首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sequence of psammitic and pelitic metasedimentary rocks from the Mopunga Range region of the Arunta Inlier, central Australia, preserves evidence for unusually low pressure (c. 3 kbar), regional‐scale, upper amphibolite and granulite facies metamorphism and partial melting. Upper amphibolite facies metapelites of the Cackleberry Metamorphics are characterised by cordierite‐andalusite‐K‐feldspar assemblages and cordierite‐bearing leucosomes with biotite‐andalusite selvages, reflecting P–T conditions of c. 3 kbar and c. 650–680 °C. Late development of a sillimanite fabric is interpreted to reflect either an anticlockwise P–T evolution, or a later independent higher‐P thermal event. Coexistence of andalusite with sillimanite in these rocks appears to reflect the sluggish kinematics of the Al2SiO5 polymorphic inversion. In the Deep Bore Metamorphics, 20 km to the east, dehydration melting reactions in granulite facies metapelites have produced migmatites with quartz‐absent sillimanite‐spinel‐cordierite melanosomes, whilst in semipelitic migmatites, discontinuous leucosomes enclose cordierite‐spinel intergrowths. Metapsammitic rocks are not migmatised, and contain garnet–orthopyroxene–cordierite–biotite–quartz assemblages. Reaction textures in the Deep Bore Metamorphics are consistent with a near‐isobaric heating‐cooling path, with peak metamorphism occurring at 2.6–4.0 kbar and c. 750800 °C. SHRIMP U–Pb dating of metamorphic zircon rims in a cordierite‐orthopyroxene migmatite from the Deep Bore Metamorphics yielded an age of 1730 ± 7 Ma, whilst detrital zircon cores define a homogeneous population at 1805 ± 7 Ma. The 1730 Ma age is interpreted to reflect the timing of high‐T, low‐P metamorphism, synchronous with the regional Late Strangways Event, whereas the 1805 Ma age provides a maximum age of deposition for the sedimentary precursor. The Mopunga Range region forms part of a more extensive low‐pressure metamorphic terrane in which lateral temperature gradients are likely to have been induced by localised advection of heat by granitic and mafic intrusions. The near‐isobaric Palaeoproterozoic P–T–t evolution of the Mopunga Range region is consistent with a relatively transient thermal event, due to advective processes that occurred synchronous with the regional Late Strangways tectonothermal event.  相似文献   

2.
The Lander Rock Beds form the local basement of the Reynolds Range in the Arunta Inlier of central Australia. These dominantly quartzose and pelitic lithologies underwent low-grade ( c.   400  °C) regional metamorphism prior to contact metamorphism ( c.   2.5  kbar) around S-type megacrystic granitoids at 1820–1800  Ma. The Lander Rock Beds are overlain by metasediments of the Reynolds Range Group, which were subsequently intruded by granitoids at c. 1780  Ma. Regional metamorphism at 1590–1580  Ma produced grades varying from greenschist (400  °C at 4–5  kbar) to granulite (750–800  °C at 4–5  kbar) from north-west to south-east along the length of the Reynolds Range. Oxygen isotope ratios of the Lander Rock Beds were reset from 13.4±0.8 to as low as 6.7 adjacent to the contacts of the larger plutons, and to 10.3±1.1 around the smaller plutons. Biotite in all the major rock types found in the aureoles has δD values between −52 and −69, probably reflecting resetting by a cooling igneous+metamorphic fluid near the plutons. Sapphirine-bearing and other Mg- and Al-rich rock types have low δ18O values (4.0±0.7). The precursors to these rocks were probably low-temperature ( c. 200  °C) diagenetic–hydrothermal deposits of Mg-rich chlorite, analogous to those in Proterozoic stratiform precious metal and uranium deposits that form by the infiltration of basin brines or seawater. As in the overlying Reynolds Range Group, regional metamorphism involved little fluid–rock interaction and isotopic resetting.  相似文献   

3.
Sm–Nd ages of garnet from the northern Coast Mountains of south-eastern Alaska, USA, constrain the timing of thermal events in polyphase metamorphic rocks of the western metamorphic belt and provide new data on the spatial extent of Cretaceous regional metamorphism. Bulk garnet–whole-rock Sm–Nd ages for a sillimanite-zone amphibolite (Taku Inlet) and a biotite-zone metapelite (Tracy Arm) are 77±17 Ma and 59±12 Ma, respectively. Garnet core–whole-rock (80±9 Ma), core–matrix (84±9 Ma), rim–whole-rock (59±4 Ma) and rim–matrix (62±4 Ma) ages were obtained from a sample collected 200  m west of a Palaeocene Coast plutonic–metamorphic complex sill-like pluton that separates medium-grade metamorphic rocks from high-grade metamorphic rocks and voluminous Tertiary plutons in the core of the orogen. The garnet core ages of c. 80 Ma indicate that the regional metamorphic grade reached garnet zone prior to the intrusion of the plutons and high-grade metamorphism of rocks to the east. Similar ages for the younger plutons, the youngest garnets and the rim of a multistage garnet ( c. 59 Ma) indicate a later episode of contact metamorphic garnet growth. Documentation of pre-71 Ma garnet-zone metamorphism along the western edge of the Coast plutonic–metamorphic complex confirms that Albian to Late Cretaceous metamorphism associated with crustal thickening affected this part of the orogen. The similarity of garnet Sm–Nd ages to independent age estimates for metamorphic events confirms that this technique provides useful estimates for the timing of Late Cretaceous to Tertiary thermal events. The c. 20  Myr difference between garnet core and rim ages suggests that the Sm–Nd isotope systematics of a single garnet grain can be used for distinguishing between multiple metamorphic events.  相似文献   

4.
Granulite facies rocks from the northernmost Harts Range Complex (Arunta Inlier, central Australia) have previously been interpreted as recording a single clockwise cycle of presumed Palaeoproterozoic metamorphism (800–875 °C and >9–10 kbar) and subsequent decompression in a kilometre‐scale, E‐W striking zone of noncoaxial, high‐grade (c. 700–735 °C and 5.8–6.4 kbar) deformation. However, new SHRIMP U‐Pb age determinations of zircon, monazite and titanite from partially melted metabasites and metapelites indicate that granulite facies metamorphism occurred not in the Proterozoic, but in the Ordovician (c. 470 Ma). The youngest metamorphic zircon overgrowths from two metabasites (probably meta‐volcaniclastics) yield 206Pb/238U ages of 478±4 Ma and 471±7 Ma, whereas those from two metapelites yield ages of 463±5 Ma and 461±4 Ma. Monazite from the two metapelites gave ages equal within error to those from metamorphic zircon rims in the same rock (457±5 Ma and 462±5 Ma, respectively). Zircon, and possibly monazite ages are interpreted as dating precipitation of these minerals from crystallizing melt within leucosomes. In contrast, titanite from the two metabasites yield 206Pb/238U ages that are much younger (411±5 Ma & 417±7 Ma, respectively) than those of coexisting zircon, which might indicate that the terrane cooled slowly following final melt crystallization. One metabasite has a second titanite population with an age of 384±7 Ma, which reflects titanite growth and/or recrystallization during the 400–300 Ma Alice Springs Orogeny. The c. 380 Ma titanite age is indistinguishable from the age of magmatic zircon from a small, late and weakly deformed plug of biotite granite that intruded the granulites at 387±4 Ma. These data suggest that the northern Harts Range has been subject to at least two periods of reworking (475–460 Ma & 400–300 Ma) during the Palaeozoic. Detrital zircon from the metapelites and metabasites, and inherited zircon from the granite, yield similar ranges of Proterozoic ages, with distinct age clusters at c. 1300–1000 and c. 650 Ma. These data imply that the deposition ages of the protoliths to the Harts Range Complex are late Neoproterozoic or early Palaeozoic, not Palaeoproterozoic as previously assumed.  相似文献   

5.
The Mallee Bore area in the northern Harts Range of central Australia underwent high-temperature, medium- to high-pressure granulite facies metamorphism. Individual geothermometers and geobarometers and average P–T  calculations using the program Thermocalc suggest that peak metamorphic conditions were 705–810 °C and 8–12 kbar. Partial melting of both metasedimentary and meta-igneous rocks, forming garnet-bearing restites, occurred under peak metamorphic conditions. Comparison with partial melting experiments suggests that vapour-absent melting in metabasic and metapelitic rocks with compositions close to those of rocks in the Mallee Bore area occurs at 800–875 °C and >9–10 kbar. The lower temperatures obtained from geothermometry imply that mineral compositions were reset during cooling. Following the metamorphic peak, the rocks underwent local mylonitization at 680–730 °C and 5.8–7.7 kbar. After mylonitization ceased, garnet retrogressed locally to biotite, which was probably caused by fluids exsolving from crystallizing melts. These three events are interpreted as different stages of a single, continuous, clockwise P–T  path. The metamorphism at Mallee Bore probably occurred during the 1745–1730 Ma Late Strangways Orogeny, and the area escaped significant crustal reworking during the Anmatjira and Alice Springs events that locally reached amphibolite facies conditions elsewhere in the Harts Ranges.  相似文献   

6.
LAICPMS in situ U–Pb monazite geochronology and P–T pseudosections are combined to evaluate the timing and physical conditions of metamorphism in the SE Anmatjira Range in the Aileron Province, central Australia. All samples show age peaks at c. 15801555 Ma, with three of five samples showing additional discrete age peaks between c. 1700 and 1630 Ma. P–T phase diagrams calculated for garnetsillimanitecordieriteK‐feldsparilmenite–melt bearing metapelitic rocks have overlapping peak mineral assemblage stability fields at ~870920 °C and ~6.57.2 kbar. P–T modelling of a fine‐grained spinelcordieritegarnetbiotite reaction microstructure suggests retrograde P–T conditions evolved down pressure and temperature to ~3–5.5 kbar and ~610–850 °C. The combined geochronological and P–T results indicate the SE Anmatjira Range underwent high‐temperature, low‐pressure metamorphism at c. 15801555 Ma, and followed an apparently clockwise retrograde path. The high apparent thermal gradient necessary to produce the estimated P–T conditions does not appear to reflect decompression of high‐P assemblages, nor is there syn‐metamorphic magmatism or structural evidence for extension. Similar to previous workers, we suggest the high‐thermal gradient P–T conditions could have been achieved by heating, largely driven by high heat production from older granites in the region.  相似文献   

7.
Orthopyroxene‐rich quartz‐saturated granulites of the Strangways Range, Arunta Block, central Australia, record evidence of two high‐grade metamorphic events. Initial granulite facies metamorphism (M1, at c. 1.7 Ga) involved partial melting and migmatization culminating in conditions of 8.5 kbar and 850 °C. Preservation of the peak M1 mineral assemblages from these conditions indicates that most of the generated melt was lost from these rocks at or near peak metamorphic conditions. Subsequent reworking (M2, at c. 1.65 Ga) is characterized by intense deformation, the absence of partial melting and the development of orthopyroxene–sillimanite ± gedrite‐bearing mineral assemblages. Gedrite is only present in cordierite‐rich lithologies where it preferentially replaces M1 cordierite porphyroblasts. Pseudosection calculations indicate that M2 occurred at subsolidus fluid‐absent conditions (aH2o ~ 0.2) at 6–7.5 kbar and 670–720 °C. The mineral assemblages in the reworked rocks are consistent with closed system behaviour with respect to H2O subsequent to M1 melt loss. M2 reworking was primarily driven by increased temperature from the stable geotherm reached after cooling from M1 and deformation‐induced recrystallization and re‐equilibration, rather than rehydration from an externally derived fluid. The development of the M2 assemblages is strongly dependent on the intensity of deformation, not only for promoting equilibration, but also for equalizing the volume changes that result from metamorphic reactions. Calculations suggest that the protoliths of the orthopyroxene‐rich granulites were cordierite–orthoamphibole gneisses, rather than pelites, and that the unusual bulk compositions of these rocks were inherited from the protoliths. Melt loss is insufficient to account for the genesis of these rocks from more typical pelitic compositions. In quartz‐rich gneisses, however, melt loss along the M1 prograde path was able to modify the bulk rock composition sufficiently to stabilize peak metamorphic assemblages different from those that would have otherwise developed.  相似文献   

8.
ABSTRACT Key insights into the timing of tectonometamorphic events in a complex high-grade metamorphic terrane can be obtained by combining results from SHRIMP II ion microprobe studies of individual monazite grains with SHRIMP II studies and scanning electron microscope (SEM)-based cathodoluminescence (CL) imaging of zircons. Results from the Reynolds Range region, Arunta Block, Northern Territory, Australia, show that the final episode of regional metamorphism to high-T and low-P granulite facies conditions is most likely to have occurred at c. 1580 Ma, not at 1785–1775 Ma, as previously accepted. The previous interpretation was based on zircon studies of structurally controlled granitoids, without SEM-based CL imaging. Monazites in a 1806± 6 Ma megacrystic granitoid preserve rare cores that are interpreted to be inherited magmatic monazite, but record no evidence of another high-T event prior to 1580 Ma. Most monazites from the region record only a single high-T metamorphic event at c. 1580 Ma. Zircon inheritance is very common. Zircons or narrow overgrowths of zircon dated at c. 1580 Ma have only been found in two types of rocks: rocks produced by metasomatic fluid flow at high temperatures (≤750°C), and rocks that have undergone local partial melting. Previous explanations that attributed these 1580 Ma zircon ages to widespread hydrothermal fluid fluxing associated with post-tectonic pegmatite emplacement at amphibolite facies conditions are not supported by the available evidence including oxygen isotope data. The observed high regional metamorphic temperatures require the involvement of advective heating. However, contrary to a previous tectonic model for the formation of this and other low-P, high-T metamorphic belts, the granites that are exposed at the present structural level do not appear to be the source of that heat, unless some of the granites were emplaced at c. 1580 Ma.  相似文献   

9.
Abstract Small unexploited copper-lead-zinc deposits, characterized by a distinctive wall-rock association of cordierite quartzite, silica-undersaturated rocks, calc-silicate rocks and impure marbles, occur in quartzofeldspathic gneisses and mafic granulites of the Strangways Metamorphic Complex, central Arunta Block, central Australia. Available data support the hypothesis that these are metamorphosed volcanogenic ore bodies. The chemical compositions of the quartzofeldspathic gneisses are comparable with those of less metamorphosed felsic igneous rocks, particularly the felsic igneous rocks emplaced in the North Australian Orogenic Province in the interval 1880–1800 Ma; and the mafic granulites are chemically similar to basalts (olivine-normative tholeiites). The wall-rock suite can be correlated from chemistry and lithological association with the suites of wall rocks found in unmetamorphosed volcanogenic ore deposits. That the protolith of the cordierite quartzites may well have been leached tuff, similar to the illite-chlorite-quartz tuff found in volcanogenic ore deposits, is also shown by retrogression of the granulitefacies assemblage: cordierite-garnet-ortho-pyroxene-biotite-quartz in the cordierite quartzites to cordierite-anthophyllite-bearing assemblages and thence to chlorite-muscovite-quartz assemblages. Lenses of silica-undersaturated rocks with spinel and, less commonly, sapphirine are interpreted as the metamorphosed equivalents of chlorite-rich pods found within leached tuffs in volcanogenic ore deposits. The wall rocks form sheet-like bodies; this suggests that they were deposited in relatively shallow water, thus precluding the formation of massive sulphides.  相似文献   

10.
In the Orlica‐?nie?nik complex at the NE margin of the Bohemian Massif, high‐pressure granulites occur as isolated lenses within partially migmatized orthogneisses. Sm–Nd (different grain‐size fractions of garnet, clinopyroxene and/or whole rock) and U–Pb [isotope dilution‐thermal ionization mass spectrometry (ID‐TIMS) single grain and sensitive high‐resolution ion microprobe (SHRIMP)] ages for granulites, collected in the surroundings of ?ervený D?l (Czech Republic) and at Stary Giera?tów (Poland), constrain the temporal evolution of these rocks during the Variscan orogeny. Most of the new ages cluster at c. 350–340 Ma and are consistent with results previously reported for similar occurrences throughout the Bohemian Massif. This interval is generally interpreted to constrain the time of high‐pressure metamorphism. A more complex evolution is recorded for a mafic granulite from Stary Giera?tów and concerns the unknown duration of metamorphism (single, short‐lived metamorphic cycle or different episodes that are significantly separated in time?). The central grain parts of zircon from this sample yielded a large spread in apparent 206Pb/238U SHRIMP ages (c. 462–322 Ma) with a distinct cluster at c. 365 Ma. This spread is interpreted to be indicative for variable Pb‐loss that affected magmatic protolith zircon during high‐grade metamorphism. The initiating mechanism and the time of Pb‐loss has yet to be resolved. A connection to high‐pressure metamorphism at c. 350–340 Ma is a reasonable explanation, but this relationship is far from straightforward. An alternative interpretation suggests that resetting is related to a high‐temperature event (not necessarily in the granulite facies and/or at high pressures) around 370–360 Ma, that has previously gone unnoticed. This study indicates that caution is warranted in interpreting U–Pb zircon data of HT rocks, because isotopic rejuvenation may lead to erroneous conclusions.  相似文献   

11.
In situ LA–ICP–MS U–Pb monazite geochronology from the Boothby Hills in the Aileron Province, central Australia, indicates that the region records more than 80 Ma of high‐T, low‐P (HTLP) anatectic conditions during the Early Mesoproterozoic. Monazite ages from granulite facies rocks and leucosomes span the interval 1576–1542 Ma. Pegmatites that overprint the regional gneissic fabric and are interpreted to record the last vestiges of melt crystallization give ages between 1523 and 1513 Ma. Calculated P–T pseudosections suggest peak metamorphic conditions in excess of 850 °C at 0.65–0.75 GPa. The retrograde evolution was characterized by a P–T path that involved minor decompression and then cooling, culminating with the development of andalusite. Integration of the geochronological data set with the inferred P–T path trajectory suggests that suprasolidus cooling must have been slow, in the order of 2.5–4 °C Ma?1. In addition, the retrograde P–T path trajectory suggests that HTLP conditions were generated within crust of relatively normal thickness. Despite the long duration over which anatectic conditions occurred, there is no evidence for external magmatic inputs or evidence that HTLP conditions were associated with long‐lived extension. Instead, it seems probable that the long‐lived HTLP metamorphism was driven to a significant extent by long‐lived conductive heating provided by high crustal heat production in voluminous pre‐metamorphic granitic rocks.  相似文献   

12.
The Arunta Inlier is a 200 000 km2 region of mainly Precambrian metamorphosed sedimentary and igneous rock in central Australia. To the N it merges with similar rocks of lower metamorphic grade in the Tennant Creek Inlier, and to the NW it merges with schist and gneiss of The Granites‐Tanami Province. It is characterized by mafic and felsic meta‐igneous rocks, abundant silicic and aluminous metasediments and carbonate, and low‐ to medium‐pressure metamorphism. Hence, the Arunta Inlier is interpreted as a Proterozoic ensialic mobile belt floored by continental crust. The belt evolved over about 1500 Ma, and began with mafic and felsic volcanism and mafic intrusion in a latitudinal rift, followed by shale and limestone deposition, deformation, metamorphism and emergence. Flysch sedimentation and volcanism then continued in geosynclinal troughs flanking the ridge of meta‐igneous rocks, and were followed by platform deposition of thin shallow‐marine sediments, further deformation, and episodes of metamorphism and granite intrusion.  相似文献   

13.
Ultra-high-pressure eclogites from the Dabie orogen that formed over a range in temperatures (∼600 to > 700 °C) have been investigated with combined Lu–Hf and Sm–Nd geochronology. Three eclogites, sampled from Zhujiachong, Huangzhen and Shima, yield Lu–Hf ages of 240.0 ± 5.0, 224.4 ± 1.9 and 230.8 ± 5.0 Ma and corresponding Sm–Nd ages of 222.5 ± 5.0, 217.6 ± 6.1 and 224.2 ± 2.1 Ma respectively. Well-preserved prograde major- and trace-element zoning in garnet in the Zhujiachong eclogite suggests that the Lu–Hf age mostly reflects an early phase of garnet growth that continued over a time interval of c. 17.5 Myr. For the Huangzhen eclogite, despite preserved elemental growth zoning in garnet, textural study reveals that the Lu–Hf age is biased towards a later garnet growth episode rather than representing early growth. The narrow time interval of <6.6 Myr defined by the difference between Lu–Hf and Sm–Nd ages indicates a short final garnet growth episode and suggests a rapid cooling stage. By contrast, the rather flat element zoning in garnet in the Shima eclogite suggests that Lu–Hf and Sm–Nd ages for this sample have been reset by diffusion and are cooling ages. The new Lu–Hf ages point to an initiation of prograde metamorphism prior to c . 240 Ma for the Dabie orogen, while the exact peak metamorphic timing experienced by specific samples ranges between c . 230 to c. 220 Ma.  相似文献   

14.
The Petermann Orogeny is a late Neoproterozoic to Cambrian ( c . 560–520  Ma) intracratonic event that affected the Musgrave Block and south-western Amadeus Basin in central Australia. In the Mann Ranges, within the central Musgrave Block, Mesoproterozoic granulite facies gneisses, granites and mafic dykes have been substantially reworked by deep crustal non-coaxial strain of late Neoproterozoic to early Cambrian age. Dolerite dykes have recrystallized to garnet granulite facies assemblages, associated with the development of a mylonitic fabric at P =12–13  kbar and T  =700–750 °C. Migmatization is restricted to discrete shear zones, which represent conduits for hydrous fluids during metamorphism. Peak metamorphism was followed by decompression to c . 7  kbar, reflecting exhumation of the terrane along the south-dipping Woodroffe Thrust. In scattered outcrops north of the Mann Ranges, peak metamorphism occurred at P =9–10  kbar and T  = c . 700 °C. The Woodroffe Thrust separates these deep crustal mylonites from granites that were metamorphosed during the Petermann Orogeny at P = c . 6–7  kbar and T  = c . 650 °C. The similarity in peak temperatures at different crustal levels implies an unusual thermal regime during this event. The existence of a relatively elevated geotherm corresponding with Th- and K-enriched granites that were in the mid-crust during the Petermann Orogeny suggests that radiogenic heat production may have substantially contributed to the thermal regime during metamorphism. This potentially has implications for the mechanisms by which intra-plate strain was localized during this event.  相似文献   

15.
Timing constraints on shear zones can provide an insight into the kinematic and exhumation evolution of metamorphic belts. In the Musgrave Block, central Australia, granulite facies gneisses have been affected, to varying degrees, by mylonitic deformation, some of which attained eclogite facies. The Davenport Shear Zone is a dominant strike-slip system that formed at eclogite facies conditions ( T  ≈650  °C and P ≈12.0  kbar). Sm–Nd mineral isochrons obtained from equilibrated high-pressure assemblages, as well as 40Ar–39Ar data, show that the eclogite and greenschist facies high-strain overprints were coeval, at c .  550  Ma. Mylonitic processes do not appear to have reset the U–Pb system in zircon, but may have partially disturbed it. The thermal gradient in the Musgrave Block crust at c .  550  Ma was c .  16  °C  km−1 and at c .  535  Ma was c .  18  °C  km−1, based on P – T  estimates of eclogite and greenschist facies shear zones, respectively. These estimates are similar to present-day geothermal gradients in many stable continental shield areas, suggesting that the region did not undergo a significant transient perturbation of the geotherm. Therefore, in the Musgrave Block, cooling subsequent to eclogite facies metamorphism appears to have been controlled by exhumation, rather than by the removal of a heat source. Estimated exhumation rates in the range 0.2 to ≥1.5  mm year−1 are comparable with other orogenic belts, rather than cratonic areas elsewhere.  相似文献   

16.
The southeast Reynolds Range, central Australia, is cut by steep northwest‐trending shear zones that are up to hundreds of metres wide and several kilometres long. Amphibolite‐facies shear zones cut metapelites, while greenschist‐facies shear zones cut metagranites. Rb–Sr and 40Ar–39Ar data suggest that both sets of shear zones formed in the 400–300 Ma Alice Springs Orogeny, with the sheared granites yielding well‐constrained 40Ar–39Ar ages of ca 334 Ma. These data imply that the shear zones represent a distinct tectonic episode in this terrain, and were not formed during cooling from the ca 1.6 Ga regional metamorphism. A general correlation between regional metamorphic grade and the grade of Alice Springs structures implies a similar distribution of heat sources for the two events. This may be most consistent with both phases of metamorphism being caused by the burial of anomalously radiogenic heat‐producing granites. The sheared rocks commonly have undergone metasomatism implying that the shear zones were conduits of fluid flow during Alice Springs times.  相似文献   

17.
Sm–Nd garnet‐whole rock geochronology, phase equilibria, and thermobarometry results from Garnet Ledge, south‐eastern Alaska, provide the first precisely constrained P–T–t path for garnet zone contact metamorphism. Garnet cores from two crystals and associated whole rocks yield a four point isochron age for initial garnet growth of 89.9 ± 3.6 Ma. Garnet rims and matrix minerals from the same samples yield a five point isochron age for final garnet growth of 89 ± 1 Ma. Six size fractions of zircon from the adjacent pluton yield a concordant U–Pb age of 91.6 ± 0.5 Ma. The garnet core and rim, and zircon ages are compatible with single‐stage garnet growth during and/or after pluton emplacement. All garnet core–whole rock and garnet rim‐matrix data from the two samples constrain garnet growth duration to ≤5.5 my. A garnet mid‐point and the associated matrix from one of the two garnet crystals yield an age of 90.0 ± 1.0 Ma. This mid‐point result is logically younger than the 90.7 ± 5.6 Ma core–whole rock age and older than the 88.4 ± 2.5 Ma rim‐matrix age for this sample. A MnNaCaKFMASH phase diagram (P–T pseudosection) and the garnet core composition are used to predict that cores of garnet crystals grew at 610 ± 20 °C and 5 ± 1 kbar. This exceeds the temperature of the garnet‐in reaction by c. 50 °C and is compatible with overstepping of the garnet growth reaction during contact metamorphism. Intersection of three reactions involving garnet‐biotite‐sillimanite‐plagioclase‐quartz calculated by THERMOCALC in average P–T mode, and exchange thermobarometry were used to estimate peak metamorphic conditions of 678 ± 58 °C at 6.1 ± 0.9 kbar and 685 ± 50 °C at 6.3 ± 1 kbar, respectively. Integration of pressure, temperature, and age estimates yields a pressure‐temperature‐time path compatible with near isobaric garnet growth over an interval of c. 70 °C and c. 2.3 my.  相似文献   

18.
In the southeastern Reynolds Range, central Australia, a low- P granulite facies metamorphism affected two sedimentary sequences: the Lander Rock Beds and the Reynolds Range Group. In the context of the whole of the Reynolds Range and the adjacent Anmatjira Range, this metamorphism is M3 in a sequence M1–4 that occurred over a period of 250 Ma. In particular, M1 affected the Lander Rock Beds prior to the deposition of the Reynolds Group. M3 has an areally restricted, high-grade area in the southeastern Reynolds Range, affecting both the Reynolds Range Group and the underlying Lander Rock Beds. The effects of M3 are characterized by spinel + quartz-bearing peak metamorphic assemblages in metapelites, which imply peak conditions of ≥750°C and 4.5 ± 1 kbar, and involved isobaric cooling or compression with cooling. It is concluded that one of a series of thermal perturbations caused by thinning of mantle lithosphere contemporaneous with crustal thickening was responsible for M3. In the southeastern Reynolds Range, evidence of both the unconformity between the two rock groups and previous metamorphism/deformation has been completely erased by recrystallization during M3–D3.  相似文献   

19.
ABSTRACT Ion probe traverses across garnets from peridotites of the Caledonides of Norway and the Variscides of Poland show zoning patterns for Y, V, Zr, Cr, Ti and the REE. The complexly zoned patterns of garnets from the Bystrzyca Górna peridotite, Poland, are interpreted in terms of a changing P–T history (isobaric cooling followed by decompression and cooling). Weak rimward gradients in REE concentrations in garnets from the Almklovdalen and Sandvika peridotites, Norway, may be relicts of the original growth history of the garnets, but the nearly flat Y, V, Zr, Cr and Ti profiles from the same garnets imply a later period of near-homogenization at uniform P–T. Crushed garnet separates from each body were separated into three or more fractions on the assumption that density and magnetic susceptibility vary with Fe/Mg ratio, and Fe/Mg ratios change from garnet core to rim. Sm-Nd garnet–clinopyroxene ‘ages’ were determined for each fraction to determine whether they are also zoned. Four garnet fractions from the Góry Sowie peridotite give nearly the same ages (397–412 Ma) that are believed to span the interval of garnet growth. Garnet fractions from the Norwegian peridotites define scattered ages (816–1350 Ma) that are suspect, but hint at a Sveconorwegian equilibration event. The data indicate the Variscan and Norwegian peridotites had different histories, despite superficial mineralogical and tectonic similarities. Norwegian garnet peridotites had a long pre-Caledonian history and were extracted from a relatively cold mantle whereas the Variscan garnet peridotites had a comparatively short pre- or Eo-Variscan history and were extracted from a hot mantle.  相似文献   

20.
Foliated garnet-bearing amphibolites occur within the West Bore Shear Zone, cutting through granulite facies gneisses of the Strangways Metamorphic Complex. In the amphibolites, large euhedral garnet (up to 3 cm) occurs within fine-grained recrystallized leucocratic diffusion haloes of plagioclase–quartz. The garnet and their haloes include a well-developed vertical foliation, also present in the matrix. This foliation is the same as that cutting through the unconformably overlying Neoproterozoic Heavitree Quartzite. The textures indicate syn- to late kinematic growth of the amphibolite facies mineral assemblages.
All mineral assemblages record an arrested prograde reaction history. Noteworthy is the growth of garnet at the expense of hornblende and plagioclase, and the breakdown of staurolite–hornblende to give plagioclase–gedrite. These dehydration reactions indicate increasing P – T  conditions during metamorphism, and suggest heating towards the end of a period of intense deformation. Temperature estimates for the garnet–amphibolite and related staurolite–hornblende assemblages from the shear zone are about 600 °C. Pressure is estimated at about 5 kbar.
An Sm–Nd isochron gives an age of 381±7 Ma for the peak metamorphism and associated deformation. This age determination confirms that amphibolite facies conditions prevailed during shear zone development within the Strangways Metamorphic Complex during the Alice Springs Orogeny. These temperature conditions are significantly higher than those expected at this depth assuming a normal geothermal gradient. The Alice Springs Orogeny was associated with significant crustal thickening, allowing exhumation of the granulite facies, Palaeoproterozoic, lower crust. Along-strike variations of the tectonic style suggest a larger amount of crustal shortening in the eastern part of the Alice Springs Orogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号