首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The long-term effect of elevated CO2 concentrations on needle dark respiration of two coniferous spe- cies—Pinus koraiensis and Pinus sylvestriformis on the Changbai Mountain was investigated using open-top chambers. P. koraiensis and P. sylvestriformis were exposed to 700, 500 μmol·mol-1 CO2 and ambient CO2 (approx. 350 μmol·mol-1) for four growing seasons. Needle dark respiration was meas- ured during the second, third and fourth growing seasons’ exposure to elevated CO2. The results showed that needle dark respiration rate increased for P. koraiensis and P. sylvestriformis grown at elevated CO2 concentrations during the second growing season, could be attributed to the change of carbohydrate and/or nitrogen content of needles. Needle dark respiration of P. koraiensis was stimu- lated and that of P. sylvestriformis was inhibited by elevated CO2 concentrations during the third growing season. Different response of the two tree species to elevated CO2 mainly resulted from the difference in the growth rate. Elevated CO2 concentrations inhibited needle dark respiration of both P. koraiensis and P. sylvestriformis during the fourth growing season. There was consistent trend be- tween the short-term effect and the long-term effect of elevated CO2 on needle dark respiration in P. sylvestriformis during the third growing season by changing measurement CO2 concentrations. How- ever, the short-term effect was different from the long-term effect for P. koraiensis. Response of dark respiration of P. koraiensis and P. sylvestriformis to elevated CO2 concentrations was related to the treatment time of CO2 and the stage of growth and development of plant. The change of dark respiration for the two tree species was determined by the direct effect of CO2 and long-term acclimation. The prediction of the long-term response of needle dark respiration to elevated CO2 concentration based on the short-term response is in dispute.  相似文献   

2.
We measured soil, stem and branch respiration of trees and shrubs, foliage photosynthesis and respiration in ecosystem of the needle and broad-leaved Korean pine forest in Changbai Mountain by LI-6400 CO2 analysis system. Measurement of forest microclimate was conducted simultaneously and a model was found for the relationship of soil, stem, leaf and climate factors. CO2 flux of different components in ecosystem of the broad-leaved Korean pine forest was estimated based on vegetation characteristics. The net ecosystem exchange was measured by eddy covariance technique. And we studied the effect of temperature and photosynthetic active radiation on ecosystem CO2 flux. Through analysis we found that the net ecosystem exchange was affected mainly by soil respiration and leaf photosynthesis. Annual net ecosystem exchange ranged from a minimum of about -4.671μmol·m-2·s-1 to a maximum of 13.80μmol·m-2·s-1, mean net ecosystem exchange of CO2 flux was -2.0μmol·m-2·s-1 and 3.9μmol·m-2·s-1 in winter and summer respectively (mean value during 24 h). Primary productivity of tree, shrub and herbage contributed about 89.7%, 3.5% and 6.8% to the gross primary productivity of the broad-leaved Korean pine forest respectively. Soil respiration contributed about 69.7% CO2 to the broad-leaved Korean pine forest ecosystem, comprising about 15.2% from tree leaves and 15.1% from branches. The net ecosystem exchange in growing season and non-growing season contributed 56.8% and 43.2% to the annual CO2 efflux respectively. The ratio of autotrophic respiration to gross primary productivity (Ra:GPP) was 0.52 (NPP:GPP=0.48). Annual carbon accumulation underground accounted for 52% of the gross primary productivity, and soil respiration contributed 60% to gross primary productivity. The NPP of the needle and broad-leaved Korean pine forest was 769.3 gC·m-2·a-1. The net ecosystem exchange of this forest ecosystem (NEE) was 229.51 gC·m-2·a-1. The NEE of this forest ecosystem acquired by eddy covariance technique was lower than chamber estimates by 19.8%.  相似文献   

3.
Knowledge of seasonal variation of net ecosystem CO2 exchange (NEE) and its biotic and abiotic controllers will further our understanding of carbon cycling process, mechanism and large-scale modelling. Eddy covariance technique was used to measure NEE, biotic and abiotic factors for nearly 3 years in the hinterland alpine steppe--Korbresia meadow grassland on the Tibetan Plateau, the present highest fluxnet station in the world. The main objectives are to investigate dynamics of NEE and its components and to determine the major controlling factors. Maximum carbon assimilation took place in August and maximum carbon loss occurred in November. In June, rainfall amount due to monsoon climate played a great role in grass greening and consequently influenced interannual variation of ecosystem carbon gain. From July through September, monthly NEE presented net carbon assimilation. In other months, ecosystem exhibited carbon loss. In growing season, daytime NEE was mainly controlled by photosynthetically active radiation (PAR). In addition, leaf area index (LAI) interacted with PAR and together modulated NEE rates. Ecosystem respiration was controlled mainly by soil temperature and simultaneously by soil moisture. Q10 was negatively correlated with soil temperature but positively correlated with soil moisture. Large daily range of air temperature is not necessary to enhance carbon gain. Standard respiration rate at referenced 10℃(R10) was positively correlated with soil moisture, soil temperature, LAI and aboveground biomass. Rainfall patterns in growing season markedly influenced soil moisture and therefore soil moisture controlled seasonal change of ecosystem respiration. Pulse rainfall in the beginning and at the end of growing season induced great ecosystem respiration and consequently a great amount of carbon was lost. Short growing season and relative low temperature restrained alpine grass vegetation development. The results suggested that LAI be usually in a low level and carbon uptake be relatively low. Rainfall patterns in the growing season and pulse rainfall in the beginning and at end of growing season control ecosystem respiration and consequently influence carbon balance of ecosystem.  相似文献   

4.
The study by the eddy covariance technique in the alpine shrub meadow of the Qing-hai-Tibet Plateau in 2003 and 2004 showed that the net ecosystem carbon dioxide exchange (NEE) exhibited noticeable diurnal and annual variations, with more distinct daily changes during the warmer seasons. The CO2 emission of the shrub ecosystem culminated in April and September while the CO2 absorption capacity reached a maximum in July and August. The absorbed carbon dioxide during the two consecutive years was 231.4 and 274.8 g CO2·m-2 respectively, yielding an average of 253.1 gCO2·m-2 per year: that accounts for a large proportion of absorbed CO2 in the region. Obviously, the diurnal carbon flux was negatively related to temperature, radiation and other atmospheric factors. Still, minute discrepancies in kurtosis and duration of carbon emission/absorption were detected between 2003 and 2004. It was found that the CO2 flux in the daytime was similarly affected by photosynthetic photon flux density in both years. Temperature appears to be the most important determinant of CO2 flux: specifically, the high temperature during the plant growing season inhibits the carbon absorption capacity. One potential explanation is that soil respiration is enhanced under such condition. Analysis of biomass revealed that the annual net carbon fixed capacity of aboveground and belowground biomass was 544.0 in 2003 and 559.4 g Cm"2 in 2004, which coincided with the NEE absorption capacity (63.1 g C·m-2 in 2003 and 74.9 g C·m-2 in 2004) in the corresponding plant growing season.  相似文献   

5.
The long-term and continuous carbon fluxes of Changbaishan temperate mixed forest (CBS), Qianyanzhou subtropical evergreen coniferous forest (QYZ), Dinghushan subtropical evergreen mixed forest (DHS) and Xishuangbana tropical rainforest (XSBN) have been measured with eddy covariance techniques. In 2003, different responses of carbon exchange to the environment appeared across the four ecosystems. At CBS, the carbon exchange was mainly determined by radiation and temperature. 0℃and 10℃were two important temperature thresholds; the former determined the length of the growing season and the latter affected the magnitude of carbon exchange. The maximum net ecosystem exchange (NEE) of CBS occurred in early summer because maximum ecosystem photosynthesis (GPP) occurred earlier than maximum ecosystem respiration (Rθ). During summer, QYZ experienced severe drought and NEE decreased significantly mainly as a result of the depression of GPP. At DHS and XSBN, NEE was higher in the drought season than the wet season, especially the conversion between carbon sink and source occurring during the transition season at XSBN. During the wet season, increased fog and humid weather resulted from the plentiful rainfall, the ecosystem GPP was dispressed. The Q10 and annual respiration of XSBN were the highest among the four ecosystems, while the average daily respiration of CBS during the growing season was the highest. Annual NEE of CBS, QYZ, DHS and XSBN were 181.5, 360.9, 536.2 and -320.0 g·C·m-2·a-1, respectively. From CBS to DHS, the temperature and precipitation increased with the decrease in latitude. The ratio of WEE/Rθincreased with latitude, while Rθ/Gpp, ecosystem light use efficiency (LUE), precipitation use efficiency and average daily GPP decreased gradually. However, XSBN usually escaped such latitude trend probably because of the influence of the south-west monsoon climate which does not affect the other ecosystems. Long-term measurement and more research were necessary to understand the adaptation of forest ecosystems to climate change and to evaluate the ecosystem carbon balance due to the complexity of structure and function of forest ecosystems.  相似文献   

6.
Many studies on global climate have forecast major changes in the amounts and spatial patterns of precipitation that may significantly affect temperate grasslands in arid and semi-arid regions. As a part of ChinaFLUX, eddy covariance flux measurements were made at a semi-arid Leymus chinensis steppe in Inner Mongolia, China during 2003-2004 to quantify the response of carbon exchange to environmental changes. Results showed that gross ecosystem production (FGEP) and ecosystem respiration (Reco) of the steppe were significantly depressed by water stress due to lack of precipitation during the growing season. Temperature was the dominant factor affecting FGEP and Reco in 2003, whereas soil moisture imposed a significant influence on both Reco and FGEP in 2004. Under wet conditions, Reco showed an exponentially increasing trend with temperature (Q10 = 2.0), but an apparent reduction in the value of Reco and its temperature sensitivity were observed during the periods of water stress (Q10=1.6). Both heat and water stress can cause decrease in FGEP. The sea-sonality of ecosystem carbon exchange was strongly correlated with the variation of precipitation. With less precipitation in 2003, the steppe sequestrated carbon in June and July, and went into a senescence in early August due to water stress. As compared to 2003, the severe drought during the spring of 2004 delayed the growth of the steppe until late June, and the steppe became a CO2 sink from early July until mid-September, with ample precipitation in August. The semi-arid steppe released a total of 9.7 g C·m-2 from May 16 to the end of September 2003, whereas the net carbon budget during the same period in 2004 was close to zero. Long-term measurements over various grasslands are needed to quantify carbon balance in temperate grasslands.  相似文献   

7.
Grassland is the largest terrestrial ecosystem in China. It is of great significance to measure accurately the soil respiration of different grassland types for the contribution evaluation of the Chinese terrestrial ecosystem’s carbon emission to the atmospheric CO2 concentration. A three-year (2005-2007) field experiment was carried out on three steppes of Stipa L. in the Xilin River Basin, Inner Mongolia, China, using a static opaque chamber technique. The seasonal and interannual variations of soil respiration rates were analyzed, and the annual total soil respiration of the three steppes was estimated. The numerical models between soil respiration and water-heat factors were established respectively. Similar seasonal dynamic and high annual and interannual variations of soil respiration were found in all of the three steppes. In the growing season, the fluctuation of soil respiration was particularly evident. The coefficients of variation (CVs) for soil respiration in different growing seasons ranged from 54% to 93%, and the annual CVs were all above 115%. The interannual CV of soil respiration progressively decreased in the order of Stipa grandis (S. grandis) steppe Stipa baicalensis (S. baicalensis) steppe Stipa krylovii (S. krylovii) steppe. The annual total soil respiration for the S. baicalensis steppe was 223.62?299.24 gC m-2 a-1, 150.62-226.99 gC m-2 a-1 for the S. grandis steppe, and 111.31–131.55 gC m-2 a-1 for the S. krylovii steppe, which were consistent with the precipitation gradient. The variation in the best fitting temperature factor explained the 63.5%, 73.0%, and 73.2% change in soil respiration in the three steppes at an annual time scale, and the corresponding Q10 values were 2.16, 2.98, and 2.40, respectively. Moreover, the Q10 values that were calculated by soil temperature at different depths all expressed a 10 cm 5 cm surface in the three sampling sites. In the growing season, the soil respiration rates were related mostly to the surface soil moisture, and the 95.2%, 97.4%, and 93.2% variations in soil respiration in the three steppes were explained by the change in soil moisture at a depth of 0-10 cm, respectively.  相似文献   

8.
Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28'E and 42°24'N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of FNEE, FGPP and Re; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux. Lal and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter. The forest was a net sink of atmospheric CO2 and sequestered -449 g C·m-2 during the study period; -278 and -171 gC·m-2 for 2003 and 2004 respectively. FGPP and FRE over 2003 and 2004 were -1332, -1294 g C·m-2. and 1054, 1124 g C·m-2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2. There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of FGPp, and 60.4, 62.1% of RE of the entire year.  相似文献   

9.
The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed forest ecosystem using the open path eddy covariance method. Based on two years of data from 2003 to 2004, the characteristics of temporal variation in CO2 flux and its response to environmental factors in the forest ecosystem are analyzed. Provided two-dimensional coordinate rotation, WPL correction and quality control, poor energy-balance and underestimation of ecosystem respiration during nighttime implied that there could be a CO2 leak during the nighttime at the site. Using daytime (PAR > 1.0μmol-1·m-2·s-1) flux data during windy conditions (u* > 0.2 m·s-1), monthly ecosystem respiration (Reco) was derived through the Michaelis-Menten equation modeling the relationship between net ecosystem CO2 exchange (NEE) and photosynthetically active radiation (PAR). Exponential function was employed to describe the relationship between Reco and soil temperature at 5 cm depth (Ts05), then Reco of both daytime and nighttime was calculated respectively by the function. The major results are: (i) Derived from the Michaelis-Menten equation, the apparent quantum yield (α) was 0.0027±0.0011 mgCO2·μmol-1 photons, and the maximum photosynthetic assimilation rate (Amax) was 1.102±0.288 mgCO2·m-2·s-1. Indistinctive seasonal variation of o or Amax was consistent with weak seasonal dynamics of leaf area index (LAI) in such a lower subtropical evergreen mixed forest. (ii) Monthly accumulated Reco was estimated as 95.3±21.1 gC·m-2 mon-1, accounting for about 68% of the gross primary product (GPP). Monthly accumulated NEE was estimated as -43.2±29.6 gC·m-2·mon-1. The forest ecosystem acted as carbon sink all year round without any seasonal carbon efflux period. Annual NEE of 2003 and 2004 was estimated as -563.0 and -441.2 gC·m-2·a-1 respectively, accounting for about 32% of GPP.  相似文献   

10.
The Arctic is highly sensitive to climate change, and the rise in its near-surface air temperatures has been almost twice the global average. The increased growth of the Arctic tundra and its changing seasonality have been observed, largely in response to the impacts of climate change. In this study, we investigated the temporal and spatial variations of the start of the growing season(SOS) using various remote sensing indices, including Normalized Difference Vegetation Index, Normalized Difference Water Index, and Normalized Difference Snow Index from 2000 to 2018 in Arctic tundra regions. The SOS was derived at 29 sites from ground observations, including CO_2 flux data, phenological images, and field records that were used to validate the SOS from remote sensing indices. Our results revealed that the SOS was delayed by approximately 3.86 days per degree of latitude along the northward latitudinal gradient. From 2000 to 2018, the start of the growing season and the interannual variability differed greatly among tundra types. Although the overall trends were not significant from 2000 to 2018, the start of the growing season in different plant communities was consistently delayed after 2016. High Arctic vegetation, including(1) low wetland complexes(5–10 cm) dominated by sedges, grasses, and mosses, and(2) slightly higher prostrate and hemi-prostrate shrubs( 15 cm), experienced a delayed start of the growing season. The start of the growing season of Low Arctic vegetation,comprising(1) wetland complexes(10–40 cm) dominated by sedges, grasses, mosses, and dwarf shrubs,(2) moist tundra(20–50 cm) dominated by tussock cottongrass and dwarf shrubs, and(3) transition zones containing tundra and taiga, displayed no obvious trend.  相似文献   

11.
Soil respiration refers to the process of soil gener-ating and emitting CO2to the atmosphere under the synthetic effect of different environmental factors,which includes mineralization of soil organic matter involved by microorganism and respiration of plant root system and soil animals.The emission of CO2to the atmosphere through soil respiration is the most important link of carbon cycle process of grassland ecosystem,and also the key ecological process of grassland ecosystem exerting effec…  相似文献   

12.
Delayed response means that channels cannot achieve a new equilibrium state immediately following disruption;the channel requires a response time or relaxation time to reach equilibrium.It follows that the morphological state of fluvial system represents the cumulative effects of all previous disturbances and environmental conditions.A unique feature of the delayed response model for bankfull discharge is that the model is capable of representing the cumulative effects of all previous flow conditions when applied to predict the path/trajectories of bankfull discharge in response to altered flow regimes.In this paper,the delayed response model was modified by readjusting the weight for the initial boundary conditions and introducing a variableβwith respect to time.The modified model was then applied to the bankfull discharge calculations for three selected river reaches of the Yellow River,with each reach having different geomorphic settings and constraints. Results indicated that the modified model can predict accurately the bankfull discharge variation in response to changes in flow discharge and sediment load conditions that have been dramatically altered in the past.Results also demonstrated the strong dependence of current bankfull discharge on the previous years’ flow conditions,with the relaxation time varied from 2 to 14 years,meaning that the bankfull discharge was not only affected by the flow discharge and sediment load in the current year,but also by those in previous 1 to 13 years.Furthermore,the relaxation time of bankfull discharge adjustment was inversely proportional to the long-term average suspended sediment concentrations,and this may be explained by fact that high sediment concentrations may have a high potential to perform geomorphic work and there is more sediment readily available to shape the channel boundary and geometry.  相似文献   

13.
Based on cross-dating tree rings from the Tianmu Mountain, Zhejiang Province, the tree rings α-cellulose δ 13C time series was measured. By spectrum analysis, the variation of tree-ring δ13C sequence shows a quasi periodicity of 4.4 years, which is coincident with the standard cycle of El Nino. After removing the long-term decrease trend of the δ13C variation related to atmospheric CO2 concentration, the response of the δ13C to climate elements was analyzed using meteorology data from a nearby weather station. The results suggest that there is a distinct relativity between high-frequency variation of tree ring δ 13C series and seasonal climate parameters, e.g. Temperature and precipitation, with a significant time-lag effect. In addition, the high frequency also reflects the strength change of the East Asian Monsoon. The multiple regression method was employed to reconstruct the historical climate, and to analyze the climate change and trend in the last 160 years in the northern Zhejiang Province.  相似文献   

14.
Eddy covariance technique was used to measure carbon flux during two growing seasons in 2003 and 2004 over typical steppe in the Inner Mongolia Plateau, China. The results showed that there were two different CO2 flux diurnal patterns at the grassland ecosystem. One had a dual peak in diurnal course of CO2 fluxes with a depression of CO2 flux after noon, and the other had a single peak. In 2003, the maximum diurnal uptake and emitting value of CO2 were -7.4 and 5.4 g·m-2·d-1 respectively and both occurred in July. While in 2004, the maximum diurnal uptake and release of CO2 were -12.8 and 5.8 g·m-2·d-1 and occurred both in August. The grassland fixed 294.66 and 467.46 g CO2·m-2 in 2003 and 2004, and released 333.14 and 437.17 g CO2·m-2 in 2003 and 2004, respectively from May to September. Water availability and photosynthetic active radiation (PAR) are two important factors of controlling CO2 flux. Consecutive precipitation can cause reduction in the ability of ecosystem carbon exchange. Under favorable soil water conditions, daytime CO2 flux is dependent on PAR. CO2 flux, under soil water stress conditions, is obviously less than those under favorable soil water conditions, and there is a light saturation phenomena at PAR=1200μmol·m-2·s-1. Soil respiration was temperature dependent when there was no soil water stress; otherwise, this response became accumulatively decoupled from soil temperature.  相似文献   

15.
The investigation and continuous monitoring with an innovative iron oxide embedded cellulose acetate membrane (FeO/CAM) on the concentrations of biologically available phosphorus (BAP) were conducted in the Meiliang Bay of the Taihu Lake during summer in 2004. The results showed that the concentrations of dissolved (FeO-DP), particulate (FeO-PP) and total bioavailable phosphorus (FeO-P) had similar horizontal distribution. The BAP concentrations were the highest in those estuaries in the northern bay. With the decrease of the distance to the estuary or long shore, there was little difference between BAP concentrations in an open lake area. During the observation period, algal blooms occurred in most waters of the northern bay, which was reflected from the high concentrations of chlorophyll a (Chl-a). While they were not highest in the estuarine waters of those major rivers, this is the case for the BAP concentrations. The concentrations of Chl-a had a significantly positive correlation with those of bioavailable phosphorus in the open area of the Meiliang Bay. With the sediment resuspension induced by wind and wave, BAP concentrations increased in a short-term, indicating that the riverine P inputs mainly contribute to the concentrations of BAP in the estuarine water while internal P release was the major source of BAP in the open lake area. In the eutrophic shallow lake, the blooms of alga may cause pH increase and further result in internal P release. The above results showed that the new membrane of FeO/CAM can be used to monitor the concentrations of BAP and provide the scientific justifications for the control strategy of the lake eu-trophication.  相似文献   

16.
Through combining the soil respiration with the main environmental factors under the planting shelterbelt (Populus woodland) and the natural desert vegetation (Tamarix ramosissima Phragmites communis community and Haloxylon ammodendron community) in the western Junngar Basin, the difference in soil respiration under different land use/land cover types and the responses of soil respiration to temperature and soil moisture were analyzed. Results showed that the rate of soil respiration increased with temperature. During the daytime, the maximum soil respiration rate occurred at 18:00 for the Populus woodland, 12:00 for T. ramosissima Ph. communis community, and 14:00 for H. ammodendron community, while the minimum rate all occurred at 8:00. The soil respiration, with the maximum rate in June and July and then declining from August, exhibited a similar trend to the near-surface temperature from May to October. During the growing season, the mean soil respiration rates and seasonal variation differed among the land use/land cover types, and followed the order of Populus woodland >T. ramosissima Ph. communis community > H. ammodendron community. The difference in the soil respiration rate among different land use/land cover types was significant. The soil respiration of Pouplus woodland was significantly correlated with the near-surface temperature and soil temperature at 10 cm depth (P < 0.01) in an exponential manner. The soil respiration of T. ramosissima Ph. communis and H. ammodendron communities were all linearly correlated with the near-surface temperature and soil surface temperature (P < 0.01). Based on the near-surface tempera-ture, the calculated Q10 of Populus woodland, T. ramosissima Ph. communis community and H. ammodendron community were 1.48, 1.59 and 1.63, respectively. The integrated soil respiration of the three land use/land cover types showed a significant correlation with the soil moisture at 0―5 cm, 5― 15 cm and 0―15 cm depths (P < 0.01). The quadratic model could best describe the relationship between soil respiration and soil moisture at 0―5 cm depth (P < 0.01).  相似文献   

17.
At present, using Eddy Covariance (EC) method to estimate the "true value" of carbon sequestration in terrestrial ecosystem arrests more attention. However, one issue is how to solve the uncertainty of observations (especially the nighttime CO2 flux data) appearing in post-processing CO2 flux data. The ratio of effective and reliable nighttime EC CO2 flux data to all nighttime data is relatively low (commonly, less than 50%) for all the long-term and continuous observation stations in the world. Thus, the processing method of nighttime CO2 flux data and its effect analysis on estimating CO2 flux annual sums are very important. In this paper, the authors analyze and discuss the reasons for underestimating nighttime CO2 flux using EC method, and introduce the general theory and method for processing nighttime CO2 flux data. By analyzing the relationship between nighttime CO2 flux and air fraction velocity u., we present an alternate method, Average Values Test (AVT), to determine the thresholds of fraction velocity (u.c) for screening the effective nighttime CO2 flux data. Meanwhile, taking the data observed in Yucheng and Changbai Mountains stations for an example, we analyze and discuss the effects of different methods or parameters on nighttime CO2 flux estimations. Finally, based on the data of part ChinaFLUX stations and related literatures, empirical models of nighttime respiration at different sites in ChinaFLUX are summarized.  相似文献   

18.
Two years of eddy covariance measurements of above- and below-canopy carbon fluxes and static opaque chamber and gas chromatography technique measurements of soil respiration for three treatments (bare soil, soil litterfall, soil litterfall seedling) were carried out in a tropical seasonal rain forest. In addition, data of photosynthesis of dominant tree species and seedlings, leaf area index, litter production and decomposing speed, soil moisture, soil temperature and photosynthetic photon flux density within the forest were all measured concurrently. Data from January 2003 to December 2004 are used to present annual variability of carbon flux and relationships between carbon flux and impact factors. The results show that carbon flux of this forest presented unusual tendency of annual variation; above-canopy carbon fluxes were negative in the dry season (November-April) and mainly positive in the rainy season, but overall the forest is a carbon sink. Carbon flux has obviously diurnal variation in this tropical seasonal rain forest. Above-canopy carbon fluxes were negative in the daytime and absolute values were larger in the dry season than that in the rainy season, causing the forest to act as a carbon sink; at night, carbon fluxes were mainly positive, causing the forest to act as a carbon source. Dominant tree species have greater photosynthesis capability than that of seedlings, which have a great effect on above-canopy carbon flux. There was a significant correlation between above-canopy carbon flux and rate of photosynthesis of tree species. There was also a significant correlation between above-canopy carbon flux and rate of photosynthesis of seedlings; however, the below-canopy carbon flux was only significantly correlated with rate of photosynthesis of seedlings during the hot-dry season. Soil respiration of the three treatments displayed a markedly seasonal dynamic; in addition, above-canopy carbon fluxes correlated well with soil respiration, litterfall production, litterfall decomposition rate, precipitation, and soil moisture and temperature. A primary statistical result of this study showed that above-canopy carbon flux in this forest presented carbon source or sink effects in different seasons, and it is a carbon sink at the scale of a year.  相似文献   

19.
Ecosystem-scale water-use efficiency(WUE) is an important indicator for understanding the intimately coupled relationship between carbon and water cycles in ecosystems. Previous studies have suggested that both abiotic and biotic factors have significant effects on WUE in forest ecosystems. However, responses of WUE to phenology in the context of climate change remain poorly understood. In this study, we analyzed the sensitivity and response patterns of seasonal WUE to phenology in Zhejiang Province where typical subtropical forest ecosystems are located, and discussed potential causes of the changes of the sensitivity and response patterns along different climate gradient during 2000–2014. The results of interannual partial correlation analysis showed widespread negative correlations between WUE and the start of growing season(SOS) in spring. This is because the increase in gross primary product(GPP) is larger than that of evapotranspiration(ET), resulting from an advanced SOS. The positive correlation between WUE and SOS was widely observed in summer mainly because of water stress and plant ecological strategy. The autumn WUE enhanced with the delay in the end of growing season(EOS)mainly because of the increase in GPP meanwhile the decrease or steadiness in ET, resulting from a delayed EOS. In space, the sensitivity of spring WUE to SOS significantly decreased along the radiation gradient, which might be related to strong soil evaporation in high radiation area;the sensitivity of WUE to SOS in summer showed a positive correlation with precipitation and a negative correlation with temperature, respectively, which might be attributed to the compensation of GPP to the delayed SOS and water stress caused by high temperature. The sensitivity of WUE to EOS increased significantly along the radiation and precipitation gradients in autumn, which may be because the increase of radiation and precipitation provides more water and energy for photosynthesis.  相似文献   

20.
The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP>0.1 mgL-1, NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than antinitrification. When 0.1 mgL-1>TP>0.035 mgL-1, TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplank-ton might be the vital regulating factor. When TP<0.035 mgL-1, inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号