首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The velocity field of the nearly face-on galaxy NGC 3631, derived from observations in the H α line and H  i radio line, is analysed to study perturbations related to the spiral structure of the galaxy. We confirm our previous conclusion that the line-of-sight velocity field gives evidence of the wave nature of the observed two-armed spiral structure. Fourier analysis of the observed velocity field is used to determine the location of corotation of the spiral structure of this galaxy, and the radius of corotation R c is found to be about 42 arcsec, or 3.2 kpc. The vector velocity field of the gas in the plane of the disc is restored, and, taking into account that we previously investigated vertical motions, we now have a full three-dimensional gaseous velocity field of the galaxy. We show clear evidence of the existence of two anticyclonic and four cyclonic vortices near corotation in a frame of reference rotating with the spiral pattern. The centres of the anticyclones lie between the observed spiral arms. The cyclones lie close to the observed spirals, but their centres are shifted from the maxima in brightness.  相似文献   

3.
We present results from a careful and detailed analysis of the structural and dynamical properties of a sample of 29 disc-like objects identified at z =0 in three AP3M–SPH fully consistent cosmological simulations. These simulations are realizations of a CDM hierarchical model, in which an inefficient Schmidt-law-like algorithm to model the stellar formation process has been implemented. We focus on properties that can be constrained with available data from observations of spiral galaxies, namely the bulge and disc structural parameters and the rotation curves. Comparison with data from Broeils, de Jong and Courteau gives satisfactory agreement, in contrast with previous findings using other codes. This suggests that the stellar formation implementation we have used has succeeded in forming compact bulges that stabilize disc-like structures in the violent phases of their assembly, while in the quiescent phases the gas has cooled and collapsed in accord with the Fall & Efstathiou standard model of disc formation.  相似文献   

4.
5.
The spiral pattern in the nearby spiral galaxy NGC 6946 has been studied using the wavelet transformation technique, applied to galaxy images in polarized and total non-thermal radio emission at λλ 3.5 and 6.2 cm, in broadband red light, in the λ 21.1 cm H  i line and in the optical Hα line. Well-defined, continuous spiral arms are visible in polarized radio emission and red light, where we can isolate a multi-armed pattern in the range of galactocentric distances 1.5–12 kpc, consisting of four long arms and one short spiral segment. The 'magnetic arms' (visible in polarized radio emission) are localized almost precisely between the optical arms. Each magnetic arm is similar in length and pitch angle to the preceding optical arm (in the sense of galactic rotation) and can be regarded as its phase-shifted image. Even details like a bifurcation of an optical arm have their phase-shifted counterparts in the magnetic arms. The average relative amplitude of the optical spiral arms (the stellar density excess over the azimuthal average) grows with galactocentric radius up to 0.3–0.7 at r ≃5 kpc, decreases by a factor of two at r =5–6 kpc and remains low at 0.2–0.3 in the outer parts of the galaxy. By contrast, the magnetic arms have a constant average relative amplitude (the excess in the regular magnetic field strength over the azimuthal average) of 0.3–0.6 in a wide radial range r =1.5–12 kpc. We briefly discuss implications of our findings for theories of galactic magnetic fields.  相似文献   

6.
7.
8.
We present for the first time a two-dimensional velocity field of the central region of the grand-design spiral galaxy NGC 5248, at 0.9-arcsec spatial resolution. The H α velocity field is dominated by circular rotation. While no systematic streaming motions are seen in the area of the nuclear grand-design spiral or the circumnuclear ring, the amplitude of residual velocities, after subtracting a model circular velocity field, reaches 20 km s−1 in projection. The rotation curve levels out at around 140 km s−1, after a well-resolved and rather shallow rise. We have generated an analytical model for the nuclear spiral and fitted it to our observations to obtain estimates of the pattern speed of the spiral and the speed of sound in the central region of NGC 5248. Our results are consistent with a low pattern speed, suggesting that the nuclear spiral rotates with the same rate as the main spiral structure in NGC 5248, and thus that the spiral structure is coupled from scales of a few hundred parsecs to several kiloparsecs. We have also compared the observed structure and kinematics between the nuclear regions of NGC 5248 and M100. Several similarities and differences are discussed, including the location of the peak emission regions on major and minor axes, and the spiral arm streaming motions. We find no kinematic evidence for the presence of a nuclear bar in NGC 5248.  相似文献   

9.
We show that the kinematics of the shells seen around some elliptical galaxies provide a new, independent means for measuring the gravitational potentials of elliptical galaxies out to large radii. A numerical simulation of a set of shells formed in the merger between an elliptical and a smaller galaxy reveals that the shells have a characteristic observable kinematic structure, with the maximum line-of-sight velocity increasing linearly as one moves inward from a shell edge. A simple analytic calculation shows that this structure provides a direct measure of the gradient of the gravitational potential at the shell radius. In order to extract this information from attainable data, we have also derived a complete distribution of line-of-sight velocities for material within a shell; comparing the observed spectra of a shell to a stellar template convolved with this distribution will enable us to measure the gradient of the potential at this radius. Repeating the analysis for a whole series of nested shells in a galaxy allows the complete form of the gravitational potential as a function of radius to be mapped out. The requisite observations lie within reach of the up-coming generation of large telescopes.  相似文献   

10.
We present evidence for cosmological gas accretion on to spiral galaxies in the local universe. The accretion is seen through its effects on the dynamics of the extraplanar neutral gas. The accretion rates that we estimate for two nearby spiral galaxies are of the order of their star formation rates. Our model shows that most of the extraplanar gas is produced by supernova feedback (galactic fountain) and only 10–20 per cent comes from accretion. The accreting material must have low specific angular momentum about the disc's spin axis, although the magnitude of the specific angular momentum vector can be higher. We also explore the effects of a hot corona on the dynamics of the extraplanar gas and find that it is unlikely to be responsible for the observed kinematical pattern and the source of accreted gas. However, the interaction with the fountain flow should profoundly affect the hydrodynamics of the corona.  相似文献   

11.
12.
In order to test the basic equations believed to dictate the dynamics of disc galaxies, we present and analyse deep two-dimensional spectral data obtained using the PPAK integral field unit for the early-type spiral systems NGC 2273, NGC 2985, NGC 3898 and NGC 5533. We describe the care needed to obtain and process such data to a point where reliable kinematic measurements can be obtained from these observations, and a new more optimal method for deriving the rotational motion and velocity dispersions in such disc systems. The data from NGC 2273 and NGC 2985 show systematic variations in velocity dispersion with azimuth, as one would expect if the shapes of their velocity ellipsoids are significantly anisotropic, while the hotter discs in NGC 3898 and NGC 5533 appear to have fairly isotropic velocity dispersions. Correcting the rotational motion for asymmetric drift using the derived velocity dispersions reproduces the rotation curves inferred from emission lines reasonably well, implying that this correction is quite robust, and that the use of the asymmetric drift equation is valid. NGC 2985 is sufficiently close to face on for the data, combined with the asymmetric drift equation, to determine all three components of the velocity ellipsoid. The principal axes of this velocity ellipsoid are found to be in the ratio  σ z : σφ : σ R ≈ 0.7 : 0.7 : 1  , which shows unequivocally that this disc distribution function respects a third integral of motion. The ratio is also consistent with the predictions of epicyclic theory, giving some confidence in the application of this approximation to even fairly early-type disc galaxies.  相似文献   

13.
14.
15.
16.
A dynamical model for the extraplanar gas in spiral galaxies   总被引:1,自引:0,他引:1  
Recent H  i observations reveal that the discs of spiral galaxies are surrounded by extended gaseous haloes. This extraplanar gas reaches large distances (several kiloparsecs) from the disc and shows peculiar kinematics (low rotation and inflow). We have modelled the extraplanar gas as a continuous flow of material from the disc of a spiral galaxy into its halo region. The output of our models is pseudo data cubes that can be directly compared to the H  i data. We have applied these models to two spiral galaxies (NGC 891 and NGC 2403) known to have a substantial amount of extraplanar gas. Our models are able to reproduce accurately the vertical distribution of extraplanar gas for an energy input corresponding to a small fraction (<4 per cent) of the energy released by supernovae. However, they fail in two important aspects: (1) they do not reproduce the right gradient in rotation velocity; (2) they predict a general outflow of the extraplanar gas, contrary to what is observed. We show that neither of these difficulties can be removed if clouds are ionized and invisible at 21 cm as they leave the disc but become visible at some point on their orbits. We speculate that these failures indicate the need for accreted material from the intergalactic medium that could provide the low angular momentum and inflow required.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号