruel Mining District, northeast Spain. The principal analytical method was ICP-MS, but ICP-ES was also used in the determination of some trace elements. The analytical data show wide ranges of trace element cotnents among the coal seams studied, even in the vertical profile of a single coal seam. These wide ranges of the trace element concentrations are attributed to both syngenetic and epigenetic processes.When a comparison was made between the average trace element contents of the Teruel Mining District coals, and those of the average content in worldwide coals, the Teruel coals show slightly higher concentrations of Be and U, and lower concentrations of Ba, Cd, Mn, Pb, Sr and Zr. Further, three main groups of trace elements were differentiated on the basis of the inorganic/organic association: (1) trace elements with inorganic affinity; Ba, Ce, Co, Cr, La, Mn, Ni, Rb and Zr. Between these, Ba, Ce, Cr and Rb show a well defined correlation with the clay mineral content, and Co and Ni with pyritic-S content; (2) trace elements with an intermediate (mixed) affinity; As, Cd, Cu, Dy, Er, Eu, Gd, Ge, Ho, Lu, Mo, Nd, Pb, Pr, Sb, Sm, Sr, Tb, Th, Tm, U, Yb and Zn. In this group, As, Cd, Cu, Ge, Mo, Th, U and Zn show a weak trend associated with the mineral matter and Sr with the organic matter; and (3) Be shows an organic affinity. The high mineral matter content (21.3% HTA) of the Teruel coals may account for the great number of elements with inorganic affinity. This classification represents a general trend, but the results show that the affinities of some trace elements (e.g. As, Sb and Zn) may vary from one coal seam to another in the Teruel Mining District.  相似文献   

17.
Hazardous air pollutants, including compounds of sulfur and toxic trace elements, are emitted during coal combustion. Geochemical studies of these constituents in coals provide information about their species, regional distribution and origins. The data are useful in understanding the cause and scope of human health problems related to these hazardous elements and in designing preventive or remedial measures. Sulfur in coal is a problem because sulfur dioxide emitted during coal combustion is a main source of acid rain. The sulfur isotopic evidence shows that sulfur in low-sulfur coal is derived primarily from parent plant materials. Sulfur enrichment in medium- and high-sulfur coals is caused by the sulfate in seawater that flooded the peat swamp during coal formation. The sulfur content of a coal is controlled primarily by the depositional environment of coal seams. Only pyritic sulfur can be removed by physical coal cleaning processes (coal preparation). Sulfur dioxide emission can be reduced using clean coal technologies, such as flue-gas desulfurization, fluidized-bed combustion, and integrated gasification and combined cycle.  相似文献   

18.
19.
应用中子活化分析方法,测定了晋北两层中高硫煤中稀土元素的含量。通过对稀土元素的分布模式,相关分析和聚类分析的研究,得出如下认识;成煤环境对稀土元素的含量具有控制作用。但中高硫煤中稀土元素总量会受到沉积期后酸性溶液下渗淋滤作用的影响;同一煤层中各分层的稀土元素应具有基本相同的分布模式,异常的稀土元素分布模式指示了沉积期后地质作用的影响;煤中稀土元素的主要赋存状态为无机相,主要来源为陆源碎屑矿物;煤中与稀土伴生的有害元素有V,P,Mo,Cr,Cu,Mo,Th和Cd等,在加工洗选过程中有洁净潜势。  相似文献   

20.
J. Dostal  S. Capedri 《Lithos》1979,12(1):41-49
A sequence of amphibolite to granulite facies metasedimentary and mafic metaigneous rocks from the western Italian Alps has been analysed for rare earth elements (REE). In this sequence, the metasedimentary granulites have probably been affected by a melting event while the metaigneous granulites remained unaffected. Metasedimentary granulites have a less fractionated chondrite-normalized REE pattern than equivalent amphibolite facies rocks. The granulites tend to have a higher content of heavy REE and lower abundances of light REE (LREE). The leucosomes of migmatitic granulites have lower REE content than the melanocratic bands and both these rock types have variable relative abundances of Eu. The mafic granulites have LREE enriched patterns while the amphibolites are slightly depleted in LREE. The differences between the mafic granulites and amphibolites are probably of pre-metamorphic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号