首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic fabrics from rocks with multiple mineral-preferred orientations may have anisotropy ellipsoids whose shape and orientation arise from the addition of two or more component fabrics. Our numerical models and experiments demonstrate that such composite magnetic fabrics do not directly reflect the shapes and/or orientations of the individual mineral fabrics and we provide criteria for the recognition and interpretation of composite fabrics in natural rocks. These criteria include:

1. (1) the orientation of the maximum susceptibility axis is located at the intersection of two planar fabrics, and

2. (2) the shape of the susceptibility ellipsoid changes from oblate to prolate and the degree of anisotropy decreases, as the relative intensity of two planar component fabrics becomes equal and as the angle between the planar fabrics increases.

Composite magnetic fabrics are observed in the shales and slates of the Martinsburg Formation, Lehigh Gap, Pennsylvania. Modeling of the AMS (anisotropy of magnetic susceptibility) and ARMA (anhysteretic remanent magnetization anisotropy) behavior constrains the relative degree of anisotropy of the bedding-parallel and cleavage-parallel fabrics. In particular, ARMA model results allow a good estimate of magnetite fabric strength.

We conclude that, in the presence of composite magnetic fabrics, quantitative measures of finite strain in deformed rocks are limited by the ability to accurately determine the degree of anisotropy and relative susceptibility of each component fabric. Such determinations require knowledge of the mineral(s) that are responsible for the measured magnetic fabric and their behavior during deformation.  相似文献   


2.
柴达木盆地西部狮子沟一带新生代沉积岩磁组构分析结果显示, 岩石磁组构具有磁面理发育、磁线理不发育、磁化率量值椭球呈压扁状的特点; 磁化率各向异性度P值不大, 反映总体构造变形相对较弱。岩石磁组构反映的应力状态总体为以NE向挤压为主, 与轴向NW的背斜构造发育相一致。该区岩石磁组构大多具有原始沉积磁组构特征, 磁面理产状大体上反映沉积岩层的层理, 同时也记录了受NE向挤压作用的痕迹。根据岩石磁组构与地层层理之间的关系分析, 柴西地区两翼不对称的狮子沟背斜具有断展褶皱性质, 其形成与下部的花土沟逆冲断层向南西方向的仰冲有关。   相似文献   

3.
The anisotropy of magnetic susceptibility is a well-known geological proxy in revealing the directional tectonic and sedimentological features of rocks, although it can be ambiguous in situations where these two factors co-occur. This paper demonstrates the usefulness of the anisotropy of magnetic susceptibility in determining palaeotransport directions in turbiditic rocks that underwent subsequent thrusting and folding. This study demonstrates that the magnetic lineation is largely unsuitable as a palaeocurrent direction proxy, and suggests that the imbrication of magnetic foliation is better in such cases. Moreover, the anisotropy of magnetic susceptibility results were analyzed in reference to a joint and fold study within the framework of the regional structural geology. Magnetic fabric investigations were conducted in the eastern part of the Outer Western Carpathians (south-east Poland). During the study, a total of 191 oriented palaeomagnetic samples were collected from three outcrops (Nasiczne, Dwernik and Hoczew) in the Krosno Beds, Silesian Unit. For the purpose of sedimentological analysis, 121 m of turbidite successions were documented and 126 directional sedimentary structures were measured. The magnetic anisotropy of sandstones revealed typical sedimentary fabrics, often overprinted by variably intense tectonic deformation. Oblate susceptibility ellipsoids from Nasiczne showed tilt coherent with the palaeoflow direction, whereas the rocks from Dwernik and Hoczew contained triaxial magnetic fabric developed during compressional palaeostress. This paper suggests that medium-grained and coarse-grained sandstones, preferably with high mica content, are the most suitable for palaeotransport reconstructions among the studied lithologies.  相似文献   

4.
A joint magnetic and mica fabric study has been carried out on rocks from recognised shear zones in Galicia (Spain). The two main aims of the study are to determine strain gradients in a foliated material without any significant strain markers and to obtain a quantitative relationship between the magnetic susceptibility anisotropy ellipsoid and the mica fabric axes. The intensity parameters of the fabric on profiles intersecting the studied areas indicate the dominant influence of two major shear zones on the fabric development. The regional fabric shows less significant variations across minor (less developed) shear zones.The empirical relationship between magnetic fabric and strain reported by Rathore (1979, 1980) and Rathore and Henry (1982) is found to hold in the magnetic and mica fabrics comparison. The relationship found in this study is:  相似文献   

5.
During the ascent, emplacement and post-emplacement deformation of igneous rocks, two or more phases of deformation that overprint each other are often depicted. These overprints, when magnetic minerals are present, are recorded in magnetic fabric. In this contribution, overprints are studied by means of numerical modeling, following several basic scenarios common to igneous rocks. Biotite and amphibole that occur often together in igneous rocks are considered as carriers of the anisotropy of magnetic susceptibility. Modeling shows that (1) a constrictional fabric with a low degree of anisotropy as commonly recorded in magmatic rocks may result from a deformation overprint and not necessarily from an extensional/transtensional regime, and (2) that the constrictional AMS fabrics originates from orthogonal superimposition of a deformation event on an AMS fabric inherited from earlier magma emplacement history. Therefore, the interpretation of a constrictional fabric must be performed with caution. Numerical modeling may provide a suitable help in strengthening the interpretation of real magnetic fabric data.  相似文献   

6.
Experimental shear zones and magnetic fabrics   总被引:1,自引:0,他引:1  
Magnetic fabric analysis has been used as a non-destructive means of detecting petrofabric development during experimentally produced multi-stage, transpressive deformations in ‘shear zones’. Artificial, magnetic-bearing silicate sands and calcite sands, bonded with Portland cement, were deformed at room temperature and at 100 and 150 MPa confining pressure. The slip-rate for the shear zone walls was 0.73 × 10−4 mm s−1 and the maximum shear strains were about 0.38, across zones that were initially about 5 mm thick. The magnetic fabric ellipsoid rapidly spins so that the maximum and intermediate susceptibilities tend to become parallel to the shear zone walls throughout the sheared zone. The ellipsoid becomes increasingly oblate with progressive deformation. However, in all cases, the anisotropy is strongly influenced by the pre-deformation magnetic fabric. During deformation the cement gel collapses so that cataclasis of the mineral grains is suppressed. In the quartz-feldspar aggregates the magnetite's alignment is accommodated by particulate flow (intergranular displacements) of the grains. In the calcite aggregates stronger magnetic fabrics develop due to plastic deformation of calcite grains as well as particulate flow. However, the calcite grain fabrics are somewhat linear (LS) whereas the magnetic fabrics are planar (S >L). The preferred dimensional orientations of magnetite are weak and it is possible that the magnetic fabrics are due to intragranular rearrangements of magnetic domains.The transpressive shear zones are much more efficient than axial-symmetric shortening in the increase of anisotropy of the magnetic fabrics, especially in the case of the calcite aggregates. This suggests that flow laws derived for axial-symmetric shortening experiments may not be appropriate for non-coaxial strain histories such as those of shear zones.  相似文献   

7.
The anisotropy of magnetic susceptibility has been proven to be an excellent indicator for mineral fabrics and therefore deformation in a rock or sediment. Low-field anisotropy is relatively rapid to measure so that a sufficient number of samples can be measured to obtain a good statistical representation of the magnetic fabric. The physical properties of individual minerals that contribute to the observed magnetic fabric include bulk susceptibility and intrinsic anisotropy of the mineral phase, its volume concentration, and its degree of alignment. Several techniques have been developed to separate magnetic subfabrics arising from magnetization types, i.e., ferrimagnetism, antiferromagnetism, paramagnetism, and diamagnetism. Susceptibility anisotropy can be measured in low or high fields and at different temperatures in order to isolate a particular subfabric. Measuring the anisotropy of a remanent magnetization can also isolate ferrimagnetic fabrics. A series of case studies are presented that exemplify the value of isolating magnetic subfabrics in a geological context. It is particularly useful in rocks that carry a paramagnetic and diamagnetic subfabric of similar magnitude, such that they negate one another. Further examples are provided for purely paramagnetic subfabrics and cases where a ferrimagnetic subfabric is also identified.  相似文献   

8.
岩石磁化率椭球体的三个轴与应变椭球体的三个轴方向相平行,并具有一定的共构关系.变形岩石的磁组构参数P、T、F、L以及磁化率椭球体主张量方向等可以用来定量地表征岩石变形的性状及期次.本文通过实测和计算27个样品的磁组构参数,研究了博白-合浦断裂带的变形性状与期次,结果表明:博白-合浦断裂带大致经历了三期构造变形作用,不同时期具不同性质的构造变形.变形性状分别表现为韧性、韧-脆性及脆性变形,应变行为分别表现为平面、非平面和线性应变.  相似文献   

9.
The Mino tectono-stratigraphic terrane, central Japan, underlain by Permian to Jurassic sedimentary and volcanic rocks of various origins, was formed through accretion processes associated with the Mesozoic sea-floor spreading. This conclusion has been reached mainly from the following reasoning:
1. (1) the entire boundary of this terrane is defined by tectonic belts with high-pressure metamorphic rocks and serpentinized ultramafic rocks,
2. (2) the chemistry and petrology of the Permian greenstones demonstrate their affinity with abyssal tholeiitic and alkalic basalts,
3. (3) the widespread, but chaotic, occurrence of Permian greenstones, Triassic cherts, and Jurassic siliceous shales in the younger Jurassic clastic rocks of this terrane suggests extensive post-depositional mixing of strata,
4. (4) the sedimentology of the Jurassic sandstones strongly suggests that they are turbidity-current deposits supplied from cratonic lands,
5. (5) the South-Pacific type fossil assemblage in the Mino terrane shows strong contrast with the North-Pacific type fossil assemblage of the adjacent terranes,
6. (6) the paleomagnetism of the Permian and Jurassic greenstones, the Triassic cherts, and the Jurassic siliceous shales implies long-distance northward drift in Cretaceous time of these rocks from their original low latitudinal regions.
Along with this northward migration, the Mino terrane was accreted with extensive internal deformation to northeast Asia including the present Hida terrane. Recent accumulation of paleomagnetic and paleontologic data in the Pacific peripheral regions appears to support the existence of many allochthonous terranes which migrated from the equatorial regions. The Mino terane may be regarded as one example of these Circum-Pacific allochthons.  相似文献   

10.
The anisotropy of magnetic susceptibility (AMS) of single crystals of biotite, muscovite and chlorite has been measured in order to provide accurate values of the magnetic anisotropy properties for these common rock-forming minerals. The low-field AMS and the high-field paramagnetic susceptibility are defined. For the high-field values, it is necessary to combine the paramagnetic deviatoric tensor obtained from the high-field torque magnetometer with the paramagnetic bulk susceptibility measured from magnetization curves of the crystals. This leads to the full paramagnetic susceptibility ellipsoid due to the anisotropic distribution of iron cations in the silicate lattice. The ellipsoid of paramagnetic susceptibility, which was obtained for the three phyllosilicates, is highly oblate in shape and the minimum susceptibility direction is subparallel to the crystallographic c-axes. The anisotropy of the susceptibility within the basal plane of the biotite has been evaluated and found to be isotropic within the accuracy of the instrumental measurements. The degree of anisotropy of biotite and chlorite is compatible with previously reported values while for muscovite the smaller than previously published values. The shape of the chlorite AMS ellipsoid for all the samples is near-perfect oblate in contrast with a wide distribution of oblate and prolate values reported in earlier studies. Reliable values are important for deriving models of the magnetic anisotropy where it reflects mineral fabrics and deformation of rocks.  相似文献   

11.
Magnetic fabric and rock-magnetism studies were performed on the four units of the 578 ± 3-Ma-old Piracaia pluton (NW of São Paulo State, southern Brazil). This intrusion is roughly elliptical (~32 km2), composed of (i) coarse-grained monzodiorite (MZD-c), (ii) fine-grained monzodiorite (MZD-f), which is predominant in the pluton, (iii) monzonite heterogeneous (MZN-het), and (iv) quartz syenite (Qz-Sy). Magnetic fabrics were determined by applying both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). The two fabrics are coaxial. The parallelism between AMS and AARM tensors excludes the presence of a single domain (SD) effect on the AMS fabric of the units. Several rock-magnetism experiments performed in one specimen from each sampled units show that for all of them, the magnetic susceptibility and magnetic fabrics are carried by magnetite grains, which was also observed in the thin sections. Foliations and lineations in the units were successfully determined by applying magnetic methods. Most of the magnetic foliations are steeply dipping or vertical in all units and are roughly parallel to the foliation measured in the field and in the country rocks. In contrast, the magnetic lineations present mostly low plunges for the whole pluton. However, for eight sites, they are steep up to vertical. Thin-section analyses show that rocks from the Piracaia pluton were affected by the regional strain during and after emplacement since magmatic foliation evolves to solid-state fabric in the north of the pluton, indicating that magnetic fabrics in this area of the pluton are related to this strain. Otherwise, the lack of solid-state deformation at outcrop scale and in thin sections precludes deformation in the SW of the pluton. This evidence allows us to interpret the observed magnetic fabrics as primary in origin (magmatic) acquired when the rocks were solidified as a result of magma flow, in which steeply plunging magnetic lineation suggests that a feeder zone could underlie this area.  相似文献   

12.
玲珑花岗岩体的变形磁组构特征及其与金矿的关系   总被引:4,自引:1,他引:3       下载免费PDF全文
周伟新  万天丰 《地质科学》2000,35(4):385-395
本文利用磁组构的方法对玲珑花岗岩体的磁组构特征及其与金矿的关系进行研究.玲珑岩体的磁化率各向异性度P的平均值为1.2872,具有典型的构造变形成因特点;磁面理围绕其西北侧的北截花岗闪长岩展布,倾角平缓;磁线理呈SW向近水平展布.玲珑岩体的变形磁组构的特征表明玲珑岩体的变形磁组构是由于后期侵入的北截郭家岭花岗闪长岩体侵入造成的.研究还发现除了断裂的控矿作用以外,位于玲珑岩体内部和边缘的金矿和磁化率各向异性间存在密切的空间对应关系.金矿往往位于磁化率各向异性度P值高的区域,而磁化率各向异性度P值低的区域金矿很少.  相似文献   

13.
In the West Sudetes, northeastern Bohemia Massif, geochronometry provides evidence for repeated episodes of rapid cooling that contrasts sharply with an absence of structural evidence for significant tectonic exhumation by crustal extension. Instead, high-grade assemblages of the Orlica–Snieznik Complex have a regional sub-horizontal foliation and sub-horizontal lineations that trend parallel to narrow sub-vertical shear zones containing exhumed high-pressure assemblages. Mesoscopic petrofabrics combined with anisotropy of magnetic susceptibility (AMS) data from amphibolite facies to migmatitic meta-sedimentary and meta-igneous rocks reveal remarkably consistent average lineations that plunge shallowly to the SSW on both steep and sub-horizontal NNE-trending planar fabrics. The dominant SSW–NNE fabric orientation is parallel to the Bohemia–Brunia suture, which marks a major boundary along the eastern margin of the massif. The shape of the AMS ellipsoid is predominantly oblate, revealing flattened fabrics, with only local prolate ellipsoids. We envisage that the continental Brunian indentor operated as a rigid backstop and allowed the migmatized lower crustal orogenic root to be exhumed along the Bohemian margin shortly following terminal arc collision. Sub-vertical extrusion of the orogenic root was arrested in the mid-crust, where the lower ductile crust was laterally overturned at the base of rigid upper crustal blocks. Upon reaching the crustal high-strength lid the exhumed ductile mass of continental material laterally spread sub-parallel to the margin, underwent subsequent supra-Barrovian metamorphism, and quickly cooled. The application of AMS techniques to high-grade metamorphic rocks in concert with macroscopic structural observations is a powerful approach for resolving the deformation history of a terrane where visible rock fabrics can be tenuous.  相似文献   

14.
鲁西地区韧性剪切带岩石磁组构分析及其构造意义   总被引:1,自引:1,他引:0  
岩石磁组构分析可用来研究岩石的组构特征及构造变形。鲁西地区韧性剪切带岩石磁组构具有磁各异性度P和磁百分率各向异性值H高、磁化率量值椭球呈压扁状、磁面理发育而磁线理不发育的特点。区内韧性剪切带变形强烈,以压扁作用为主,最大主压应力方向近NE和S-N向,以右旋运动为主。韧性剪切带形成以后,区内主要经历了热蚀变和脆性变形,韧性变形很弱  相似文献   

15.
磁组构成分析是利用岩石磁化率各向异性研究构造变形特征及其应力作用方式和方向的方法,研究表明,中甲地区岩石各向异性度P值比较小,反映本区总体变形较弱,但变质石英砂岩相对变形较强。变质石英砂岩磁面理发育,磁线理较弱,显示压扁变形,变形主压应力方向是NW-SE向。火山(碎屑)岩具有明显的磁线理,反映流纹构造特征;最大磁化率轴方向屡示本区火山岩流体构造为NW-SE向。矿化蚀变岩和矿石的磁各向异性度P值明显  相似文献   

16.
通过对青峰韧性剪切带中糜棱岩的磁性组构研究,同时与常规主应变分析方法所测结果比较,表明岩石磁化率各向异性椭球体与应变椭球体之间有一定的对应关系。磁性组构的特征为构造岩变形机制,以及断裂带的运动学、动力学等的研究提供了一种比较可靠、准确、方便的方法。  相似文献   

17.
川西北磁组构演化及其揭示的应变特征   总被引:5,自引:2,他引:5  
对龙门山褶皱冲断带北段前锋带至四川盆地边缘的川西北地区进行了磁组构研究.在江油和广元之间,沿着垂直于龙门山构造走向的4条采样路线,在18个采样点钻取了173个定向样品,样品采自侏罗纪和白垩纪砂岩及粉砂质泥岩.综合分析表明川西北磁组构反映的是新生代的变形,并在研究区域内总结出了3类磁组构:沉积磁组构、初始变形磁组构和铅笔状磁组构.除沉积磁组构之外的所有采样点样品的K1优势方向都是NE-SW向,说明研究区域的最大主压应力方向为NW-SE向,主要来源于龙门山褶皱冲断带.在垂直于龙门山褶皱冲断带构造走向上,从四川盆地到龙门山前锋,磁组构由沉积磁组构逐渐变为初始变形磁组构,直至铅笔状磁组构,说明盆地内部应变十分微弱,靠近造山带应变逐渐增强,且侏罗纪、白垩纪以来研究区的构造变形主要集中在造山带边缘或者还未传递到盆地内部.  相似文献   

18.
在胶东地区招远-平度断裂带上的大磨曲家金矿区选取了典型的构造区域进行岩石磁组构研究。沿着断裂带在不同构造部位的36个采样点钻取了112个定向岩心样品,所有样品均沿勘探线布置。磁组构研究显示,研究区以弱磁性岩石为主,总体上,胶东群变质岩的磁化率值较高,而玲珑黑云母花岗岩的磁化率值较低,尤以碎裂程度高的强蚀变岩的磁化率值最低;磁化率各向异性方位主要为NE向挤压,磁组构所指示的构造应力场与大磨曲家矿区的区域挤压应力方向是相同的;对具不同程度矿化的81线的Au含量与80线磁组构各向异性度(P值)进行对比研究发现,P值与金品位呈负相关关系;弱矿化糜棱岩中的金矿化在磁面理发育的岩石中较为发育,成矿晚期,Au元素含量随着岩石磁性的减弱而增加,特别是在强应变后弛豫阶段矿液充填于相对张性的石英脉中Au含量最高。  相似文献   

19.
The Huamenlou pluton,is an elongated granite intrusion with high aspect ratio,emplaced within the southern margin of the North Qinling(central China).Here we investigate this pluton through multiple techniques including the fabric study,microstructural observation and zircon geochronology.Our zircon U-Pb data confirm that the granite crystallized at ca.462 Ma which is consistent with the ages of other linear plutons in North Qinling.Microstructural observations of the Huamenlou granites illustrate that the pluton has undergone superimposed deformation during its emplacement,from magmatic to hightemperature solid state conditions.The internal fabric obtained by anisotropy of magnetic susceptibility(AMS)and shape preferred orientation(SPO)show similar results.The fabrics are relatively concordant and generally vary from NE-SW to NEE-SWW which are roughly oblique to the trend of the pluton elongation and the regional structures.Meanwhile,scalar parameters reflect two completely different strain regimes for the pluton and its host rocks,i.e.,the fabrics within host rocks are mainly oblate while the central part of the intrusion displays mainly prolate fabrics.It is inferred that the structural pattern recorded in this pluton was caused by local dextral transtension in consequence of oblique convergence between the South and North China Blocks.We propose that the local transtension in convergence setting probably evolved from vertical extrusion tectonics that provided room for the magma emplacement and imparted prolate fabrics in the Huamenlou pluton.  相似文献   

20.
The transition between extensional and compressional-driven magnetic fabrics in sedimentary rocks is explored in this paper through the study of an example of the Basque–Cantabrian basin. In the area where extensional structures prevail and no superimposed deformation is observed, except for gentle large-scale folds, the magnetic fabric is interpreted as extensional, in consistency with mesostructural (tension gashes) and macrostructural (large-scale faults) data. Compressional tectonic fabrics are unequivocally interpreted in the area with cleavage development related to the buttressing of the syn-rift sequence against faults located near the northern basin margin. In this area, kmax is oriented according either to the intersection lineation or the dip direction of cleavage planes. In the area located in-between, where no macroscopic evidence of either compression or extension exist, there is a transitional fabric between compressional (resulting from the modification during inversion of a previous sedimentary or extensional fabric) and extensional (inherited from the extensional stage) magnetic fabrics that correlate with subtle evidences at the microscopic scale (pressure shadows, deformation and re-orientation of nodules). Therefore, the magnetic fabric is revealed as an exceptionally sensitive marker of deformation in sedimentary rocks. This transition in the magnetic fabric occurs within a length of 6.25 km along the cross-section that correlates with a thickness of 200 m of the stratigraphic pile. These results indicate that even in the absence of clear structural markers of compressional deformation, extensional magnetic fabrics can be only interpreted when there is a minimum separation (in the vertical or the horizontal) to the cleavage front.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号